Polynomial -time Reduction

We formalise reduction by
defining p-time reduction in terms of Turing Machines.
fast non-deterministic solutions to old yes/no problems

Definition of p-time reduction ' \leq '
let A, B be any two yes/no problems X a deterministic Turing Machine
X reduces A to B if: for every yes-instance w of $A, f_{\mathbf{x}}(w)$ is defined and is a yes-instance of B
for every no-instance w of $A, f_{\mathbf{X}}(w)$ is defined and is a no-instance of B
A reduces to B in p-time if \square a det TM X running in p-time that reduces A to $\mathrm{B}(\mathbf{A} \leq \mathbf{B}$ if A reduces to B in polynomial time).
Computability and Complexity
Lecture 18
If $\mathrm{A} \leq \mathrm{B}$ and $\mathrm{B} \leq \mathrm{A} \square \mathrm{A} \sim \mathrm{B}$.

If $\mathrm{A} \leq \mathrm{B}$ and we have a solution to B we can build a solution to A :

Example: we can reduce HCP to TSP in p-time, so HCP \leq TSP.
This does not mean that either HCP or TSP can be solved in p-time in the general case: but it does mean that a fast (p -time) solution to

TSP would facilitate a fast solution to HCP too.
TSP and HCP are in NP-complete:
each NP-complete problem reduces to all the others:
\square a p-time solution to any NP-complete problem
would give a p-time solution to all the others
Computability and Complexity Lecture 18

\leq is a pre-order

$A \leq B \square$ we can use a fast solution to B to solve A fast..
\leq can be interpreted as "is no harder than"
\leq is a pre-order: a reflexive, transitive, binary relation.

To prove that \leq is a pre $=$ order on the class of yes/no problems: Show:
$1 . \leq$ is reflexive: ..show that for any yes/no problem $\mathrm{A}, \mathrm{A} \leq \mathrm{A}$
...that there is a deterministic p-time TM which reduces A to A.
$2 . \leq$ is transitive:..show that if $\mathrm{A} \leq \mathrm{B}$ and $\mathrm{B} \leq \mathrm{C}$ then $\mathrm{A} \leq \mathrm{C}$.
...that there is a deterministic p-time TM which reduces A to C

$1 . \leq$ is reflexive: $\mathbf{A} \leq \mathbf{A}$

let I : alphabet used to write all instances of A
let $\mathbf{X}=\left(\{\mathbf{q 0}\}, \mathbf{I} \square\left\{{ }^{\wedge}\right\}, \mathbf{I}, \mathbf{q} \mathbf{0}, \varnothing,\{\mathbf{q} \mathbf{0}\}\right)$ be an ordinary deterministic TM

X Halts and Succeeds with no actions
output = input (unchanged)
so if w is a yes-instance of A
$\square f_{\mathbf{X}}(w)$ is a yes-instance of A
if w is a no-instance of A
$\square f_{\mathbf{X}}(w)$ is a no-instance of A.
$\square \mathbf{X}$ reduces \mathbf{A} to \mathbf{A}.
$\operatorname{time}_{X}(n)=0$.
So \leq is reflexive
Computability and Complexity
Lecture 18
2. \leq is transitive
suppose $\mathrm{A} \leq \mathrm{B}$ and $\mathrm{B} \leq \mathrm{C}$, A, B, C all yes-no problems
Prove $\mathrm{A} \leq \mathrm{C}$.
$\mathrm{X} * \mathrm{Y}$ is a deterministic TM which reduces A to C
output
$\mathbf{f}_{\mathbf{Y}}\left(\mathbf{f}_{\mathbf{X}}(\mathbf{w})\right)$

Computability and Complexity
Lecture 18

Running time of $\mathbf{X}^{*} \mathbf{Y}$ reducing A to C :

X reduces A to B in p -time...suppose $\operatorname{time}_{\mathrm{X}}(\mathrm{n}) \leq \mathrm{p}(\mathrm{n})$

Y reduces B to C in p-time....suppose $\operatorname{time}_{\mathrm{Y}}(\mathrm{n}) \leq \mathrm{q}(\mathrm{n})$
where p and q are polynomials in n

The running time of $\mathrm{X} * \mathrm{Y}$ on input w of length n :

