
Computability and Complexity
Lecture 16

Computability and Complexity

Complexity - Introduction + Complexity classes
Computability - is a problem solvable?

Part I: via Turing machines
Part II: via Church’s Lambda calculus

..now..
Part III: Complexity is concerned with how difficult a

solvable problem is to solve..
its consumption of resources..
..not concerned with unsolvable problems.

In practice - if a problem cannot be solved in reasonable time it is
no better than unsolvable to someone needing the solution.

We classify solvable problems into Complexity Classes..

Computability and Complexity
Lecture 16

Computability and Complexity

P..the Class of tractable problems that can be solved efficiently
(in polynomial time: p-time).

intractable problems are solvable but any algorithmic
solution runs in exponential time (or slower) in the worst case.
Practically unsolvable except for small inputs, unless average
case much better than the worst.

NP..the class of problems which can be solved in p-time by a
non-deterministic algorithm. Do they have deterministic p-time
solutions? “P = NP?” if so, then all NP problems are in P..this has
not been proved either way, but it is thought most likely that P ≠ NP,
so problems in NP \P remain intractable (but not proved to be so).

NP-Complete problems..the hardest problems in NP. All NP-
complete problems reduce to each other in p-time. Cook’s
theorem demonstrates that there are NP-complete problems
(i.e. NP-complete is not an empty set)

Computability and Complexity
Lecture 16

Computability and Complexity

Why do we study Complexity?..

• it guides us towards the tractable problems solvable with fast
algorithms.

•..but we often encounter NP-complete problems in practice..so it will
avoid (practically) hopeless searches for fast algorithms.

• the reducibility of every NP-complete problem to every other gives
us a higher level view of solvability and the notion of algorithm
and its formalism by TMs.

We will:
• define the run time function of a Turing machine
• introduce non-deterministic TMs and their run-time function
• formalise fast reduction of one problem to another
• examine NP and NP-complete problems

Computability and Complexity
Lecture 16

Computability and Complexity

Some problems we will use in discussing complexity:

1. The Minimal Spanning Tree problem:
Given a connected weighted graph, G, find a spanning tree of
the graph which has the shortest total weight.

2. The Hamiltonian Circuit problem:
Given a connected graph is there a circuit through the graph which
visits each node exactly once. (the start/finish node counts once only)

3. The Travelling Salesman Problem
Given a complete weighted graph (there is an edge between every
pair of nodes), and a value, d, is there a circuit which visits every
node exactly once, with total path weight ≤ d?

Computability and Complexity
Lecture 16

Computability and Complexity

4. The Propositional Satisfaction Problem (PSAT)

We write formulae of propositional logic, with
alphabet I which includes:

atoms p1, p2, p3, ..
connectives ∧ ∨ ¬ ⇒ ⇔ ()

A formula is a word of I - can be input to a TM.

PSAT: given a formula A, is A satisfiable?

i.e. is there an assignment of true/false values to the atoms of A
such that h(A) = true?

This has exponential run-time - it is an NP-complete problem.

Computability and Complexity
Lecture 16

Computability and Complexity

Definition:

• a TM M is said to accept a word w of its input alphabet if
M Halts and Succeeds on input w

• a TM M is said to reject a word w of its input alphabet if
M Halts and Fails on input w

• M solves a yes/no problem A if
• every instance of A is a word of M’s input alphabet and

• M accepts all yes-instances of A
• M rejects no-instances of A

Turing Machines for yes/no problems

Computability and Complexity
Lecture 16

Computability and Complexity

Examples of yes/no problems

Problem instances yes-instances no-instances

is w prime? binary rep. bin. rep. bin. rep. of
of numbers of primes non-primes

Halting all pairs (code(M),w) all (codeM),w) all (code(M),w)
Problem M a standard TM, s.t. M H & S s.t. M does not
(HP) w a word of C on input w H & S on input w

Hamiltonian all finite graphs graphs with a graphs without
Circuit Hamiltonian a Hamiltonian
Problem (HCP) circuit circuit

Travelling all pairs (G,d), pairs (G,d) s.t. pairs (G,d) s.t.
Salesman G a weighted graph G has a HC with G has no HC with
Problem (TSP) d≥0 length≤d length≤d

Computability and Complexity
Lecture 16

Computability and Complexity
We consider:
 problems with infinitely many yes-instances
 and infinitely many no-instances..
if finite .. could hard-wire them into the TM by just recognising
whether the input was one of the finite number of (say) yes-instances
⇒ Halt and Succeed, and otherwise Halt and Fail..

