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Non-Deterministic Turing Machines
A NDTM can choose which of a number of instructions to execute
at points in a run..
   no program control at run time.
..so a run is not determined in advance - no control via d-function,
..can have more than 1 entry for (state qi, symbol read a)

This can give a “free’ exhaustive search for a possible solution
which is then checked.

We would like to replace this non-deterministic choice with a
clever search strategy to select a suitable possible solution, and
then check it in p-time.

The choice is done by multiple entries for (q,a) Œ Q x ∑.
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Formal definition of NDTM
N = (Q, ∑, I, q0, d, F), with

d:(Q\F) x ∑ fi 2 Q x ∑ x {± 1, 0}

.

ie. the function value for (q,a) is a set of the alternatives

If there is no applicable instruction for  (q,a) then  d(q,a)=∅
(empty set).

if d(q,a) contains only one (q’,a’,d) or is empty,
we have an ordinary deterministic TM.

:2 Qx∑x{±1,0} : the set of all subsets of Q x ∑ x {± 1, 0}
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Input and Output for NDTMs

Input: tape contents before the first ^ as before
Output: can have many different results on tape for an input w - 

for each successful (H & S) run
fi a set of possible outputs.

fi simplify by considering only yes/no problems

•  acceptance for NDTMs:
      N accepts w Œ I* if there exists a successful run with w as input:

-..if at least one run on w Halts and Succeeds.

• rejection for NDTMs
-N rejects w Œ I*  if all runs on input w Halt and Fail.
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Speed of NDTMs
For any input wŒ I* the NDTM can

1) Halt and Succeed (i.e. accept w)

2) Halt and Fail (i.e. reject w)

(  3) Never halt..excluded when N solves the problem).

Run-time function for NDTMs:

timeN (n) = length of longest run for any w Œ I* of length n.
timeN (n) ≤ •.
We say that a NDTM N runs in polynomial time if 
$ a polynomial p such that

timeN(n) ≤ p(n), all n > 0
p(n) is an upper bound on time for inputs of length n.
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Example of a Non-Deterministic Turing Machine
Non-primality testing. Given a number n,  is n composite?
We build a 2-track NDTM which:
1. Guesses a number m, where 1 < m < n.
2. Divides n by m (deterministically in p-time)
3. If there is no remainder ( m divides n) then

it Halts and Succeeds: “yes”
otherwise it Halts and Fails: “no”.

H & S

q0

H & F

(^,(^,^),0)
is number on track 2 bigger 
than 1 and less than
number on track 1?

divide number on track 1 by
number on track 2.

remainder = 0

yes

no

remainder≠ 0

N

(x,(x,0),1)
(x,(x,1),1)
if x=0 or 1
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Example of a Non-Deterministic Turing Machine

H & S

q0

H & F

(^,(^,^),0)
is number on track 2 bigger 
than 1 and less than
number on track 1?

divide number on track 1 by
number on track 2.

remainder = 0

yes

no

remainder≠ 0

N

(x,(x,0),1)
(x,(x,1),1)
if x=0 or 1

A

B

•  the input is a binary number on a single track
•  N non-deterministically writes a binary number, m on track 2.

ending at the end of n.
•  N checks whether m = 0, or m= 1 or m ≥ n: if so N Halts and Fails

if not, N divides n by m and checks whether the remainder> 0 
 ..if not, N Halts and Succeeds 

otherwise N Halts and Fails
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accepting runs
(ending in 
Halt & Succeed

infinite runs

acc     acc rejecting runs 
(ending in
Halt & Fail)

acc

rej

acc rej

NDTM N

tree representation of the possible runs of NDTM, N on some input
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The Class NP of problems

NP consists of all yes/no problems A such that there is some 
NDTM N that runs in p-time and solves A;

 N accepts all the yes-instances of A
rejects all the no-instances of A.

This is the class of ($) type problems that would be in P if they had
 a clever search strategy.

P Õ NP as p-time deterministic TMs are a special case of
p-time non-deterministic TMs.

P = NP?   .. yes/no problem not yet answered
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Simulation of NDTMs by ordinary TMs.
..we demonstrate that a NDTM is no more powerful than an 
ordinary TM..further evidence for the Church-Turing Thesis.