1. Mark sq. 0

1
2. Run X on w
3. Return to sq. 0 and unmark it
4. Run Y on $\mathrm{f}_{\mathrm{X}}(\mathrm{w})$

$$
\begin{aligned}
& \leq \mathrm{p}(\mathrm{n}) \\
& \leq \mathrm{p}(\mathrm{n}) \\
& \leq \mathrm{q}(\mathrm{p}(\mathrm{n}))
\end{aligned}
$$

Total run time $\leq 1+\mathrm{p}(\mathrm{n})+\mathrm{p}(\mathrm{n})+\mathrm{q}(\mathrm{p}(\mathrm{n}))$..a polynomial in n.
Somputability and Complexity X^{*} to C in p-time
Lecture 18

NP is closed under p-time reduction

if $\mathrm{A} \leq \mathrm{B}$ we can use a fast solution to B to solve A fast.
If B is solved a by a p-time NDTM, that is B \square NP ..then is A \square NP?

Prove: if $\mathrm{A} \leq \mathrm{B}$ and $\mathrm{B} \square \mathrm{NP}$ then $\mathrm{A} \square \mathrm{NP}$.
$\mathrm{A} \leq \mathrm{B} \square \square$ a det. TM, X which reduces A to B .
B \square NP $\square \square$ a NDTM, N which solves B.

We construct a new $\mathrm{TM}, \mathrm{X} * \mathrm{~N}$ which solves A .
we need to show that:
$\mathrm{X} * \mathrm{~N}$ is non-deterministic and
$X^{*} N$ runs in $\quad A \square N P$.

Computability and Complexity
Lecture 18

suppose $A \leq B$ and $B \square N P$, prove $A \square$ NP.

$\mathrm{X} * \mathrm{~N}$ is a non-deterministic TM which solves A. running time of $\mathrm{X}^{*} \mathrm{~N} \leq 1+\mathrm{p}(\mathrm{n})+\mathrm{p}(\mathrm{n})+\mathrm{q}(\mathrm{p}(\mathrm{n}))$..a polynomial

$\mathrm{X} * \mathrm{~N}$ accepts a yes-instance of A $X^{*} \mathbf{N}$ rejects a no-instance of A

Computability and Complexity
Lecture 18

P is closed downwards under reduction

if $\mathrm{A} \leq \mathrm{B}$ and $\mathrm{B} \square \mathrm{P}$..then $\mathrm{A} \square \mathrm{P}$.
time function of $X^{*} \mathbf{M}^{\prime}$ time $\mathbf{X}^{*} \mathbf{M}^{(n)} \leq 1+\mathrm{p}(\mathrm{n})+\mathrm{p}(\mathrm{n})+\mathrm{q}(\mathrm{p}(\mathrm{n}))$
a polynomial
$\mathrm{X} * \mathrm{M}$ is a deterministic p-time TM which solves A
det. TM solving
A in p-time

The P-problems are the \leq-easiest.

(The problems in P are the easiest with respect to our
difficulty ordering)
Prove that if A is any problem in P and B is any yes/no problem $\mathrm{A} \leq \mathrm{B}$ let M be a det. p-time TM which solves A: modify H\&S and $\mathrm{H} \& \mathrm{~F}$ to give M^{\prime}

Computability and Complexity
Lecture 18

Summary
We have defined:
polynomial-time reduction: if A, B are yes/no problems:
A reduces to B in p-time if \square a det TM X running in p-time that
reduces A to B ($\mathbf{A} \leq \mathbf{B}$ if A reduces to B in polynomial time).
Properties of $\leq: \leq$ is a pre-order..
..a reflexive, transitive, binary relation
..permitting an ordering in difficulty or complexity of problems.

Properties of P and $N P$ with respect to reduction:
\mathbf{P} is closed downwards under \leq : for yes/no problems A, B if $\mathrm{A} \leq \mathrm{B}$ and $\mathrm{B} \square \mathrm{P}$..then $\mathrm{A} \square \mathrm{P}$
$\mathbf{N P}$ is closed downwards under \leq :for yes/no problems A, B if $\mathrm{A} \leq \mathrm{B}$ and $\mathrm{B} \square$ NP..then $\mathrm{A} \square \mathrm{NP}$
The class P is the \leq-easiest class of yes $/$ no problems.
Computability and Complexity
Lecture 18

