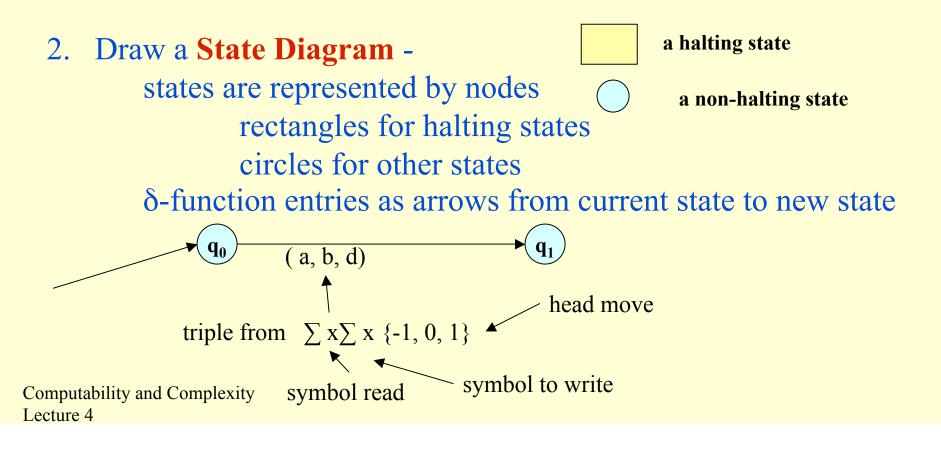
Turing Machine Representation

- List all the entries in the δ-function (as in previous examples) but • cumbersome for more than 2 or 3 states
 - difficult to see the structure or pattern in the algorithm



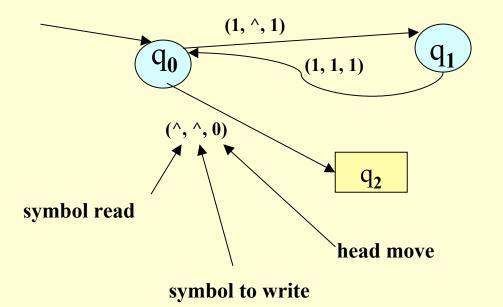
for example, the odd/even Turing Machine

$$\delta (q_0, 1) = (q_1, \land, 1)$$

$$\delta (q_0, \land) = (q_2, \land, 0)$$

$$\delta (q_1, 1) = (q_0, 1, 1)$$

If $\delta(q, a) = (q', b, d)$ the graph has an arrow labeled (a, b, d) from q to q'



3. as Pseudocode
basic operations: TM read TM write
+ control structures: if..then..else while..do

pseudocode feels like "proper programming" but ...

it is easy to work at too high a level and to forget that

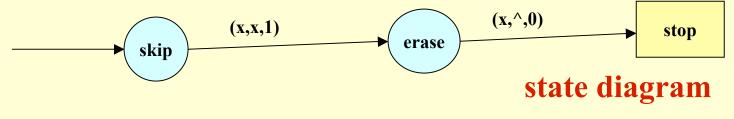
- the TM cannot address its storage (tape), just read the symbol on the current-square
- it cannot do additional operations "on the side" eg counting,

an example: the **Head** function: build TM, M such that $f_M(w) = head(w), w \in I^*$ Input: a word w of I*, starting at square 0 Output: a word consisting of the first symbol of w, followed by ^.

 $\sum = I \cup \{^{\wedge}\}$
set of states, Q = {skip, erase, stop}

δ-function: $\delta(\text{skip}, x) = (\text{erase}, x, 1), \text{ all } x \in I$ $\delta(\text{erase}, x) = (\text{stop}, ^, 0), \text{ all } x \in I$

so M = {Q, Σ , I, skip, δ {stop}}



Computability and Complexity Lecture 4

pseudocode: read symbol from current square if symbol = '^' then Halt and Fail move right write '^' (whatever symbol is read) Halt and Succeed.

eg.

Input - the string of symbols up to but not including the first '^'

Output - the string of symbols up to but not including the first '^' ...rest of tape ignored

pseudocode: read symbol from current square if symbol = '^' then Halt and Fail move right write '^' (whatever symbol is read) Halt and Succeed.

