Computability and Complexity

Polynomial -time Reduction

We formalise reduction by
defining p-time reduction in terms of Turing Machines.

fast non-deterministic solutions to old yes/no problems
| >  fast non-deterministic solutions to new ones.

Definition of p-time reduction ¢ <’
let A, B be any two yes/no problems
X a deterministic Turing Machine
X reduces A to B if: for every yes-instance w of A, fy(w) 1s defined
and 1s a yes-instance of B
for every no-instance w of A, fy(w) 1s defined
and 1s a no-instance of B
A reduces to B in p-time if 3 a det TM X running in p-time that

reduces A to B ( A < B if A reduces to B in polynomial time).
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If A <B and we have a solution to B we can build a solution to A:

T™™ to
_ TM to reduce > solve B
AtoB
TM that solves A

Example: we can reduce HCP to TSP 1n p-time, so HCP < TSP.

This does not mean that either HCP or TSP can be solved in p-time in
the general case: but it does mean that a fast (p-time ) solution to
TSP would facilitate a fast solution to HCP too.
TSP and HCP are in NP-complete:
ecach NP-complete problem reduces to all the others:
=> a p-time solution to any NP-complete problem
would give a p-time solution to all the others
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<is a pre-order

A <B = we can use a fast solution to B to solve A fast..
< can be interpreted as “is no harder than™
<1s a pre-order: a reflexive, transitive, binary relation.

To prove that < 1s a pre=order on the class of yes/no problems:
Show:
1. <is reflexive: ..show that for any yes/no problem A, A <A
...that there 1s a deterministic p-time TM which reduces A to A.
2. <1s transitive:..show that if A <B and B < C then A <C.
...that there 1s a deterministic p-time TM which reduces A to C
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1. <is reflexive: A <A

let I : alphabet used to write all instances of A
let X = ({q0}, 1 U {*}, L, q0, &, {q0})
be an ordinary deterministic TM

X Halts and Succeeds with no actions
output = mput (unchanged)

so 1f w 1s a yes-instance of A
= fy (W) 1s a yes-instance of A

1f w 1s a no-instance of A
= fy(W) 1s a no-instance of A.

=> X reduces A to A.

timey (n) = 0. So <is reflexive
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2. <is transitive
suppose A <B and B <C,
A, B, C all yes-no problems

Prove A <C.
X*Y 1s a deterministic TM which reduces A to C output
ty (tx(W))
X*Y
(input word:
instancg of A) mark return
w sq. 0 to sq. 0
det. TM reduci |
ct. reaucin
g output of X on w det. TM reducing

A to B in p-time is an instance of B B to C in p-time
Computability and Complexity

Lecture 18



Computability and Complexity

Running time of X*Y reducing A to C:
X reduces A to B in p-time...suppose timey(n) < p(n)

Y reduces B to C in p-time....suppose timey(n) < q(n)
where p and q are polynomials in n

The running time of X*Y on input w of length n:

1. Mark sq.0 1

2. Run X onw <p(n)

3. Return to sq. 0 and unmark it < p(n)

4. Run'Y on fy(w) < q(p(n))

Total run time < 1 + p(n) + p(n) + q(p(n))
..a polynomial 1n n.

So X*Y reduces A to C in p-time
Computability and Complexity < iS transitive
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NP is closed under p-time reduction

1f A < B we can use a fast solution to B to solve A fast.
If B is solved a by a p-time NDTM, that 1s B € NP

..then 1s A &€ NP?
Prove: if A <B and B & NP then A & NP.

A <B = dadet. TM, X which reduces A to B.
B € NP = 4 a NDTM, N which solves B.

We construct a new TM, X*N which solves A.
we need to show that:
X*N 18 non-deterministic and
X*N runs 1n=g=t=s<s= A € NP.
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suppose A <B and B € NP, prove A € NP.

X*N 1s a non-deterministic TM which solves A.
running time of X*N < 1+p(n) + p(n)+q(p(n))..a polynomial

X*N accepts a yes-inst fA
> A E NP pts a yes-instance o

X*N rejects a no-instance of A

X*N time function: p(n) time function: q(n)

' I

(input word:
instancg of A) mark return
w sq. 0 to sq. 0
_ \
SLE1E 1AL IS AT output of X on w non-det. TM which

A to B in p-time is an instance of B solves B in p-time
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P is closed downwards under reduction

if A <B and B € P..then A € P.
time function of X*M: time y.,(n) < 1+ p(n)+p(n)+q(p(n))
a polynomial

X*M 1s a deterministic p-time TM which solves A
det. TM solving

lA in p-time
X*M time function: p(n) time function: q(n)
(input word:
instancg of A) mark return
w sq. 0 to sq. 0
det. TM reduci |
et recucing output of X on w det. TM solving

A to B in p-time c ;
p is an instance of B yes/no problem
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The P-problems are the <-easiest.
(The problems 1n P are the easiest with respect to our
difficulty ordering)
Prove that if A 1s any problem in P and B is any yes/no problem A <B
let M be a det. p-time TM which solves A: modify H&S and

H&F to give M!
T M’ solves Al wl: a yes instance of B
an instance of A in p-time w2: a no-instance of B
v . t
X if M accepts w> 1:) :;‘1(1) | output wl
v
—» Mark N M
6 if M rejects w return
> —> output w2
tosq 0
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Summary

We have defined:
polynomial-time reduction: if A, B are yes/no problems:
A reduces to B in p-time if 3 a det TM X running in p-time that

reduces A to B ( A < B if A reduces to B in polynomial time).
Properties of <: <is a pre-order..
..a reflexive, transitive, binary relation
..permitting an ordering in difficulty or complexity of problems.

Properties of P and NP with respect to reduction:

P is closed downwards under < : for yes/no problems A, B
if A<Band B &€ P..then A EP

NP is closed downwards under < :for yes/no problems A, B
if A <B and B € NP..then A € NP

The class P is the <-easiest class of yes/no problems.
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