….with no calculation being done by the TM.
yes no

or

yes-instances
produce yes

no-instances
produce no

The result of running a TM to solve a yes/no problem:
Halt & Succeed: yes
Halt & Fail: no

We do not need output on the tape to get a result

Computability and Complexity
Lecture 16

Computability and Complexity

The run-time function of a Turing Machine

M = (Q, ∑, I, q0, δ,F)

for input words w of length n (n=1, 2, 3..):

M runs a varying number of steps for various words w of length n.

define
 timeM (n) = length of longest run of M for input of length n

the function
timeM (n) : {0, 1, 2, ..} ⇒ {0, 1, 2, …,∞}

is the run-time function of M.

Computability and Complexity
Lecture 16

Computability and Complexity

Polynomial-time (p-time) Turing Machines

”M runs in polynomial time”..means

“there is
p(n) = a0+a1n+a2n2+a3n3+..+aknk

(a0, a1, a2, a3, ..ak all non-negative integers)
such that

timeM(n) ≤ p(n), all n = 0,1,2,3..

Such a Turing Machine is FAST

p-time Turing Machines ALWAYS HALT.

Computability and Complexity
Lecture 16

Computability and Complexity

Tractable problems

A yes/no problem is tractable if it can be solved by a TM running
in p-time

 intractable if it can be solved algorithmically, but
not in p-time

An algorithm is tractable if it can be implemented by a p-time TM
 intractable if it cannot be implemented by a p-time TM.

(the Cook-Karp thesis: “p-time TMs are fast”).

P is the class of tractable problems :
i.e. they can be implemented by a p-time TM.

The complement of a problem in P: exchange yes and no

eg. is n prime? is n composite?complement

Computability and Complexity
Lecture 16

Computability and Complexity

co-P: class of complements of problems in P.

P is closed under complementation:

 if problem A ∈ P, then the complement of A ∈ P.

to complement A:
Halting states

No applicable
 instruction

M solves problem A
in p-time

M M' Rewire M to
Get M’ solving
complementary
problem to
A in p-time

P is closed under complementation

Computability and Complexity
Lecture 16

Computability and Complexity

Intractable Problems
..some problems have been proved to be intractable

(cannot be solved by a p-time Turing Machine).

..many problems do not have a tractable algorithm, but have not
yet been proven to be either tractable or intractable problems
..ie..is there a tractable algorithmic solution?..no proof yet,

but considered unlikely.
Examples: TSP, HCP, PSAT (propositional satisfaction problem).
..characterised by having a finite number of possible solutions
(but exponentially rising with the size of the problem instance)

..checking one to see whether it is a solution, may be done in p-time

..but in general
there is an exponential number of these checks to do.

Computability and Complexity
Lecture 16

Computability and Complexity

Exhaustive search in algorithms

We have seen two main types of yes/no problems:

(∃) is there a solution?..solved if we can find one
we can check all possibilities, but this is intractable if the
 no. of possible solutions rises exponentially

or
(∀) is there NO solution? (complement of ∃ problem)

we can check all possibilities..intractable if the no. of possible
solutions rises exponentially

Checking each possible solution can usually be done in p-time
eg. HCP, TSP.

Computability and Complexity
Lecture 16

Computability and Complexity

A search strategy which homes in on a solution without exhaustive
checking can render a problem tractable. eg. Minimum Spanning Tree
The types ∃ and ∀ of problems each subdivide into those (∃1, ∀1)
which have a search strategy, and those (∃2, ∀2) which have none

(∀) problems..eg. is every spanning tree of length > d?
..find a MST, calculate its weight, compare with d.

this is the complement of a tractable ∃ problem.

