
Computability and Complexity
Lecture 4

Computability and Complexity

 

1. List all the entries in the δ-function (as in previous examples)
but  • cumbersome for more than 2 or 3 states

 • difficult to see the structure or pattern in the algorithm

2. Draw a State Diagram -
states are represented by nodes

rectangles for halting states
circles for other states

      δ-function entries as arrows from current state to new state

a halting state

a non-halting state

q0 q1( a, b, d)

triple from   ∑ x∑ x {-1, 0, 1}

symbol read symbol to write

head move

Turing Machine Representation



Computability and Complexity
Lecture 4

Computability and Complexity

 

 for example, the odd/even Turing Machine 

   
 

q1

(1, ^, 1)

q2

 (^, ^, 0)

symbol read

symbol to write

head move

(1, 1, 1)

δ (q0, 1) = (q1, ^, 1)
δ (q0, ^) = (q2, ^, 0)
δ (q1,1)  = (q0, 1, 1)

If δ(q, a) = (q', b, d) the graph has an arrow labeled (a, b, d) from q to q'

q0



Computability and Complexity
Lecture 4

Computability and Complexity

3.   as Pseudocode
 basic operations:  TM read

TM write
head movement

+ control structures:  if..then..else
while..do

pseudocode feels like “proper programming” but ..

it is easy to work at too high a level and to forget that

 • the TM cannot address its storage (tape), just read the symbol
   on the current-square
•  it cannot do additional operations ”on the side” eg counting,



Computability and Complexity
Lecture 4

Computability and Complexity

an example: the Head function: build TM, M such that
fM(w) = head(w) , w ∈ I*

Input: a word w of I*, starting at square 0
Output: a word consisting of the first symbol of w, followed by ^.

∑ = I ∪ {^}
 set of states, Q = {skip, erase, stop}

δ-function: δ(skip, x) = (erase, x, 1), all x ∈ I
δ(erase, x) = (stop, ^, 0), all x ∈ I

so M = {Q, ∑, I, skip, δ {stop}}

skip
stoperase

(x,x,1) (x,^,0)

state diagram



Computability and Complexity
Lecture 4

Computability and Complexity

pseudocode:
read symbol from current square
if symbol = ‘^’ then Halt and Fail
move right
write ‘^’        (whatever symbol is read)
Halt and Succeed.

eg. C O M P U ^

Output - the string of symbols up to but not including the first ‘^’
..rest of tape ignored

Input - the string of symbols up to but not including the first
‘^’



Computability and Complexity
Lecture 4

Computability and Complexity

pseudocode:
read symbol from current square
if symbol = ‘^’ then Halt and Fail
move right
write ‘^’        (whatever symbol is read)
Halt and Succeed.

eg. C ^ M P U ^

Output - the string of symbols up to but not including the first ‘^’
..rest of tape ignored

Input - the string of symbols up to but not including the first ‘^’



Computability and Complexity
Lecture 4

Computability and Complexity

Example - Unary addition

Unary notation: represent n by 1111..11 (n 1s)..written as 1n

Design TM, M, such that fM(1n.+. 1m) = 1 n+m

I = {1,+}
∑ = {1, +, ^}

1 1 1 1 + 1 1 1 ^ ^

1 1 1 1 1 1 1 ^ ^ ^

^..^ 

^..^



Computability and Complexity
Lecture 4

Computability and Complexity

if current symbol = ^ then Halt & Fail
while current-symbol = 1

write 1
move right

endwhile
if current-symbol =  +

write 1
move right

  else Halt & Fail
endif
while current-symbol = 1

write 1
move right

end while
if current-symbol = ^

write ^
move left

else Halt & Fail
end if
write ^
Halt & Succeed

^
empty input ?

