Polynomial -time Reduction

We formalise reduction by defining p-time reduction in terms of Turing Machines.

Fast non-deterministic solutions to old yes/no problems

Definition of p-time reduction ‘ ≤ ’

Let A, B be any two yes/no problems

X a deterministic Turing Machine

X reduces A to B if: for every yes-instance w of A, \(f_X(w) \) is defined and is a yes-instance of B

for every no-instance w of A, \(f_X(w) \) is defined and is a no-instance of B

A reduces to B in p-time if \[\exists \] a det TM X running in p-time that reduces A to B (\(A \leq B \) if A reduces to B in polynomial time).

If \(A \leq B \) and \(B \leq A \) \(\square \) A \(\sim \) B.
If $A \leq B$ and we have a solution to B we can build a solution to A:

Example: we can reduce HCP to TSP in p-time, so $HCP \leq TSP$.

This does not mean that either HCP or TSP can be solved in p-time in the general case: but it does mean that a fast (p-time) solution to TSP would facilitate a fast solution to HCP too.

TSP and HCP are in NP-complete:
 each NP-complete problem reduces to all the others:
 - a p-time solution to any NP-complete problem would give a p-time solution to all the others (so putting them all into P)
\(\leq \) is a pre-order

\(A \leq B \) \(\square \) we can use a fast solution to B to solve A fast..

\(\leq \) can be interpreted as “is no harder than”

\(\leq \) is a pre-order: a reflexive, transitive, binary relation.

To prove that \(\leq \) is a pre-order on the class of yes/no problems:

Show:

1. \(\leq \) is reflexive: ..show that for any yes/no problem \(A \), \(A \leq A \)
 …that there is a deterministic p-time TM which reduces \(A \) to \(A \).
2. \(\leq \) is transitive: ..show that if \(A \leq B \) and \(B \leq C \) then \(A \leq C \).
 …that there is a deterministic p-time TM which reduces \(A \) to \(C \).
1. \(\leq \) is reflexive: \(A \leq A \)

let \(I \) : alphabet used to write all instances of \(A \)
let \(X = (\{q0\}, I \sqcup \{^\}\), I, q0, \(\emptyset \), \{q0\})
be an ordinary deterministic TM

\(X \) Halts and Succeeds with no actions
output = input (unchanged)

so if \(w \) is a yes-instance of \(A \)
\(\square \ f_X(w) \) is a yes-instance of \(A \)
if \(w \) is a no-instance of \(A \)
\(\square \ f_X(w) \) is a no-instance of \(A \).

\(\square \ X \) reduces \(A \) to \(A \).

\(\text{time}_X(n) = 0. \)
So \(\leq \) is reflexive
2. \(\leq\) is transitive
suppose \(A \leq B\) and \(B \leq C\),
\(A, B, C\) all yes-no problems
Prove \(A \leq C\).

\(X*Y\) is a deterministic TM which reduces \(A\) to \(C\)
Running time of $X*Y$ reducing A to C:

X reduces A to B in p-time…suppose $\text{time}_X(n) \leq p(n)$

Y reduces B to C in p-time….suppose $\text{time}_Y(n) \leq q(n)$

where p and q are polynomials in n

The running time of $X*Y$ on input w of length n:

1. Mark sq. 0 1
2. Run X on w $\leq p(n)$
3. Return to sq. 0 and unmark it $\leq p(n)$
4. Run Y on $f_X(w) \leq q(p(n))$

Total run time $\leq 1 + p(n) + p(n) + q(p(n))$

..a polynomial in n.

So $X*Y$ reduces A to C in p-time \leq is transitive
NP is closed under p-time reduction

if $A \leq B$ we can use a fast solution to B to solve A fast. If B is solved a by a p-time NDTM, that is $B \in NP$.. then is $A \in NP$?

Prove: if $A \leq B$ and $B \in NP$ then $A \in NP$.

$A \leq B$ if a det. TM, X which reduces A to B.
$B \in NP$ if a NDTM, N which solves B.

We construct a new TM, $X*N$ which solves A.
we need to show that:

$X*N$ is non-deterministic and
$X*N$ runs in p-time $A \in NP$.
suppose $A \leq B$ and $B \in NP$, prove $A \in NP$.

X^N is a non-deterministic TM which solves A.
running time of $X^N \leq 1+p(n) + p(n)+q(p(n))$..a polynomial

$A \in NP$

X^N accepts a yes-instance of A
X^N rejects a no-instance of A

Computability and Complexity

Lecture 18
P is closed downwards under reduction

if $A \leq B$ and $B \in P$ then $A \in P$.

time function of X^*M: $\text{time}_{X^*M}(n) \leq 1 + p(n) + p(n) + q(p(n))$

A polynomial

X^*M is a deterministic p-time TM which solves A

Diagram:

- **X**
 - Mark sq. 0
 - Time function: $p(n)$
 - Return to sq. 0
 - Output of X on w is an instance of B

- **M**
 - Time function: $q(n)$
 - Deterministic TM solving yes/no problem B in p-time

- **X^*M**
 - Deterministic TM reducing A to B in p-time
 - Input word: instance of A
 - w
The P-problems are the \(\leq \)-easiest.
(The problems in P are the easiest with respect to our difficulty ordering)

Prove that if A is any problem in P and B is any yes/no problem \(A \leq B \)
let M be a det. p-time TM which solves A: modify H&S and H&F to give M'

- **Input w:** an instance of A
- **M' solves A in p-time**
- **w1:** a yes instance of B
- **w2:** a no-instance of B

\[X \]

1. **Mark sq 0**
2. **M'**
3. If M accepts w:
 - return to sq 0
 - output w1
4. If M rejects w:
 - return to sq 0
 - output w2
Summary
We have defined:

polynomial-time reduction: if A, B are yes/no problems:

A reduces to B in p-time if there exists a deterministic TM X running in p-time that reduces A to B (A ≤ B if A reduces to B in polynomial time).

Properties of ≤: ≤ is a pre-order.

..a reflexive, transitive, binary relation

..permitting an ordering in difficulty or complexity of problems.

Properties of P and NP with respect to reduction:

P is closed downwards under ≤: for yes/no problems A, B

if A ≤ B and B ∈ P ..then A ∈ P

NP is closed downwards under ≤: for yes/no problems A, B

if A ≤ B and B ∈ NP ..then A ∈ NP

The class P is the ≤-easiest class of yes/no problems.