
Computability and Complexity
Lecture 8

Computability and Complexity

Tape

0 1 2 3 4 5

a b a ^ 3 ^

Symbols from alphabet ∑

‘blank’ symbol

starting state

final states

A Turing Machine

Turing Machine Head

{state set Q

{instruction table d

square number
(not visible to TM)

Computability and Complexity
Lecture 8

Computability and Complexity

Turing Machines - a formal definition

A Turing Machine is a 6-tuple
 M = (Q, ∑, I, q0, d, F)
where
Q finite, non-empty set of states

∑ finite set of at least 2 symbols: the alphabet. ^ Œ ∑
I non-empty subset of ∑; ^ œ I; input alphabet

q0 q0 Œ Q; starting or initial state

d d: (Q\F) x ∑ fiQ x ∑ x {-1, 0, 1}, a partial function,
 the instruction table

F F Õ Q, the set of final or halting states

Computability and Complexity
Lecture 8

Computability and Complexity

the Halting Problem
Will a given TM halt on a given input?

ie. Given as input:
code(S) for a standard TM S
a word w of C

..can we determine whether S halts and succeeds?

We assume that we have a TM which determines whether S halts and
 succeeds - and derive a contradiction

Assumption is wrong

There is no such TM
The Halting Problem is unsolvable

Computability and Complexity
Lecture 8

Computability and Complexity

Formal specification of the Halting Problem:

Define h: C* fiC* such that
h(x) = 1 if x =code(S)*w for a standard TM, S, and

 S halts and succeeds on input w.
= 0 if x=code(S)*w for some S, w, and

 S does not Halt and Succeed
on input w

is undefined if x is not of the form code(S)*w for any
standard TM, S and input w.

h is a partial function C*fiC*

is there a TM H such that fH = h ?
Such a TM would solve the Halting Problem.

Computability and Complexity
Lecture 8

Computability and Complexity

Proof of the Halting Problem

assume Turing Machine H s.t. f H = h

define a partial function g: g: C* fiC* such that

g(w) = 1 if h(w*w) = 0
undefined otherwise

Let M be a TM with fM=g
M has a code, code(M)
[we know how to encode the alphabet if M is not standard, using
only characters of C.]

Consider g(code(M))..it either has value 1 or is undefined..

Computability and Complexity
Lecture 8

Computability and Complexity

1. Suppose g(code(M)) = 1
fih(code(M)*code(M)) = 0 by defn. of g
fi M does not Halt and Succeed on input code(M) by defn. of h
fi fM(code(M)) is undefined by defn. of Turing Machines
fi g(code(M)) is undefined…CONTRADICTION

2. Suppose g(code(M)) is not defined
fi fM(code(M)) is not defined by defn of M
fiM does not Halt and Succeed on input code(M) by TM defn.
fi h(code(M)*code(M)) = 0 by defn of h
fi g(code(M)) = 1 …another CONTRADICTION

there is no H fi by the Church-Turing Thesis

 the Halting problem is unsolvable

erroneous assumption: $ H

Computability and Complexity
Lecture 8

Computability and Complexity

the Halting Problem diagrammatically..

M

HHalt & Succeed Halt & Fail

assume input is wŒC

Add *w after w
 on the tape

(input w*w to H)

1 on tape0 on
tape

M Halts & Succeeds iff output of H is 0
iff h(code(M)*code(M))=0
iff M does not H & S on input code(M)

M Halts & Fails iff output of H is 1
iff h(code(M)*code(M))=1
iff M H & S on input code(M).

CONTRADICTIONS

we deduce that M has a code and input code(M) to M

Computability and Complexity
Lecture 8

Computability and Complexity

Consequences of !Halting Problem unsolvability:

• we cannot write a program “ to see whether our programs loop”

 because this program (algorithm) would be implementable by a
 Turing Machine(by the Church-Turing thesis)
 …and we have just shown that no such TM exists.

• we can use the Halting Problem result to prove
other unsolvability results..

if we can show that a solution to a new problem could be used to
build a solution to the Halting Problem..we know this is impossible..
..so we conclude that the new problem must also be unsolvable.

Computability and Complexity
Lecture 8

Computability and Complexity

Summary

We have proved ..

..by assuming that the Halting Problem had a
Turing Machine (i.e. algorithmic) solution

 and demonstrating that this leads to a contradiction,

that no such TM exists and

therefore the Halting Problem is unsolvable..

 there is no algorithmic solution

Computability and Complexity
Lecture 8

Computability and Complexity

Reduction:

We say that problem A reduces to another problem, B,
if we can convert any Turing Machine solution to B into a
Turing machine solution to A
…if we can show how to adapt a solution to B to give a solution

to A.

We might say that solving A is no harder than solving B

So if we know there is no TM solution to A, we deduce that
there can be no TM solution to B either.

