
Computability and Complexity
Lecture 3

Computability and Complexity

Turing Machines - a formal definition
A Turing Machine is a 6-tuple
 M = (Q, ∑, I, q0, δ, F)
where
Q finite, non-empty set of states

∑ finite set of at least 2 symbols: the alphabet. ^ ∈ ∑
I non-empty subset of ∑; ^ ∉ I; input alphabet

q0 q0 ∈ Q; starting or initial state

d δ: (Q\F) x ∑ ⇒Q x ∑ x {-1, 0, 1}, a partial function,
 the instruction table

F F ⊆ Q, the set of final or halting states

Computability and Complexity
Lecture 3

Computability and Complexity

..

Some notation:

A word is a string of symbols eg. lecture^room

..for an alphabet (set of symbols) ∑
 a word of ∑* is a finite string of elements of ∑.

∑* = all words of ∑

ε is the empty word; ε ∈ ∑* for any ∑.

We represent concatenation of words v and w by v.w

The value computed by the TM, M on input w is fM(w).
If M does not Halt & Succeed on input w, then fM(w) is undefined.

Computability and Complexity
Lecture 3

Computability and Complexity

The TM tape contents:

The input alphabet is I; ^ ∉ I. TM Input is a word of I*

Eg. a tape with contents w = w0w1w2w3w 4∈ I* at start of TM run

There are no blanks (^) in the input w..
the input word is terminated by the first ^ on the tape when
 the TM starts.

If all the wi are blank, we have the empty input, ε.

w0 w1 w2 w3
^^^^w4

Computability and Complexity
Lecture 3

Computability and Complexity

∑ is the whole or internal alphabet of the TM.

The input alphabet I is a subset of ∑: I ⊆ ∑ and ^ ∈ ∑.

the TM Output is a word w' of ∑*..without blanks (^).
 It starts at square 0 and
 ends just before the first blank, ^, on the tape

when the TM halts and succeeds.
(otherwise it is not defined).

Not all words of ∑* are necessarily valid outputs.

Not all symbols of ∑* are necessarily valid outputs.

Computability and Complexity
Lecture 3

Computability and Complexity

a Turing Machine example..

M = ({q0, q1, q2}, {1, ^}, {1}, q0, δ, {q2})

Q ∑ I
state set alphabet

input
alphabet

initial state

delta function
halting state

 δ-function:
 δ (q0, 1) = (q1, ^, 1)
 δ (q0, ^) = (q2, ^, 0)

δ (q1,1) = (q0, 1, 1)

possible inputs: 11111^^^…
 1111^^^…

 111^^^… what does this TM do?

Computability and Complexity
Lecture 3

Computability and Complexity

..a TM example
δ (q0, 1) = (q1, ^, 1)
δ (q0, ^) = (q2, ^, 0)
δ (q1,1) = (q0, 1, 1)

the TM M starts in state q0 with the head over square 0..
 if M is in state q0:if M reads a 1 it • writes a ^

 • moves right 1 square on the tape
 • goes into state q1

otherwise, M reads a ^: it • writes a ^
 • does not move along the tape
 • goes into state q2

 if M is in state q1:if M reads a 1 it• writes a 1
 • moves right 1 square along the tape
 • goes into state q0

 otherwise M halts and fails: no applicable instruction
 if M is in state q2 it • halts and succeeds

q0 1111^^
q1 ^111^^
q0 ^111^^
q1 ^1^1^^
q0 ^1^1^^
q2 ^1^1^^
Halt & succeed

W1: 1111^^
W2: 111^^^…

q0 111^^
q1 ^11^^
q0 ^11^^
q1 ^1^^^
Halt & Fail

Computability and Complexity
Lecture 3

Computability and Complexity

another Turing Machine example..

design a TM, M = (Q, ∑, I, q0, δ, F) which evaluates the function
head:

I = {a,b}, ∑ = {a, b, ^}
head(w) = s, where s∈ I, w1∈ I* and w = s.w1
head(ε) is undefined

δ (q0, a) = (q1, a, 1)
δ (q0, b) = (q1, b, 1)
δ (q1, a) = (q2, ^, 0)
δ (q1, b) = (q2, ^, 0)
δ (q1, ^) = (q2, ^, 0)

q0 bab^^^…
q1 bab^^^…
q2 b^b^^^…
Halt and Succeed

b a b ^ ^ ^ ^ ….

Computability and Complexity
Lecture 3

Computability and Complexity

Summary

We have seen a formal definition of a Turing
Machine:

M = (Q, ∑, I, q0, δ, F)
where
Q finite, non-empty set of states
∑ finite set of at least 2 symbols: the alphabet. ^ ∈ ∑
I non-empty subset of ∑; ^ ∉ I; input alphabet
q0 q0 ∈ Q; starting or initial state
δ δ: (Q\F) x ∑ ⇒Q x ∑ x {-1, 0, 1}, a partial function,
 the instruction table
F F ⊆ Q, the set of final or halting states

and examples of simple TMs to
- determine whether a number is odd/even
- return the Head of the input word.

Computability and Complexity
Lecture 3

Computability and Complexity

Design a Turing Machine to implement the Tail function
Q = {q0, .. }, F = { }, ∑ = {a,b,^}.

a b a b ^ ^ ^ ^ ^