	С	^	Μ	Р	U	^			>
--	---	---	---	---	---	---	--	--	-------------

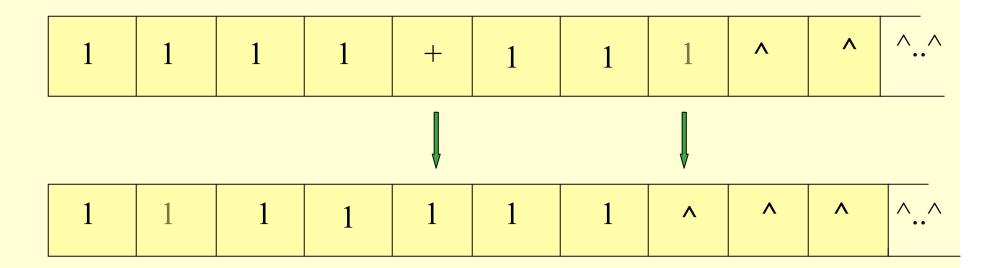
Input - the string of symbols up to but not including the first '^'

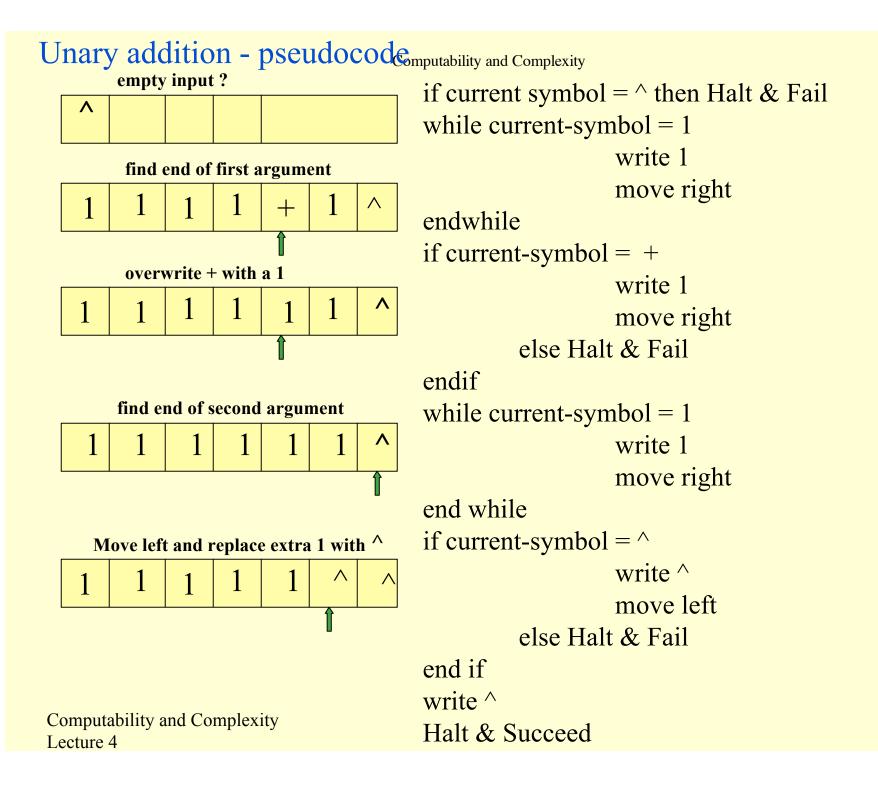
Output - the string of symbols up to but not including the first '^' ...rest of tape ignored