..important to get this argument the right way round..

Computability and Complexity
Lecture 8

Computability and Complexity

Unsolvable problems
by Church’s Thesis:

unsolvable by a Turing Machine

there is no algorithmic solution

Proof Methods

1. assume a solution exists..derive a contradiction..deduce the
assumption was wrong

2. by reduction of a problem known to be unsolvable.

This is independent of future hardware developments (eg faster
machines)

Computability and Complexity
Lecture 8

Computability and Complexity

EIHP - the Empty Input Halting Problem

Does a TM Halt & Succeed on empty input e ?
i.e. is there a TM EI such that for any standard TM S:

fEI(code(S)) = 1 if S Halts & Succeeds on input e
 0 otherwise ?

This is proved by reducing HP to EIHP..

..we show that a solution to EIHP would provide a solution to HP..
known to be impossible..

EI cannot exist.

EIHP is unsolvable

Computability and Complexity
Lecture 8

Computability and Complexity

1. Assume TM EI to solve EIHP

2. Define TM H by… run EDIT
return to square 0
run EI

EDIT
code(S)*w

EI
code(S[w])

(x,x,-1)
if not at sq. 0

(x,x,0)
if at sq. 0

Outputs 1 if
S[w]
H & S on e

Outputs 0 if
S[w] does not
H & S on e

1

0

H

Computability and Complexity
Lecture 8

Computability and Complexity

Let H have input code(S)*w.
H runs EDITfi code(S[w])..

…which is input to EI which outputs
1 if S[w] Halts & Succeeds on input e.
0 otherwise

S[w] Halts & Succeeds on input e
iff S Halts & Succeeds on input w

so: H produces 1 on tape if S Halts & Succeeds on input w
 0 otherwise.

this is HP which has NO solution.
fi assumption that $ EI is false fi EIHP is unsolvable.

HP has been reduced to EIHP, proving EIHP unsolvable.

Computability and Complexity
Lecture 8

Computability and Complexity

Summary..unsolvability results:

• we proved the Halting Problem unsolvable directly
 - by assuming a solution and deriving a contradiction

 from this assumption

• we proved EIHP (empty input halting problem) unsolvable
- by reducing the Halting Problem to EIHP
- showing that any solution to EIHP would provide

 a solution to the Halting Problem..
…previous unsolvability result.

These methods can be used to prove many related results

Computability and Complexity
Lecture 8

Computability and Complexity

P..the Class of tractable problems that can be solved efficiently
(in polynomial time: p-time).

intractable problems are solvable but any algorithmic
solution runs in exponential time (or slower) in the worst case.
Practically unsolvable except for small inputs, unless average case much
better than the worst.

NP..the class of problems which can be solved in p-time by a non-
deterministic algorithm. Do they have deterministic p-time solutions? “P =
NP?” if so, then all NP problems are in P..this has not been proved either
way, but it is thought most likely that P ≠ NP, so problems in NP \P remain
intractable (but not proved to be so).

NP-Complete problems..the hardest problems in NP. All NP-complete
problems reduce to each other in p-time. Cook’s theorem demonstrates that
there are NP-complete problems

(i.e. NP-complete is not an empty set)

Computability and Complexity
Lecture 8

Computability and Complexity

Why do we study Complexity?..

• it guides us towards the tractable problems solvable with fast
algorithms.

•..but we often encounter NP-complete problems in practice..so it will
avoid (practically) hopeless searches for fast algorithms.

• the reducibility of every NP-complete problem to every other gives
us a higher level view of solvability and the notion of algorithm
and its formalism by TMs.

We will:
• define the run time function of a Turing machine
• introduce non-deterministic TMs and their run-time function
• formalise fast reduction of one problem to another
• examine NP and NP-complete problems

Computability and Complexity
Lecture 8

Computability and Complexity

The run-time function of a Turing Machine

M = (Q, ∑, I, q0, d,F)

for input words w of length n (n=1, 2, 3..):

M runs a varying number of steps for various words w of length n.

define
 timeM (n) = length of longest run of M for input of length n

the function
timeM (n) : {0, 1, 2, ..} fi {0, 1, 2, …,∞}

is the run-time function of M.

Computability and Complexity
Lecture 8

Computability and Complexity

Tractable problems

A yes/no problem is tractable if it can be solved by a TM running
in p-time

 intractable if it can be solved algorithmically, but
not in p-time

An algorithm is tractable if it can be implemented by a p-time TM
 intractable if it cannot be implemented by a p-time TM.

(the Cook-Karp thesis: “p-time TMs are fast)).

P is the class of tractable problems :
i.e. they can be implemented by a p-time TM.

