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Polynomial -time Reduction
We formalise reduction by
defining p-time reduction in terms of Turing Machines.

fast non-deterministic solutions to old yes/no problems

Definition of p-time reduction ‘ ≤ ’
    let       A, B be any two yes/no problems

X a deterministic Turing Machine
    X reduces A to B if:  for every yes-instance w of A, fX(w) is defined

and is a yes-instance of B
    for every no-instance w of A, fX(w) is defined

 and is a no-instance of B
A reduces to B in p-time if $ a det TM X running in p-time that
 reduces A to B ( A ≤ B if A reduces to B in polynomial time).

If  A ≤ B and B ≤ A fi A ~ B.

fast non-deterministic solutions to new ones.
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If A ≤ B and we have a solution to B we can build a solution to A:

TM to reduce 
A to B

TM that solves A

TM to 
solve B

Example: we can reduce HCP to TSP in p-time, so HCP ≤ TSP.

This does not mean that either HCP or TSP can be solved in p-time in
the general case: but it does mean that a fast (p-time ) solution to

TSP would facilitate a fast solution to HCP too.
TSP and HCP are in NP-complete:
    each NP-complete problem reduces to all the others:

fi a p-time solution to any NP-complete problem
would give a p-time solution to all the others

(so putting them all into P)



Computability and Complexity
Lecture 18

Computability and Complexity

≤ is a pre-order

A ≤ B fi we can use a fast solution to B to solve A fast..

≤ can be interpreted as “is no harder than”

≤ is a pre-order: a reflexive, transitive, binary relation.

To prove that ≤ is a pre=order on the class of yes/no problems:
Show:
1. ≤ is reflexive: ..show that for any yes/no problem A, A ≤ A

…that there is a deterministic p-time TM which reduces A to A.
2. ≤ is transitive:..show that if A ≤ B and B ≤ C then A ≤ C. 

…that there is a deterministic p-time TM which reduces A to C
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1. ≤ is reflexive: A ≤ A

let I : alphabet used to write all instances of A
let X = ({q0}, I » {^}, I, q0, ∅, {q0})

be an ordinary deterministic TM

X Halts and Succeeds with no actions
output = input (unchanged)

so if w is a yes-instance of A
 fi fX(w) is a yes-instance of A

      if w is a no-instance of A
 fi fX(w) is a no-instance of A.

fi X reduces A to A.

timeX (n) = 0. So ≤ is reflexive
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2.   ≤ is transitive
suppose A ≤B and B ≤ C,

 A, B, C all yes-no problems
Prove A ≤ C.

mark 
sq. 0 X return 

to sq. 0 Y

 (input word:
instance of A)
w

det. TM reducing
 A to B in p-time

output of X on w
 is an instance of B

det. TM reducing
 B to C in p-time

X*Y

instance
 of C

output
fY(fX(w))

X*Y is a deterministic TM which reduces A to C
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Running time of X*Y reducing A to C:

X reduces A to B in p-time…suppose timeX(n) ≤ p(n)

Y reduces B to C in p-time….suppose timeY(n) ≤ q(n)
      where p and q are polynomials in n

The running time of X*Y on input w of length n:
1. Mark sq. 0 1
2. Run X on w ≤ p(n)
3. Return to sq. 0 and unmark it ≤ p(n)
4. Run Y on fX(w)  ≤ q(p(n))

Total run time ≤ 1 + p(n) + p(n) + q(p(n))
..a polynomial in n.

So X*Y reduces A to C in p-time
≤ is transitive
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NP is closed under p-time reduction

if A ≤ B we can use a fast solution to B to solve A fast.
If B is solved a by a p-time NDTM, that is B Œ NP

..then is A Œ NP?

Prove: if A ≤ B and B Œ NP then A Œ NP.

A ≤ B fi $ a det. TM, X which reduces A to B.
B Œ NP fi $ a NDTM, N which solves B.

We construct a new TM, X*N which solves A.
we need to show that:

 X*N is non-deterministic and 
 X*N runs in p-time A Œ NP.
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suppose A ≤B and B Œ NP, prove A Œ NP .

mark 
sq. 0 X return 

to sq. 0 N

 (input word:
instance of A)
w

det. TM reducing
 A to B in p-time

output of X on w
 is an instance of B

non-det. TM which
solves B in p-time

X*N

X*N is a non-deterministic TM which solves A.
running time of X*N ≤ 1+p(n) + p(n)+q(p(n))..a polynomial

X*N accepts a yes-instance of A
X*N rejects a no-instance of AA Œ NP

time function: p(n) time function: q(n)
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if A ≤B and B Œ P..then A Œ P.

mark 
sq. 0 X return 

to sq. 0 M

 (input word:
instance of A)
w

det. TM reducing
 A to B in p-time

output of X on w
 is an instance of B

det. TM solving
yes/no problem
 B in p-time

X*M

X*M is a deterministic p-time TM which solves A

P is closed downwards under reduction

time function of X*M:  time X*M(n) ≤ 1+ p(n)+p(n)+q(p(n))
a polynomial

time function: p(n) time function: q(n)

det. TM solving
A in p-time
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The P-problems are the ≤-easiest.
(The problems in P are the easiest with respect to our

 difficulty ordering)
Prove that if A is any problem in P and B is any yes/no problem A ≤ B

let M be a det. p-time TM which solves A: modify H&S and
H&F to give M'

if M rejects w

Mark 
sq 0 M'

return
 to sq 0

return
 to sq 0

output w1

output w2

X if M accepts w

M' solves A
 in p-time

w1: a yes instance of B
w2: a no-instance of B

input w:
an instance of A
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Summary
We have defined:
polynomial-time reduction:   if A, B are yes/no problems:
A reduces to B in p-time if $ a det TM X running in p-time that

 reduces A to B ( A ≤ B if A reduces to B in polynomial time).
Properties of ≤:  ≤ is a pre-order..
 ..a reflexive, transitive, binary relation

..permitting an ordering in difficulty or complexity of problems.

Properties of P and NP with respect to reduction:
P is closed downwards under ≤ : for yes/no problems A, B

if A ≤B and B Œ P..then A Œ P

NP is closed downwards under ≤ :for yes/no problems A, B
         if A ≤B and B Œ NP..then A Œ NP

The class P is the ≤-easiest class of yes/no problems.