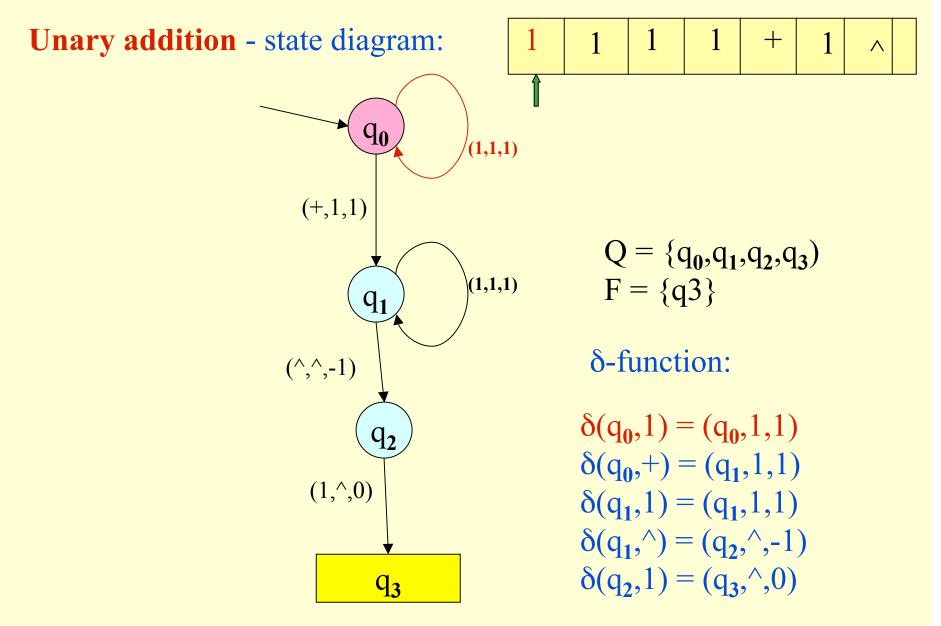
Example - Unary addition

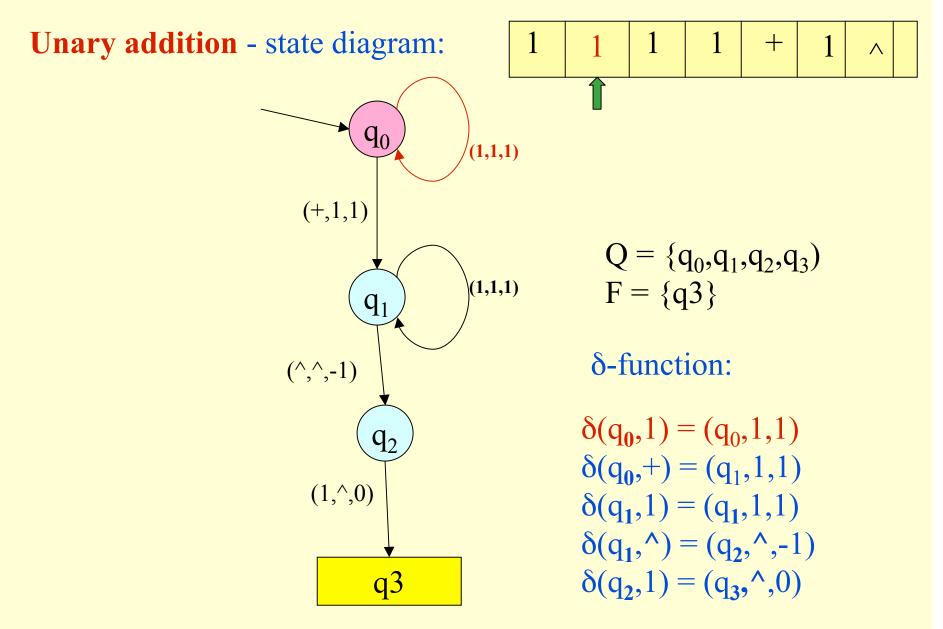
Unary notation: represent n by 1111..11 (n 1s)..written as 1^n Design TM, M, such that $f_M(1^n.+.1^m) = 1^{n+m}$