..we have seen the non-determinism as a way of guessing from the 
search space of possible solutions..and then checking deterministically
 whether this is a solution..

Equivalence of ordinary TMs and NDTMs:

1)       given an ordinary TM M = (Q, ∑, I, q0, d, F) we can construct an 
          equivalent NDTM N = (Q, ∑, I, q0, d', F) such that:

d'(q, a) = {d(q, a)} if d(q, a) is defined
        ∅ otherwise.
N behaves exactly as M - deterministically, 

but it is a valid NDTM.



Computability and Complexity
Lecture 17

Computability and Complexity

Equivalence
2)any yes/no problem solvable by a NDTM can also be solved by an 

ordinary deterministic Turing Machine.
Given a NDTM N  fi construct a deterministic TM to solve 

the same Problem.

We will simulate N with a 3-tape ordinary TM, M:
        M rejects/accepts the same input words
        M does breadth-first traversal of the tree of possible runs of N for 

given input w.
        M Halts and Succeeds when it finds a Halting state of N.

why a breadth-first tree traversal?
-we want to find any H & S
- we don’t want to go down infinite (non-terminating) branches.
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At each node of the search tree, N has a configuration:

• current state of N
• current contents of N’s tape
• position of read head of N

which determines what N does next..
  ..the possible nodes at the next level of the tree

Representation of the configuration of N:

 s  *  t

word representing the
State of N

A “ 2-track word” giving the
Contents of N’s tape and the current
Position of N’s head.

Contents of N’s tape^^^

X
current position of
N’s head
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We can describe a level of the run-tree of N by the set of possible 
configurations after the corresponding number of steps in N’s run. 

N’s run tree has levels:

H & S

H & S

H & S H & SH & F

H & F

H & F

H & F

H & F

s*t

s*t**s1*t1**s2*t2
s*t s1*t1

s2*t2

configuration at a node

configurations at 
a level in the tree
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M simulates N by building up the possible configurations of N, 
level-by-level:  at first  N has input word w fi M starts with w on

tape 1
fi replace w by config(q0, w, 0)

tape 2 is used for scratch work
Breadth-first search for Halt and Succeed:

after n cycles ( levels of the run tree):
M has          s*t**s1*t1**s2*t2**s3*t3..**sr*tr    on tape 1

configurations for nodes at level n
M follows N:
• look for a Halting State of N among the configurations at level n

it there is one fi M Halts and Succeeds
• check each si*ti ..each node at level n, calculate possible nodes

  at level n+1..(ignore if this involves move left from sq 0)
..add the new configuration to the end of tape 2 of M

if no child nodes, no change to tape 2.
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M now has:

u*v**u1*v1**u2*v2**u3*v3**u4*v4**u5*v*5*u6*v6

Tape 1

Tape 2

Tape 3

s*t**s1*t1**s2*t2**s3*t3**s4*t4**

configurations of nodes at level n

configurations of nodes at level n+1

scratch work

When all level n+1 configurations are on tape 2,
copy Tape 2 to Tape 1 and repeat for level n+1 on tape 1, building
Level n+2 on Tape 2.
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The cycle is repeated for level n+1.
if Tape 2 is empty at the end of a cycle 

no child nodes Halt and Fail

Success/ Failure:
N accepts w fi $ some successful run of N on w

fi somewhere in the tree $ config(q, w, m), q Œ F.
M will find this, and Halt & Succeed.

N rejects w fi every run of N on w fi Halt and Fail
fi tree has finite depth, say n
level n+1 is empty fi Halt and Fail.

N and M solve the same yes/no problem.
NDTMs are equivalent to ordinary TMs
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Summary
We have defined Nondeterministic Turing Machines
..and shown that they are equivalent to ordinary deterministic TMs, 
   by showing that
1) An ordinary TM is a special case of a NDTM 

(d(q, a) has one entry or is the empty set)

2) We can build an ordinary TM, M which searches the run-tree of
 a NDTM N and: Halts and Succeeds when it finds the first (w.r.t 

distance in levels from the start of the run) possible 
halting state( there is an accepting run of N on w)
    or: Halts & Fails if it has explored the whole tree 

without finding a halting state.

The complexity class NP:
those yes/no problems which can be solved in p-time by a NDTM.


