
Computability and Complexity
Lecture 17

Computability and Complexity

Non-Deterministic Turing Machines
A NDTM can choose which of a number of instructions to execute
at points in a run..
 no program control at run time.
..so a run is not determined in advance - no control via d-function,
..can have more than 1 entry for (state qi, symbol read a)

This can give a “free’ exhaustive search for a possible solution
which is then checked.

We would like to replace this non-deterministic choice with a
clever search strategy to select a suitable possible solution, and
then check it in p-time.

The choice is done by multiple entries for (q,a) Œ Q x ∑.

Computability and Complexity
Lecture 17

Computability and Complexity

Formal definition of NDTM
N = (Q, ∑, I, q0, d, F), with

d:(Q\F) x ∑ fi 2 Q x ∑ x {± 1, 0}

.

ie. the function value for (q,a) is a set of the alternatives

If there is no applicable instruction for (q,a) then d(q,a)=∅
(empty set).

if d(q,a) contains only one (q’,a’,d) or is empty,
we have an ordinary deterministic TM.

:2 Qx∑x{±1,0} : the set of all subsets of Q x ∑ x {± 1, 0}

Computability and Complexity
Lecture 17

Computability and Complexity

Input and Output for NDTMs

Input: tape contents before the first ^ as before
Output: can have many different results on tape for an input w -

for each successful (H & S) run
fi a set of possible outputs.

fi simplify by considering only yes/no problems

• acceptance for NDTMs:
 N accepts w Œ I* if there exists a successful run with w as input:

-..if at least one run on w Halts and Succeeds.

• rejection for NDTMs
-N rejects w Œ I* if all runs on input w Halt and Fail.

Computability and Complexity
Lecture 17

Computability and Complexity

Speed of NDTMs
For any input wŒ I* the NDTM can

1) Halt and Succeed (i.e. accept w)

2) Halt and Fail (i.e. reject w)

(3) Never halt..excluded when N solves the problem).

Run-time function for NDTMs:

timeN (n) = length of longest run for any w Œ I* of length n.
timeN (n) ≤ •.
We say that a NDTM N runs in polynomial time if
$ a polynomial p such that

timeN(n) ≤ p(n), all n > 0
p(n) is an upper bound on time for inputs of length n.

Computability and Complexity
Lecture 17

Computability and Complexity

Example of a Non-Deterministic Turing Machine
Non-primality testing. Given a number n, is n composite?
We build a 2-track NDTM which:
1. Guesses a number m, where 1 < m < n.
2. Divides n by m (deterministically in p-time)
3. If there is no remainder (m divides n) then

it Halts and Succeeds: “yes”
otherwise it Halts and Fails: “no”.

H & S

q0

H & F

(^,(^,^),0)
is number on track 2 bigger
than 1 and less than
number on track 1?

divide number on track 1 by
number on track 2.

remainder = 0

yes

no

remainder≠ 0

N

(x,(x,0),1)
(x,(x,1),1)
if x=0 or 1

Computability and Complexity
Lecture 17

Computability and Complexity

Example of a Non-Deterministic Turing Machine

H & S

q0

H & F

(^,(^,^),0)
is number on track 2 bigger
than 1 and less than
number on track 1?

divide number on track 1 by
number on track 2.

remainder = 0

yes

no

remainder≠ 0

N

(x,(x,0),1)
(x,(x,1),1)
if x=0 or 1

A

B

• the input is a binary number on a single track
• N non-deterministically writes a binary number, m on track 2.

ending at the end of n.
• N checks whether m = 0, or m= 1 or m ≥ n: if so N Halts and Fails

if not, N divides n by m and checks whether the remainder> 0
 ..if not, N Halts and Succeeds

otherwise N Halts and Fails

Computability and Complexity
Lecture 17

Computability and Complexity

accepting runs
(ending in
Halt & Succeed

infinite runs

acc acc rejecting runs
(ending in
Halt & Fail)

acc

rej

acc rej

NDTM N

tree representation of the possible runs of NDTM, N on some input

Computability and Complexity
Lecture 17

Computability and Complexity

The Class NP of problems

NP consists of all yes/no problems A such that there is some
NDTM N that runs in p-time and solves A;

 N accepts all the yes-instances of A
rejects all the no-instances of A.

This is the class of ($) type problems that would be in P if they had
 a clever search strategy.

P Õ NP as p-time deterministic TMs are a special case of
p-time non-deterministic TMs.

P = NP? .. yes/no problem not yet answered

Computability and Complexity
Lecture 17

Computability and Complexity

Simulation of NDTMs by ordinary TMs.
..we demonstrate that a NDTM is no more powerful than an
ordinary TM..further evidence for the Church-Turing Thesis.