1 1 1 1 + 1
find end of first argument

1 1 1 1 1 1

^

^
overwrite + with a 1

1 1 1 1 1 1 ^
find end of second argument

1 1 1 1 1 ^ ^
Move left and replace extra 1 with ^

Unary addition - pseudocode



Computability and Complexity
Lecture 4

Computability and Complexity

Unary addition - state diagram:

q0

q1

q2

q3

δ-function:

(1,1,1)

(1,1,1)

(+,1,1)

(^,^,-1)

(1,^,0)

δ(q0,1) = (q0,1,1)
δ(q0,+) = (q1,1,1)
δ(q1,1) = (q1,1,1)
δ(q1,^) = (q2,^,-1)
δ(q2,1) = (q3,^,0)

Q = {q0,q1,q2,q3)
F = {q3}

1 1 1 1 + 1 ^



Computability and Complexity
Lecture 4

Computability and Complexity

Unary addition - state diagram:

q0

q1

q2

q3

δ-function:

(1,1,1)

(1,1,1)

(+,1,1)

(^,^,-1)

(1,^,0)

δ(q0,1) = (q0,1,1)
δ(q0,+) = (q1,1,1)
δ(q1,1) = (q1,1,1)
δ(q1,^) = (q2,^,-1)
δ(q2,1) = (q3,^,0)

Q = {q0,q1,q2,q3)
F = {q3}

1 1 1 1 + 1 ^



Computability and Complexity
Lecture 4

Computability and Complexity

Unary addition - state diagram:

q0

q1

q2

q3

δ-function:

(1,1,1)

(1,1,1)

(+,1,1)

(^,^,-1)

(1,^,0)

δ(q0,1) = (q0,1,1)
δ(q0,+) = (q1,1,1)
δ(q1,1) = (q1,1,1)
δ(q1,^) = (q2,^,-1)
δ(q2,1) = (q3,^,0)

Q = {q0,q1,q2,q3)
F = {q3}

1 1 1 1 + 1 ^



Computability and Complexity
Lecture 4

Computability and Complexity

Unary addition - state diagram:

q0

q1

q2

q3

δ-function:

(1,1,1)

(1,1,1)

(+,1,1)

(^,^,-1)

(1,^,0)

δ(q0,1) = (q0,1,1)
δ(q0,+) = (q1,1,1)
δ(q1,1) = (q1,1,1)
δ(q1,^) = (q2,^,-1)
δ(q2,1) = (q3,^,0)

Q = {q0,q1,q2,q3)
F = {q3}

1 1 1 1 1 1 ^



Computability and Complexity
Lecture 4

Computability and Complexity

Unary addition - state diagram:

q0

q1

q2

q3

δ-function:

(1,1,1)

(1,1,1)

(+,1,1)

(^,^,-1)

(1,^,0)

δ(q0,1) = (q0,1,1)
δ(q0,+) = (q1,1,1)
δ(q1,1) = (q1,1,1)
δ(q1,^) = (q2,^,-1)
δ(q2,1) = (q3,^,0)

Q = {q0,q1,q2,q3)
F = {q3}

1 1 1 1 1 1 ^



Computability and Complexity
Lecture 4

Computability and Complexity

Unary addition - state diagram:

q0

q1

q2

q3

δ-function:

(1,1,1)

(1,1,1)

(+,1,1)

(^,^,-1)

(1,^,0)

δ(q0,1) = (q0,1,1)
δ(q0,+) = (q1,1,1)
δ(q1,1) = (q1,1,1)
δ(q1,^) = (q2,^,-1)
δ(q2,1) = (q3,^,0)

Q = {q0,q1,q2,q3)
F = {q3}

1 1 1 1 1 1 ^



Computability and Complexity
Lecture 4

Computability and Complexity

Unary addition - state diagram:

q0

q1

q2

q3

δ-function:

(1,1,1)

(1,1,1)

(+,1,1)

(^,^,-1)

(1,^,0)

δ(q0,1) = (q0,1,1)
δ(q0,+) = (q1,1,1)
δ(q1,1) = (q1,1,1)
δ(q1,^) = (q2,^,-1)
δ(q2,1) = (q3,^,0)

Q = {q0,q1,q2,q3)
F = {q3}

1 1 1 1 1 ^ ^



Computability and Complexity
Lecture 4

Computability and Complexity

Design a Turing Machine to implement the Tail function
Q = {q0,  ..            },  F = {   }, ∑ = {a,b,^}.