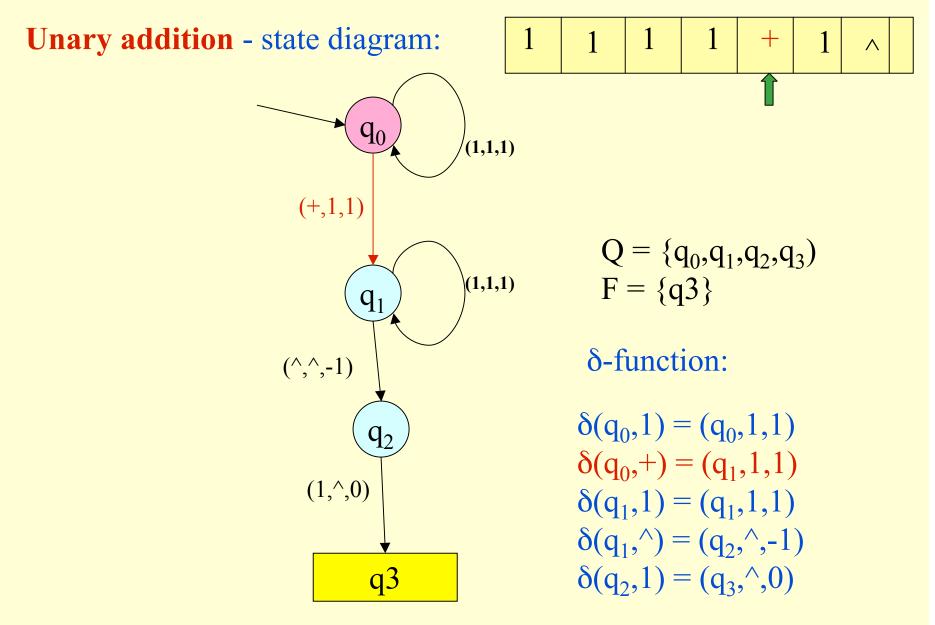
 $I = \{1, +\}$ $\sum = \{1, +, ^\}$

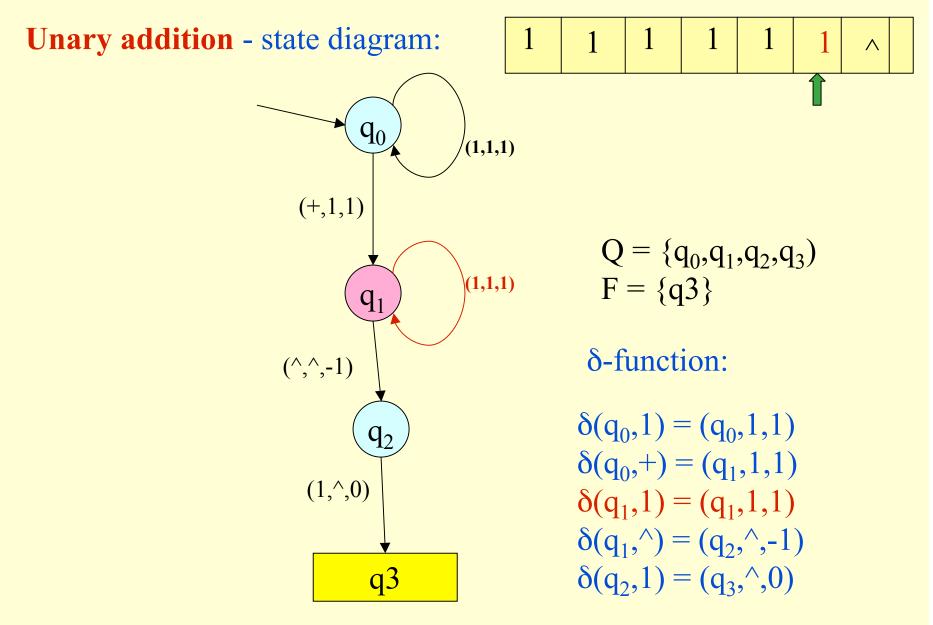


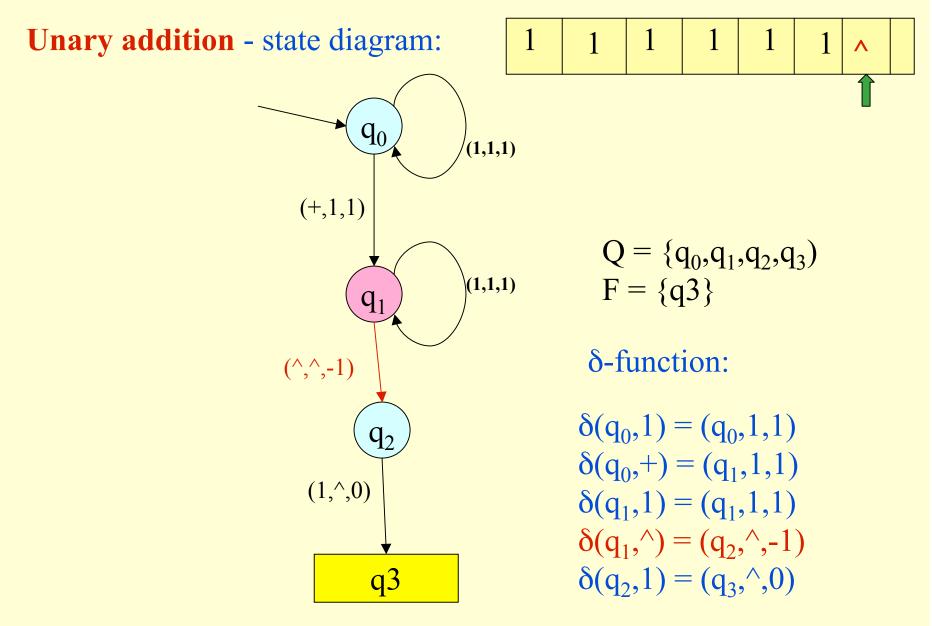


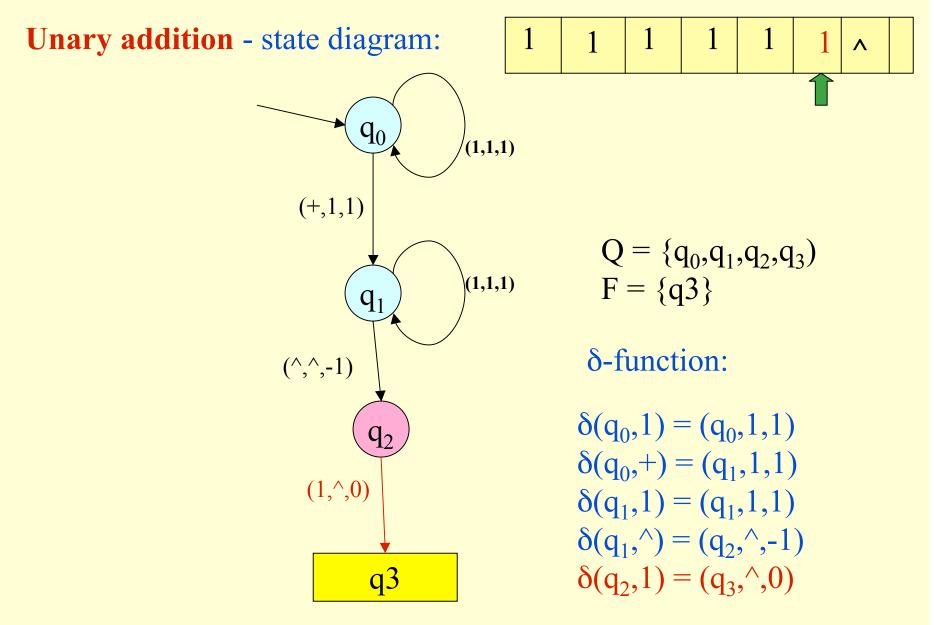


