Polynomial -time Reduction

We formalise reduction by defining p-time reduction in terms of Turing Machines.

fast non-deterministic solutions to old yes/no problems fast non-deterministic solutions to new ones.

Definition of p-time reduction ' \leq '

letA, B be any two yes/no problems
X a deterministic Turing MachineX reduces A to B if:for every yes-instance w of A, $f_X(w)$ is defined
and is a yes-instance of B
for every no-instance w of A, $f_X(w)$ is defined
and is a no-instance of BA reduces to B in p-time if \exists a det TM X running in p-time that
reduces A to B ($A \leq B$ if A reduces to B in polynomial time).Computability and Complexity
Lecture 18If $A \leq B$ and $B \leq A \Rightarrow A \sim B$.

If $A \le B$ and we have a solution to B we can build a solution to A:

Example: we can reduce HCP to TSP in p-time, so $HCP \leq TSP$.

This does not mean that either HCP or TSP can be solved in p-time in the general case: but it does mean that a fast (p-time) solution to TSP would facilitate a fast solution to HCP too. TSP and HCP are in NP-complete: each NP-complete problem reduces to all the others: ⇒ a p-time solution to any NP-complete problem would give a p-time solution to all the others Computability and Complexity Lecture 18 (so putting them all into P) \leq is a pre-order

 $A \leq B \Rightarrow$ we can use a fast solution to B to solve A fast..

 \leq can be interpreted as "is no harder than"

 \leq is a pre-order: a reflexive, transitive, binary relation.

To prove that \leq is a pre=order on the class of yes/no problems: Show:

≤ is reflexive: ..show that for any yes/no problem A, A ≤ A
 ...that there is a deterministic p-time TM which reduces A to A.
 ≤ is transitive:..show that if A ≤ B and B ≤ C then A ≤ C.
 ...that there is a deterministic p-time TM which reduces A to C

1. \leq is reflexive: $A \leq A$

let I : alphabet used to write all instances of A let $X = (\{q0\}, I \cup \{^\}, I, q0, \emptyset, \{q0\})$ be an ordinary deterministic TM

X Halts and Succeeds with no actions output = input (unchanged)

```
so if w is a yes-instance of A

\Rightarrow f_X(w) is a yes-instance of A

if w is a no-instance of A

\Rightarrow f_X(w) is a no-instance of A.

\Rightarrow X reduces A to A.
```

 $time_{x}(n) = 0.$

So \leq is reflexive

2. \leq is transitive suppose A \leq B and B \leq C, A, B, C all yes-no problems Prove A \leq C.

X*Y is a deterministic TM which reduces A to C

Running time of X*Y reducing A to C:

X reduces A to B in p-time...suppose time_X(n) \leq p(n)

Y reduces B to C in p-time....suppose time_Y(n) \leq q(n) where p and q are polynomials in n

The running time of X*Y on input w of length n:

1. Mark sq. 012. Run X on w $\leq p(n)$ 3. Return to sq. 0 and unmark it $\leq p(n)$

4. Run Y on $f_X(w)$

 $\leq p(n)$ $\leq p(n)$ $\leq q(p(n))$

Total run time $\leq 1 + p(n) + p(n) + q(p(n))$..a polynomial in n.

So X*Y reduces A to C in p-time Computability and Complexity Lecture 18

 \leq is transitive

Computability and Complexity

NP is closed under p-time reduction

if $A \le B$ we can use a fast solution to B to solve A fast. If B is solved a by a p-time NDTM, that is $B \in NP$...then is $A \in NP$?

Prove: if $A \leq B$ and $B \in NP$ then $A \in NP$.

 $A \le B \Rightarrow \exists$ a det. TM, X which reduces A to B. $B \in NP \Rightarrow \exists$ a NDTM, N which solves B.

We construct a new TM, X*N which solves A. we need to show that: X*N is non-deterministic and X*N runs in p time $A \in NP$.

suppose $A \leq B$ and $B \in NP$, prove $A \in NP$.

X*N is a non-deterministic TM which solves A. running time of X*N $\leq 1+p(n) + p(n)+q(p(n))$..a polynomial

Lecture 18

 Computability and Complexity

 P is closed downwards under reduction

 if A ≤B and B ∈ P..then A ∈ P.

 time function of X*M: time $_{X*M}(n) \le 1+ p(n)+p(n)+q(p(n))$ a polynomial

X*M is a deterministic p-time TM which solves A

Computability and Complexity

The P-problems are the ≤-easiest.

(The problems in P are the easiest with respect to our

difficulty ordering)

Prove that if A is any problem in P and B is any yes/no problem $A \le B$ let M be a det. p-time TM which solves A: modify H&S and

Computability and Complexity

SummaryWe have defined:polynomial-time reduction:if A, B are yes/no problems:A reduces to B in p-time if \exists a det TM X running in p-time thatreduces A to B ($A \leq B$ if A reduces to B in polynomial time).Properties of \leq : \leq is a pre-order.....a reflexive, transitive, binary relation

..permitting an ordering in difficulty or complexity of problems.

Properties of P and NP with respect to reduction:P is closed downwards under \leq : for yes/no problems A, Bif A \leq B and B \in P..then A \in P

 NP is closed downwards under ≤ :for yes/no problems A, B

 if A ≤B and B ∈ NP...then A ∈ NP

 The class P is the ≤-easiest class of yes/no problems.