..we have seen the non-determinism as a way of guessing from the
search space of possible solutions..and then checking deterministically
 whether this is a solution..

Equivalence of ordinary TMs and NDTMs:

1) given an ordinary TM M = (Q, ∑, I, q0, d, F) we can construct an
 equivalent NDTM N = (Q, ∑, I, q0, d', F) such that:

d'(q, a) = {d(q, a)} if d(q, a) is defined
 ∅ otherwise.
N behaves exactly as M - deterministically,

but it is a valid NDTM.

Computability and Complexity
Lecture 17

Computability and Complexity

Equivalence
2)any yes/no problem solvable by a NDTM can also be solved by an

ordinary deterministic Turing Machine.
Given a NDTM N fi construct a deterministic TM to solve

the same Problem.

We will simulate N with a 3-tape ordinary TM, M:
 M rejects/accepts the same input words
 M does breadth-first traversal of the tree of possible runs of N for

given input w.
 M Halts and Succeeds when it finds a Halting state of N.

why a breadth-first tree traversal?
-we want to find any H & S
- we don’t want to go down infinite (non-terminating) branches.

Computability and Complexity
Lecture 17

Computability and Complexity

At each node of the search tree, N has a configuration:

• current state of N
• current contents of N’s tape
• position of read head of N

which determines what N does next..
 ..the possible nodes at the next level of the tree

Representation of the configuration of N:

 s * t

word representing the
State of N

A “ 2-track word” giving the
Contents of N’s tape and the current
Position of N’s head.

Contents of N’s tape^^^

X
current position of
N’s head

Computability and Complexity
Lecture 17

Computability and Complexity

We can describe a level of the run-tree of N by the set of possible
configurations after the corresponding number of steps in N’s run.

N’s run tree has levels:

H & S

H & S

H & S H & SH & F

H & F

H & F

H & F

H & F

s*t

s*t**s1*t1**s2*t2
s*t s1*t1

s2*t2

configuration at a node

configurations at
a level in the tree

Computability and Complexity
Lecture 17

Computability and Complexity

M simulates N by building up the possible configurations of N,
level-by-level: at first N has input word w fi M starts with w on

tape 1
fi replace w by config(q0, w, 0)

tape 2 is used for scratch work
Breadth-first search for Halt and Succeed:

after n cycles (levels of the run tree):
M has s*t**s1*t1**s2*t2**s3*t3..**sr*tr on tape 1

configurations for nodes at level n
M follows N:
• look for a Halting State of N among the configurations at level n

it there is one fi M Halts and Succeeds
• check each si*ti ..each node at level n, calculate possible nodes

 at level n+1..(ignore if this involves move left from sq 0)
..add the new configuration to the end of tape 2 of M

if no child nodes, no change to tape 2.

Computability and Complexity
Lecture 17

Computability and Complexity

M now has:

u*v**u1*v1**u2*v2**u3*v3**u4*v4**u5*v*5*u6*v6

Tape 1

Tape 2

Tape 3

s*t**s1*t1**s2*t2**s3*t3**s4*t4**

configurations of nodes at level n

configurations of nodes at level n+1

scratch work

When all level n+1 configurations are on tape 2,
copy Tape 2 to Tape 1 and repeat for level n+1 on tape 1, building
Level n+2 on Tape 2.

Computability and Complexity
Lecture 17

Computability and Complexity

The cycle is repeated for level n+1.
if Tape 2 is empty at the end of a cycle

no child nodes Halt and Fail

Success/ Failure:
N accepts w fi $ some successful run of N on w

fi somewhere in the tree $ config(q, w, m), q Œ F.
M will find this, and Halt & Succeed.

N rejects w fi every run of N on w fi Halt and Fail
fi tree has finite depth, say n
level n+1 is empty fi Halt and Fail.

N and M solve the same yes/no problem.
NDTMs are equivalent to ordinary TMs

Computability and Complexity
Lecture 17

Computability and Complexity

Summary
We have defined Nondeterministic Turing Machines
..and shown that they are equivalent to ordinary deterministic TMs,
 by showing that
1) An ordinary TM is a special case of a NDTM

(d(q, a) has one entry or is the empty set)

2) We can build an ordinary TM, M which searches the run-tree of
 a NDTM N and: Halts and Succeeds when it finds the first (w.r.t

distance in levels from the start of the run) possible
halting state(there is an accepting run of N on w)
 or: Halts & Fails if it has explored the whole tree

without finding a halting state.

The complexity class NP:
those yes/no problems which can be solved in p-time by a NDTM.