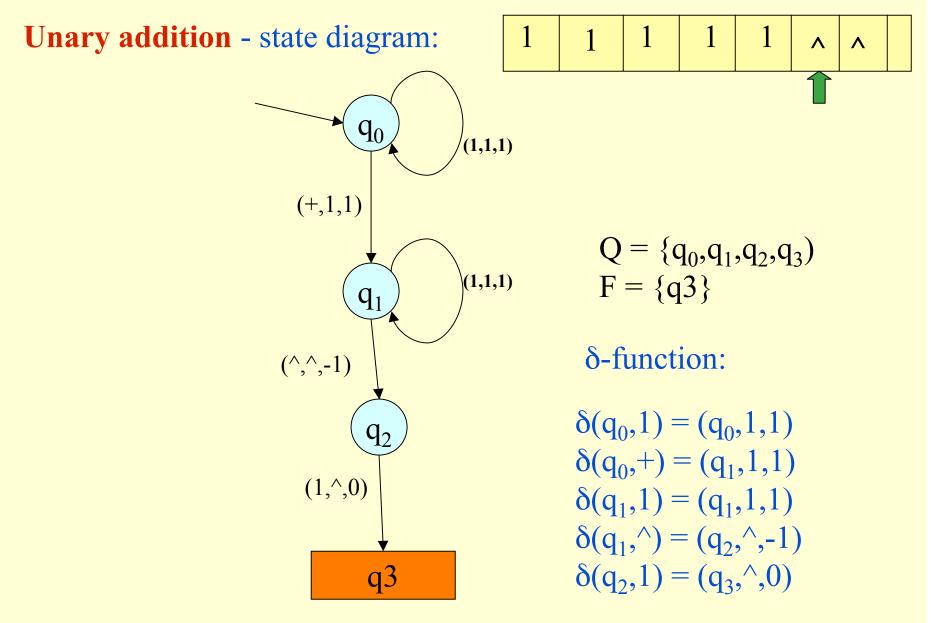












Design a Turing Machine to implement the Tail function $Q = \{q_0, ..., \}, F = \{ ... \}, \sum = \{a,b,^{\wedge}\}.$

