Turing Machines - a formal definition

A Turing Machine is a 6-tuple

$$M = (Q, \sum, I, q_0, \delta, F)$$

where

- Q finite, non-empty set of states
- \sum finite set of at least 2 symbols: the alphabet. $^{\wedge} \in \sum$
- I non-empty subset of \sum ; $^{\diamond} \notin I$; input alphabet
- $q_0 \quad q_0 \in Q$; starting or initial state
- d $\delta: (Q \setminus F) \ge Q \ge Q \ge X \ge x \{-1, 0, 1\}, a partial function, the instruction table$

F $F \subseteq Q$, the set of final or halting states

Some notation:

A word is a string of symbols eg. lecture^room

.. for an alphabet (set of symbols) \sum a word of \sum^* is a finite string of elements of \sum .

 $\sum^* = \text{all words of } \sum$

 ε is the empty word; $\varepsilon \in \Sigma^*$ for any Σ .

We represent concatenation of words v and w by v.w

The value computed by the TM, M on input w is $f_M(w)$. If M does not Halt & Succeed on input w, then $f_M(w)$ is *undefined*. Computability and Complexity Lecture 3

The TM tape contents:

The input alphabet is I; $^{\diamond} \notin$ I. TM Input is a word of I*

w ₀	w ₁	w ₂	w ₃	w ₄	^	^	^	۸	
----------------	----------------	----------------	----------------	----------------	---	---	---	---	--

Eg. a tape with contents $w = w_0 w_1 w_2 w_3 w_4 \in I^*$ at start of TM run

There are no blanks (^) in the input w..

the input word is terminated by the first ^ on the tape when the TM starts.

If all the w_i are blank, we have the empty input, ε .

Computability and Complexity Lecture 3

 \sum is the whole or internal alphabet of the TM.

The input alphabet I is a subset of Σ : $I \subseteq \Sigma$ and $\land \in \Sigma$.

the TM Output is a word w' of ∑*..without blanks (^). It starts at square 0 and ends just before the first blank, ^, on the tape when the TM halts and succeeds. (otherwise it is not defined).

Not all words of \sum^* are necessarily valid outputs.

Not all symbols of \sum^* are necessarily valid outputs.

another Turing Machine example..

design a TM, M = (Q, \sum , I, q₀, δ , F) which evaluates the function **head:**

 $I = \{a,b\}, \sum = \{a, b, ^{\wedge}\}$ head(w) = s, where s is I, w₁ is undefined head(\varepsilon) is undefined

 $\delta (q_0, a) = (q_1, a, 1)$ $\delta (q_0, b) = (q_1, b, 1)$ $\delta (q_1, a) = (q_2, ^, 0)$ $\delta (q_1, b) = (q_2, ^, 0)$ $\delta (q_1, ^) = (q_2, ^, 0)$

 q_0 bab^^^<...</td>

 q_1 bab^^^<...</td>

 q_2 b^b^^^<...</td>

 Halt and Succeed

Summary

We have seen a formal definition of a Turing Machine:

 $M = (Q, \Sigma, I, q_0, \delta, F)$

where

- Q finite, non-empty set of states
- \sum finite set of at least 2 symbols: the alphabet. $^{\wedge} \in \sum$
- I non-empty subset of \sum ; $^{\diamond} \notin I$; input alphabet
- $q_0 \quad q_0 \in Q$; starting or initial state
- $\delta \qquad \delta: (Q \setminus F) \ge Q \ge Q \ge x \ge x \{-1, 0, 1\}, \text{ a partial function,} \\ \text{the instruction table}$
- F $F \subseteq Q$, the set of final or halting states

and examples of simple TMs to

- determine whether a number is odd/even
- return the Head of the input word.

Computability and Complexity

Lecture 3

Computability and Complexity

Design a Turing Machine to implement the Tail function $Q = \{q_0, ..., F = \{ ... \}, F = \{ ... \}, \Sigma = \{a,b,^{\wedge}\}.$

a	b	a	b	۸	^	^	^	^
---	---	---	---	---	---	---	---	---