Turing Machines - a formal definition

A Turing Machine is a 6-tuple

\[M = (Q, \Sigma, I, q_0, \delta, F) \]

where

- **Q** finite, non-empty set of states
- **Σ** finite set of at least 2 symbols: the alphabet. \(^ \in \Sigma\)
- **I** non-empty subset of \(\Sigma\); \(^ \notin I\); input alphabet
- **q_0** \(q_0 \in Q\); starting or initial state
- **δ** \((Q \setminus F) \times \Sigma \Rightarrow Q \times \Sigma \times \{-1, 0, 1\}\), a partial function, the instruction table
- **F** \(F \subseteq Q\), the set of final or halting states
Some notation:

A word is a string of symbols eg. lecture^room

..for an alphabet (set of symbols) \sum

 a word of \sum^* is a finite string of elements of \sum.

\sum^* = all words of \sum

ε is the empty word; $\varepsilon \in \sum^*$ for any \sum.

We represent concatenation of words v and w by $v.w$

The value computed by the TM, M on input w is $f_M(w)$. If M does not Halt & Succeed on input w, then $f_M(w)$ is undefined.
The TM tape contents:

The input alphabet is I; $\not\in I$. TM Input is a word of I^*

| w_0 | w_1 | w_2 | w_3 | w_4 | $\not\in$ | $\not\in$ | $\not\in$ |

Eg. a tape with contents $w = w_0 w_1 w_2 w_3 w_4 \in I^*$ at start of TM run

There are no blanks ($\not\in$) in the input w..
the input word is terminated by the first $\not\in$ on the tape when
the TM starts.

If all the w_i are blank, we have the empty input, ε.
\(\Sigma \) is the whole or internal alphabet of the TM.

The input alphabet \(I \) is a subset of \(\Sigma \): \(I \subseteq \Sigma \) and \(^\wedge \in \Sigma \).

The TM Output is a word \(w' \) of \(\Sigma^* \) without blanks (\(^\wedge\)).
It starts at square 0 and
ends just before the first blank, \(^\wedge\), on the tape
when the TM halts and succeeds.
(otherwise it is not defined).

Not all words of \(\Sigma^* \) are necessarily valid outputs.

Not all symbols of \(\Sigma^* \) are necessarily valid outputs.
a Turing Machine example..

\[M = (\{q_0, q_1, q_2\}, \{1, \^\}, \{1\}, q_0, \delta, \{q_2\}) \]

\[\delta \text{-function:} \]
\[\delta (q_0, 1) = (q_1, \^, 1) \]
\[\delta (q_0, \^) = (q_2, \^, 0) \]
\[\delta (q_1, 1) = (q_0, 1, 1) \]

possible inputs: 11111\(^{\ldots}1\)
111\(^{\ldots}1\)
11\(^{\ldots}1\)
1\(^{\ldots}1\)

what does this TM do?
..a TM example

\[\delta(q_0, 1) = (q_1, ^, 1) \]
\[\delta(q_0, ^) = (q_2, ^, 0) \]
\[\delta(q_1, 1) = (q_0, 1, 1) \]

the TM M starts in state \(q_0 \) with the head over square 0..
if M is in state \(q_0 \): if M reads a 1 it
 - writes a ^
 - moves right 1 square on the tape
 - goes into state \(q_1 \)
otherwise, M reads a ^: it
 - writes a ^
 - does not move along the tape
 - goes into state \(q_2 \)
if M is in state \(q_1 \): if M reads a 1 it
 - writes a 1
 - moves right 1 square along the tape
 - goes into state \(q_0 \)
otherwise M halts and fails: no applicable instruction
if M is in state \(q_2 \) it
 - halts and succeeds
another Turing Machine example..

design a TM, \(M = (Q, \Sigma, I, q_0, \delta, F) \) which evaluates the function \(\text{head} \):

- \(I = \{a, b\}, \Sigma = \{a, b, ^\} \)
- \(\text{head}(w) = s, \) where \(s \in I, w_1 \in I^* \) and \(w = s.w_1 \)
- \(\text{head}(\epsilon) \) is undefined

\[
\begin{align*}
\delta (q_0, a) &= (q_1, a, 1) \\
\delta (q_0, b) &= (q_1, b, 1) \\
\delta (q_1, a) &= (q_2, ^, 0) \\
\delta (q_1, b) &= (q_2, ^, 0) \\
\delta (q_1, ^) &= (q_2, ^, 0)
\end{align*}
\]

\[
\begin{array}{cccccccc}
\text{b} & \text{a} & \text{b} & ^ & ^ & ^ & ^ & \ldots \\
\hline
q_0 & \text{bab}^{^\ldots} \\
q_1 & \text{bab}^{^\ldots} \\
q_2 & \text{b}^{^b}^{^\ldots} \\
\end{array}
\]

Halt and Succeed
We have seen a formal definition of a Turing Machine:

\[M = (Q, \sum, I, q_0, \delta, F) \]

where

- \(Q \) finite, non-empty set of states
- \(\sum \) finite set of at least 2 symbols: the alphabet. \(^{\wedge} \in \sum \)
- \(I \) non-empty subset of \(\sum \); \(^{\wedge} \notin I \); input alphabet
- \(q_0 \) starting or initial state \(q_0 \in Q \)
- \(\delta \) \(\delta: (Q\setminus F) \times \sum \Rightarrow Q \times \sum \times \{-1, 0, 1\} \), a partial function, the instruction table
- \(F \) \(F \subseteq Q \), the set of final or halting states

and examples of simple TMs to
- determine whether a number is odd/even
- return the Head of the input word.
Design a Turing Machine to implement the Tail function

\[Q = \{ q_0, \ldots \}, \quad F = \{ \}, \quad \sum = \{ a, b, \text{\^}\}. \]

\[
\begin{array}{cccccc}
a & b & a & b & \text{\^} & \text{\^\text{\^\text{\^\text{\text{\^}}}}}
\end{array}
\]