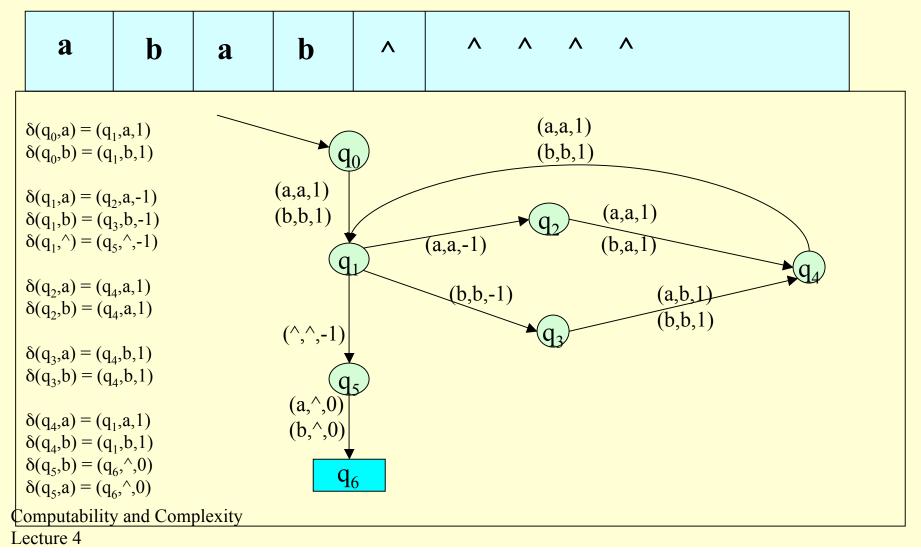
a	b	a	b	^	^	^	^	^
---	---	---	---	---	---	---	---	---

Method: • if current symbol = ^, then move left. (gives Halt & Fail where input word = ε) else leave current symbol unchanged move right

- repeatedly { Let current symbol be 's'; leave s unchanged and move left
 - write 's'
 - move right
 - if current-symbol = ^ then Halt & Succeed
 - else move right}

Design a Turing Machine to implement the Tail function $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}, F = \{q_6\}, \Sigma = \{a, b, ^\}.$

Algorithm 1- "oscillating"



Design a Turing Machine to implement the Tail function $Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}, F = \{q_5\}, \Sigma = \{a,b,^{\wedge}\}.$

Algorithm 2 - "shifting"

a	b	a	b	۸	^	۸	۸	۸	
---	---	---	---	---	---	---	---	---	--

Method 2:

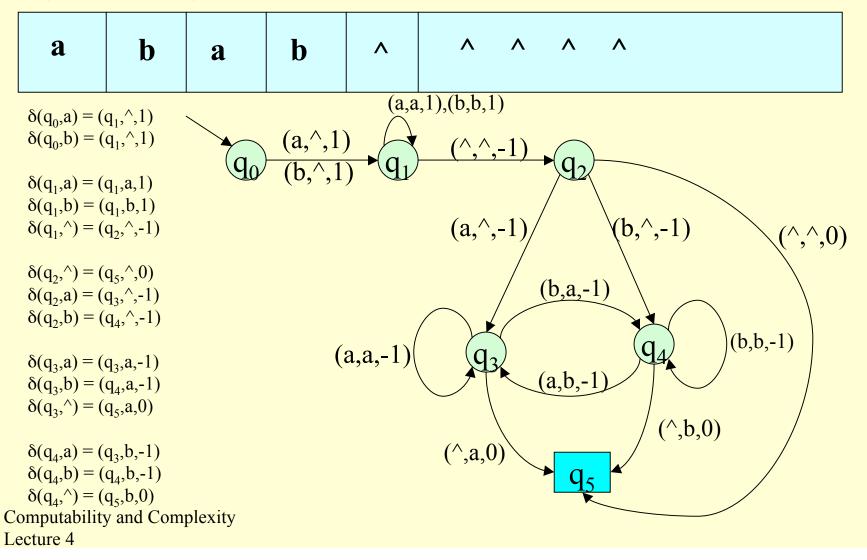
If current symbol = ^ Halt & Fail. Repeat {move right} until current symbol = ^. Move left; Let 's' be current symbol; write ^. Repeatedly: {move left write 's', let 's' be current symbol ; until reach square 0}** Halt & Succeed

** the **TM squares are not marked or individually addressable**, but the machine must be able to recognise when, moving left, it has reached square 0. This is done to avoid causing Halt & Fail by a further move left.

One method is to write a special symbol in square 0 which can be recognised later - often ^ can be used.

Design a Turing Machine to implement the Tail function $Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}, F = \{q_5\}, \Sigma = \{a,b,^{\wedge}\}.$

Algorithm 2 - "shifting"



Summary We have seen δ-function state diagram pseudo-code representations for Turing Machines and examples of these for odd/even Head unary addition Tail functions.

State diagrams permit visualisation of the TM and the structure of an algorithm. They correspond directly to the δ -function representation.