
Computability and Complexity
Lecture 2

Computability and Complexity

The Church-Turing Thesis

What is an algorithm? “a rule for solving a mathematical problem in
 a finite number of steps”…Chambers’ Dictionary

“process or rules for (esp. machine) calculation” Oxford dictionary

“Algorithm”..from al-Khwarazmi (“a native of Khwarazm”) - the
9th Century mathematician Abu Ja’far Mohammed ben Musa

Algorithms pre-date Al-Khwarazmi..eg Euclid’s Algorithm (gcf)
Eratosthenes’ Sieve (primes)

In the late 19th Century, a problem exercising mathematicians was
one of those posed by Hilbert:

Computability and Complexity
Lecture 2

Computability and Complexity

briefly.. “Is there a Universal Algorithm which can solve all
Mathematical problems?”..attempts to find one failed..

..

..so perhaps there isn’t one..

can we prove there is no universal algorithm?

.. we need to be able to define an algorithm precisely so as
 to prove properties of algorithms

a formalism of algorithms should be..

• precise and unambiguous

• simple

• general

Computability and Complexity
Lecture 2

Computability and Complexity

Formalisms for Algorithms

By the 1930s the emphasis was on formalising algorithms

Alan Turing, at Cambridge, devised an abstract machine now called
a Turing Machine to define/represent algorithms

Alonso Church, at Princeton, devised the Lambda Calculus which
formalises algorithms as functions..more later in the course.

neither knew of the other’s work in progress..both published in 1936

the demonstrated equivalence of their formalisms strengthened
both their claims to validity, expressed as the Church-Turing Thesis..

Computability and Complexity
Lecture 2

Computability and Complexity

the Church-Turing Thesis:

Turing Machines: precise ÷
 simple ÷
 general ?

“a problem can be solved by an algorithm iff it can be solved by a
 Turing Machine”

Turing Machines implement algorithms

all algorithmically solvable problems can be solved by a Turing
Machine

Computability and Complexity
Lecture 2

Computability and Complexity

“a function is computable iff it can be solved by a Turing Machine”

“ an algorithm is what a Turing Machine implements”

Thesis not Theorem:

 because we cannot prove this..
 with a counter example we could disprove it
(but this has not been done).

we can show supporting evidence for the validity of the thesis

Computability and Complexity
Lecture 2

Computability and Complexity

the Church-Turing Thesis: types of evidence

• large sets of Turing-Computable functions
 many examples…no counter-examples

• equivalent to other formalisms for algorithms
 Church’s l calculus and others

• intuitive - any detailed algorithm for manual calculation can
 be implemented by a Turing Machine.
 via Turing Machine implementation of mechanical methods

Computability and Complexity
Lecture 2

Computability and Complexity

Tape

0 1 2 3 4 5

a b a ^ 3 ^

Symbols from alphabet ∑

‘blank’ symbol

starting state

final states

A Turing Machine

Turing Machine Head

{state set Q

{instruction table d

square number
(not visible to TM)

Computability and Complexity
Lecture 2

Computability and Complexity

A Turing Machine Run

Start: • in initial state

• head over square 0

• finite number of non-blank symbols at start of tape
 rest of tape blank - contains ^

A run is a step-by-step
computation: • reads symbol on current square

• writes a symbol from alphabet ∑ to current square

• moves left 1 square, right 1 square or does not move

•enters a new state

..according to…

Computability and Complexity
Lecture 2

Computability and Complexity

..the Instruction Table:

depending on • current state
 • symbol in current square

 • symbol to write
 • direction to move
 • new state

the table gives

the Instruction Table, d, is the program of the Turing Machine
also called the d-function:

d(current-state,current-symbol) = (new-state, new-symbol, move)

Computability and Complexity
Lecture 2

Computability and Complexity

Stop: the run stops when..

a) it reaches a final, or halting state:
 • the TM stops (halts) and succeeds.
 • the output is the tape contents from square 0 up
 to (but not including) the first ^

or b) the pair (current-state,current-symbol) is not in the
 instruction table (“no applicable instruction”):
 • the TM halts and fails
 • the output is undefined

or c) the head tries to move left from square 0:
 • the TM halts and fails
 • the output is undefined

OR..the TM may not halt..it loops or runs forever

Computability and Complexity
Lecture 2

Computability and Complexity

Tape

0 1 2 3 4 5

a b a ^ 3 ^

Symbols from alphabet ∑

‘blank’ symbol

starting state

final states

A Turing Machine

Turing Machine Head

{state set Q

{instruction table d

square number
(not visible to TM)