The complement of a problem in P: exchange yes and no

eg. is n prime? is n composite?Complement

Computability and Complexity
Lecture 8

Computability and Complexity

Summary

We have introduced:

 the time function of a Turing Machine
polynomial time function (p-time) TMs

Tractable and Intractable problems and algorithms

Complexity classes of problems

P ..can be solved by a deterministic TM in p-time

(for NP and NP-complete see later lectures).

Computability and Complexity
Lecture 8

Computability and Complexity

Formal definition of NDTM
N = (Q, ∑, I, q0, d, F), with

d:(Q\F) x ∑ fi 2 Q x ∑ x {± 1, 0}

.

ie. the function value for (q,a) is a set of the alternatives

If there is no applicable instruction for (q,a) then d(q,a)=∅
(empty set).

For a TM, M:
if d(q,a) contains only one (q’,a’,d) or is empty,

we have an ordinary deterministic TM.

:2 Qx∑x{±1,0} : the set of all subsets of Q x ∑ x {± 1, 0}

Computability and Complexity
Lecture 8

Computability and Complexity

Polynomial -time Reduction
We formalise reduction by
defining p-time reduction in terms of Turing Machines.

fast non-deterministic solutions to old yes/no problems

Definition of p-time reduction ‘ ≤ ’
 let A, B be any two yes/no problems

X a deterministic Turing Machine
 X reduces A to B if: for every yes-instance w of A, fX(w) is defined

and is a yes-instance of B
 for every no-instance w of A, fX(w) is defined

 and is a no-instance of B
A reduces to B in p-time if $ a det TM X running in p-time that
 reduces A to B (A ≤ B if A reduces to B in polynomial time).

If A ≤ B and B ≤ A fi A ~ B.

fast non-deterministic solutions to new ones.

Computability and Complexity
Lecture 8

Computability and Complexity

if A ≤B and B Œ P..then A Œ P.

mark
sq. 0 X return

to sq. 0 M

 (input word:
instance of A)
w

det. TM reducing
 A to B in p-time

output of X on w
 is an instance of B

det. TM solving
yes/no problem
 B in p-time

X*M

X*M is a deterministic p-time TM which solves A

P is closed downwards under reduction

time function of X*M: time X*M(n) ≤ 1+ p(n)+p(n)+q(p(n))
a polynomial

time function: p(n) time function: q(n)

det. TM solving
A in p-time

Computability and Complexity
Lecture 8

Computability and Complexity

The Class NP of problems

NP consists of all yes/no problems A such that there is some
NDTM N that runs in p-time and solves A;

 N accepts all the yes-instances of A
rejects all the no-instances of A.

This is the class of ($) type problems that would be in P if they had
 a clever search strategy.

P Õ NP as p-time deterministic TMs are a special case of
p-time non-deterministic TMs.

P = NP? .. yes/no problem not yet answered

Computability and Complexity
Lecture 8

Computability and Complexity

Complexity classes P, NP.

unsolvable

Gödel

HP

intractable

 P
(tractable)

NP

PSAT
HCP
TSP

≤ yes/no problems

Computability and Complexity
Lecture 8

Computability and Complexity

NP-complete problems..NPC
is there a ≤-hardest problem in NP. Or set of hardest problems?
or..a sequence ≤ harder ≤ harder ≤ harder ≤…

there are hardest problems in NP: the NP-complete problems.
Definition of NP-complete:

A yes/no problem A is NP-complete if:
1. A Œ NP
2. B ≤ A for all problems B Œ NP
i.e. NP-complete problems are problems in NP to which all
other NP Problems can be reduced in p-time.

NPC - the class of NP-complete problems.

Computability and Complexity
Lecture 8

Computability and Complexity

If A, B are NP-complete then A~B:
A is NP-complete fi A Œ NP

for all C Œ NP, C≤A (including B)
B is NP-complete fi B Œ NP

for all C Œ NP, C≤B (including A)
..so A≤B and B≤A .. A~B.

If A is NP-complete and A~B then B is NP-complete:
A is NP-complete fi A Œ NP

 fi for all C Œ NP, C≤A
A~B fi A≤B and B≤A.

NP is closed downwards under ≤ fi B Œ NP
For any C Œ NP, C≤A and A≤B so as ≤ is transitive, C≤B.

so B is NP-complete.

Computability and Complexity
Lecture 8

Computability and Complexity

A yes/no problem A is NP-complete if:
1. A Œ NP
2. B ≤ A for all problems B Œ NP

if we know that another problem C, is NP-complete, we can show
2*. C ≤ A (instead of 2. above)

(remember 1. must be shown: that A Œ NP.

This permits extension of the set NPC by proving that a known NP-
complete problem reduces in p-time to an NP problem thought to be
in NPC…but is there a “first” problem in NPC?

to use 1.+and 2*) as proof, we need an existing NP-complete problem
are there any NP-complete problems?

Cook’s Theorem proved that PSAT is NP-complete
so NPC ≠ ∅

