
Computability and Complexity
Lecture 19

Computability and Complexity

Complexity classes P, NP.

unsolvable

Gödel

HP

intractable

 P
(tractable)

NP

PSAT
HCP
TSP

≤ yes/no problems

Computability and Complexity
Lecture 19

Computability and Complexity

NP-complete problems..NPC
is there a ≤-hardest problem in NP. Or set of hardest problems?
or..a sequence ≤ harder ≤ harder ≤ harder ≤…

there are hardest problems in NP: the NP-complete problems.
Definition of NP-complete:

A yes/no problem A is NP-complete if:
1. A Œ NP
2. B ≤ A for all problems B Œ NP
i.e. NP-complete problems are problems in NP to which all
other NP Problems can be reduced in p-time.

NPC - the class of NP-complete problems.

Computability and Complexity
Lecture 19

Computability and Complexity

If A, B are NP-complete then A~B:
A is NP-complete fi A Œ NP

for all C Œ NP, C≤A (including B)
B is NP-complete fi B Œ NP

for all C Œ NP, C≤B (including A)
..so A≤B and B≤A .. A~B.

If A is NP-complete and A~B then B is NP-complete:
A is NP-complete fi A Œ NP

 fi for all C Œ NP, C≤A
A~B fi A≤B and B≤A.

NP is closed downwards under ≤ fi B Œ NP
For any C Œ NP, C≤A and A≤B so as ≤ is transitive, C≤B.

so B is NP-complete.

Computability and Complexity
Lecture 19

Computability and Complexity

A yes/no problem A is NP-complete if:
1. A Œ NP
2. B ≤ A for all problems B Œ NP

if we know that another problem C, is NP-complete, we can show
2*. C ≤ A (instead of 2. above)

(remember 1. must be shown: that A Œ NP.

This permits extension of the set NPC by proving that a known NP-
complete problem reduces in p-time to an NP problem thought to be
in NPC…but is there a “first” problem in NPC?

to use 1.+and 2*) as proof, we need an existing NP-complete problem
are there any NP-complete problems?

Cook’s Theorem proved that PSAT is NP-complete
so NPC ≠ ∅

Computability and Complexity
Lecture 19

Computability and Complexity

Cook’s Theorem..PSAT is NP-complete

Proved by showing that
1. PSAT Œ NP (already seen..see example 10.7 of the notes)
2. any problem in NP can be reduced in p-time to PSAT

ie that for any problem A Œ NP, A ≤ PSAT.

let A Œ NP fi $ a non-deterministic TM, N = (Q, ∑, I, q0, d, F)
which solves A

 fi $ p(n): timeN (n) ≤ p(n)
[no run of N on input with length n takes more than p(n) steps.]

for input w a yes-instance of A: N has an accepting run
 no-instance of A: N has no accepting runs

we want to reduce A to PSAT in p-time

Computability and Complexity
Lecture 19

Computability and Complexity

yes-instance
 of A

no-instance
 of A

satisfiable
 formula Fw

unsatisfiable
 formula Fw

X

X

If we can build a deterministic TM, X which
 • given a yes-instance of A, outputs a satisfiable formula Fw of

propositional logic (a yes-instance of PSAT)
 • given a no-instance of A, outputs an unsatisfiable formula Fw of

propositional logic (a no-instance of PSAT)

..and X runs in polynomial time, then X reduces A to PSAT in p-time
and so PSAT is NP-complete

Computability and Complexity
Lecture 19

Computability and Complexity

The formula Fw where w is a yes-instance of A describes the
conditions for N to have an accepting run: for N to Halt and Succeed.

So the formula is satisfiable iff there is an accepting run of N on w…

Fw is a yes-instance of PSAT iff w is a yes-instance of A.
Fw is a no-instance of PSAT iff w is a no-instance of A.

Description of runs of N as a formula of propositional logic:

represent the configuration (state, tape contents, head position)
of N at each step of N’s run.

…at most p(n) of these for input w of length n.

not all possible configurations
 configuration sequences are possible in a run:

Computability and Complexity
Lecture 19

Computability and Complexity

Constraints for a sequence of configuration boxes to represent
an accepting run of N:

1. For each t≤p(n) the box for time t must represent a genuine

 configuration
2. C(0) must be the initial configuration:

state q0, head in sq 0, w on the tape

3. The sequence of configurations must represent a complete run of N,
as defined by the d function

4. The run corresponding to the sequence must be an accepting run:
..it must end in a halting state.

does N accept w?
= can we complete a sequence subject to the 4 constraints?

Computability and Complexity
Lecture 19

Computability and Complexity

Representing the configuration sequence for a run as a
Formula in propositional Logic:

• all the entries in the sequence are boolean values (shaded or not).
• describe the constraints for an accepting run:

Fw - formula expressing constraints on the truth values of atoms

a valuation of atoms which makes Fw true

≡ a valid table/sequence of configurations
≡ an accepting run for w.

 a yes-instance of A corresponds to a valuation of the atoms giving
Fw the value true

this is reduction of A to PSAT..
does X run in p-time?

Computability and Complexity
Lecture 19

Computability and Complexity

X is deterministic and runs in p-time

Fw depends on w and the d-function of N. It can be derived
by a deterministic algorithm from w and d..
..so can be done by a deterministic Turing Machine. This is X.

running time of X..

Suppose Q = {q0, q1, q2, q3, …qs}, ∑ = {a0, a1, a2,…ar)
number of atoms X writes in Fw
≤ (p(n)+1) (maximum number of steps in a run of N solving A)

 x ((r+1)(p(n)+1) (max length of tape x size of alphabet)
 + p(n) +1 (head position)
 + (s+1)) (number of states)
= (p(n) + 1)(p(n)+1)(r+2)+s+1)..a polynomial.

Computability and Complexity
Lecture 19

Computability and Complexity

Summary
We have defined:
 non-deterministic Turing machines (and shown their

 equivalence to ordinary TMs).
time functions of TMs and NDTMs, timeX(n) for TM X, where

n is the length of the input.
polynomial-time Reduction: timeX(n) ≤ p(n), p a polynomial.
complexity classes of yes/no problems:
 P..solvable by a p-time deterministic TM
 NP.. solvable by a p-time non-deterministic TM
 NPC..(the ≤ hardest problems in NP)..problems in NP to which

all other problems in NP can be reduced in p-time.
Cook’s Theorem proves that NPC ≠∅

≤ is a pre-order: a reflexive, transitive, binary relation
P and NP are closed downwards under reduction (≤)