a b a b ^ ^    ^    ^    ^    

Method: • if current symbol = ^, then  move left.      (gives Halt & Fail where input word = ε)
                       else leave current symbol unchanged

         move right
       • repeatedly { • Let current symbol be ‘s’; leave s unchanged and  move left

   • write ‘s’
                                             • move right

    • if current-symbol = ^ then Halt & Succeed
              else move right}



Computability and Complexity
Lecture 4

Computability and Complexity

Design a Turing Machine to implement the Tail function
Q = {q0, q1, q2, q3, q4, q5, q6},  F = {q6 }, ∑ = {a,b,^}.

a b a b ^ ^    ^    ^    ^    

δ(q0,a) = (q1,a,1)
δ(q0,b) = (q1,b,1)

δ(q1,a) = (q2,a,-1)
δ(q1,b) = (q3,b,-1)
δ(q1,^) = (q5,^,-1)

δ(q2,a) = (q4,a,1)
δ(q2,b) = (q4,a,1)

δ(q3,a) = (q4,b,1)
δ(q3,b) = (q4,b,1)

δ(q4,a) = (q1,a,1)
δ(q4,b) = (q1,b,1)
δ(q5,b) = (q6,^,0)
δ(q5,a) = (q6,^,0)

Algorithm 1- “oscillating”

q1

q2

q3

q4

q5

q0
(a,a,1)
(b,b,1)

(a,a,1)
(b,b,1)

(a,b,1)
(b,b,1)

(a,a,1)
(b,a,1)(a,a,-1)

(b,b,-1)

(^,^,-1)

(a,^,0) 
(b,^,0)

q6



Computability and Complexity
Lecture 4

Computability and Complexity

Design a Turing Machine to implement the Tail function
Q = {q0, q1, q2, q3, q4, q5 },  F = {q5 }, ∑ = {a,b,^}.

a b a b ^ ^    ^    ^    ^    

Method 2:
                    If current symbol = ^ Halt & Fail.

Repeat {move right}
until current symbol = ^.

Move left;
Let ‘s’ be current symbol; write ^.

                     Repeatedly: {move left write ‘s’, let ‘s’ be current symbol ; until reach square 0}**
Halt & Succeed

Algorithm 2 - “shifting”

** the TM squares are not marked or individually addressable, but the machine must be able to
recognise when, moving left, it has reached square 0.
This is done to avoid causing Halt & Fail by a further move left.

One method is to write a special symbol in square 0 which can be recognised later - often ^ can be used.



Computability and Complexity
Lecture 4

Computability and Complexity

Design a Turing Machine to implement the Tail function
Q = {q0, q1, q2, q3, q4, q5 },  F = {q5 }, ∑ = {a,b,^}.

a b a b ^ ^    ^    ^    ^    

Algorithm 2 - “shifting”

δ(q0,a) = (q1,^,1)
δ(q0,b) = (q1,^,1)

δ(q1,a) = (q1,a,1)
δ(q1,b) = (q1,b,1)
δ(q1,^) = (q2,^,-1)

δ(q2,^) = (q5,^,0)
δ(q2,a) = (q3,^,-1)
δ(q2,b) = (q4,^,-1)

δ(q3,a) = (q3,a,-1)
δ(q3,b) = (q4,a,-1)
δ(q3,^) = (q5,a,0)

δ(q4,a) = (q3,b,-1)
δ(q4,b) = (q4,b,-1)
δ(q4,^) = (q5,b,0)

q0 q1 q2

q3
q4

q5

(a,^,1)
(b,^,1)

(a,a,1),(b,b,1)

(^,^,-1)

(^,^,0)

    (a,a,-1)

 (a,^,-1) (b,^,-1)

(b,b,-1)

(b,a,-1)

(a,b,-1)

(^,a,0)
(^,b,0)



Computability and Complexity
Lecture 4

Computability and Complexity

Summary
We have seen δ-function
   state diagram

pseudo-code
representations for Turing Machines and examples of these
for  odd/even

 Head
 unary addition
Tail                        functions.

State diagrams permit visualisation of the TM and the structure
of an algorithm. They correspond directly to the δ-function
representation.