(∃2) and their complements (∀2) remain intractable..
is there a fast strategy to solve them?

if so, such a problem is in P ..
eg the minimal spanning tree problem

if not ..these are the NP-complete problems
 eg. Hamiltonian Circuit, Travelling Salesman

Exhaustive search in algorithms..continued

Computability and Complexity
Lecture 16

Computability and Complexity

Summary

We have introduced:

 the time function of a Turing Machine
polynomial time function (p-time) TMs

Tractable and Intractable problems and algorithms

Complexity classes of problems

P ..can be solved by a deterministic TM in p-time

(for NP and NP-complete see later lectures).

Computability and Complexity
Lecture 16

Computability and Complexity

C240 Computability & Complexity Coursework 1: Sample solution

The question asked for a 2-tape Turing machine; it is possible to use just one tape of a 2-tape TM,
with the single read head moving between symbols of v and w, comparing them..similar to the
 “is w1 equal to w2?” TM in the notes, but with matching attempts starting in successive symbols of
w, not just the first.
Most of the solutions submitted copied either v or w to the second tape, started the first matching
 attempt with the leftmost symbols of v and w,and moved the read heads right together along v and
 w matching symbols; when a mismatch is found:
 if v has all been matched then H & S
 if the end of w has been reached without all of v matched, H & F
 else the heads are returned to the start of v and to one square in w after the start of the previous
 partial match, and symbol-by-symbol comparison of v with w restarts.

In the cases where v=ε ..H & S as ε is a substring of all strings
 where w=ε; H & F unless v=ε too.

There were other variations:
- shifting w left 1 square after each unsuccessful attempt to match, so that both v and unmatched
 part of w started in square 0… this was used in some 1-tape solutions using 2 tracks.
-matching v starting with the last symbol of v and moving the heads together to the left; the first
 matching attempt either starting with the last symbol of w and successive attempts starting from
 1 square further to the left each time, or starting with the leftmost possible match in the mth
 symbol of w with successive attempts starting 1 square to the right.

Computability and Complexity
Lecture 16

Computability and ComplexityThe Substring Turing machine

Copy-v Match-v1

Try-again

H & S

((*,^),(*,^),(0,0))

((x,^),(x,x),(1,1) if x≠*

((*,^),(*,*),(1,0))

((x,y),(x,y),(0,-1))
 if Head 2 not at squ 0

((x,y),(x,y),(0,0))
 if Head 2 at squ 0

((x,y),(x,y),(1,0)
if x≠y, and x≠^ and y≠*

Hd2-to-0

Match-vi

((x,x),(x,x),(1,1))

((x,x),(x,x),(1,1))
((x,*),(x,*),(0,0))

((x,y),(x,y),(0,0))
if x≠y and x≠^ and
y≠*

((x,y),(x,y).(-1,-1))
 if Head 2 not at squ 0

((x,y),(x,y),(1,0)) if Head 2 at squ 0

Computability and Complexity
Lecture 16

Computability and ComplexityTime Function.
Worst case: for n> m, is where the first m-1 symbols of v match starting at each symbol of w:

Eg w = aaaa…aaa, v = aaab.

n

mn-m

Number of steps:
Copy-v: m
Transition to Hd2-to-0: 1
Hd2-to-0: m
Transition to Match-v1: 1 Initialisation total: 2m+2

For each of n-m+1 attempts to match v with w:

Match v1to Match-vi:1
Transition to Try-again:1
Try-again: m-1
Transition to match-v1: 1 total for matches within w: (n-m+1)x(2m+1)

Final match attempt (fails at end of w) (no rewind) 1+m-1
TOTAL: 2m+2 +2mn+n-2m2 -m+2m+1 +1+m-1 = 2mn-2m2 +n+4m+3=2m(n-m+2) +(n+2)

