
Computability and Complexity
Lecture 5

Computability and Complexity

Help for Turing Machine Programmers
First, another variation of the Tail function:
overwrites the current symbol with ^ at q0 and q1.

Design a TM M* such that for input w, where w = s.w', s ∈ ∑, w' ∈ ∑*,

f M* (s.w') = w' I = {a, b}, ∑ = {a, b, ^}

q0 q1 qa

q2

qb
q3

(a,^,1)
(b,^,1)

(a,^,-1)

(^,a,1)
(^,^,1)

(b,^,-1)

(^,b,1)

(^,^,0)

δ-function
δ(q0,a) = (q1,^,1)
δ(q0,b) = (q1,^,1)
δ(q1,a) = (qa,^,-1)
δ(q1,b) = (qb,^,-1)
δ(qa,^) = (q2,a,1)
δ(qb,^) = (q2,b,1)
δ(q2,^) = (q1,^,1)
δ(q1,^) = (q3,^,0)

continued..

Computability and Complexity
Lecture 5

Computability and Complexity

 M* has • 3-state cycle corresponding to each of {a,b}
• states qa and qb for “seen-an-a”,”seen-a-b”

Limitations of M*?
..if ∑ = {a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p..}?

..M* would need a state for “seen-an-α” for each α ∈ ∑.

..but the actions of the TM are the same for each symbol ..

we need the facility to indicate actions for a range of possible symbols,
 instead of defining separate state(s) to handle each one…

this will allow us to abstract in defining our TM..

BUT we know that a TM will implement this with all the separate states
 (ok as ∑ is finite - so finite number of states required)……….

the Tail TM..continued

Computability and Complexity
Lecture 5

Computability and Complexity

Programmers’ help - 1

Storing a finite amount of information in the state
This is a convenient notation for the programmer, not a new definition

- using variables • to represent (finite) sets of symbols
 • to remember a value from a previous state

Any subset of symbols in ∑ must be finite.

q1

q2

qy

q3

(^,y,1)

((x,^,1), if x≠^)

(^,^,0)

new
Tail
TM, M'

q0

((x,^,-1) y:=x)
 if x≠^

(^,^,1)

x is used as a variable

value stored in y is copied to tape

y stores a value in the state

Computability and Complexity
Lecture 5

Computability and Complexity

Is M' a valid TM?
It is a shorter representation of a TM which has

QI = {q0, q1, q2, q3, seena1, seena2, …seenan}, all ai ∈ I (finite)
δI : QI x I ∪ {^} into QI x I ∪ {^} x (1, 0, -1}, a partial function

MI = {QI, I, I ∪{^}, q0, δI, F} which is a valid Turing Machine.

M' is just a shorthand notation for a valid Turing Machine.

Programmers’ help 1…continued

Computability and Complexity
Lecture 5

Computability and Complexity

Programmers’ help 2..Multiple Track Tape

First an example with 2 input values:
 - a TM M which takes 2 strings separated by *
 M determines whether the strings are identical.
We need just a yes/no result..represented as Halt and Succeed
 or Halt and Fail

w1 w2

*

M has input alphabet I, full alphabet ∑ = I ∪ {^,√}

M compares w1 and w2 character by character.
It will H & F if any corresponding pair is not equal
 H & S if all pairs are equal ie. w1 and w2 are identical

Computability and Complexity
Lecture 5

Computability and Complexity

Programmers’ help 2..continued

M

begin Seen(x)

return Looky

Halt & Succeed

((a,√,0) x:=a)) if a≠*
((*,*,0) x :=*) (b,b,1) if b ≠*

:

((*,*,1) y :=x)

(*,*,1)
(a,*,0) if a ≠* and a=y

(^,^,0) if y=*

(√,√,1)

(a,a,-1) if a≠√

*√ *√ *√

Computability and Complexity
Lecture 5

Computability and Complexity

Programmers’ help 2..continued

M moved up and down the tape using strings w1 and w2 in parallel

..2-track tape would:
 - permit symbols to be compared to be read together
 - eliminate the repeated head movement along the tape

w2

w1 ^ ^ ^

^^

…

…

^

^

but only a single symbol can be read from a tape square…

Computability and Complexity
Lecture 5

Computability and Complexity

Starting with a single track,
the TM to compare w1 and w2 for equality..

convert to 2-track working using the extended ∑

w1 w2* ^ ^ ^

w2

…^ ^ ^w1 *
*^ ^ ^ …

^ ^ ^…

(*,*)

shift w2 left to permit reading of w1 and w2 together
w1 ^

w2

^ ^ ^
^^ ^

^ ^ ^…

Computability and Complexity
Lecture 5

Computability and Complexity

..so 2-track working is simulated by
- extending the alphabet, ∑, to include new symbols
- representing a pair of symbols by a new symbol

eg. (a1, a2), (a1, a4)…we interpret the first component as being on the
first track..

..extended to n tracks, symbols represent an n-tuple (a1, a2, …an).

is a TM with n-track tape still a valid TM according to our definition?

 - we have extended ∑, but it is still finite.
 - the δ-function must be altered for this extended alphabet, but is still

a partial function on the state and the symbol read
So NO CHANGE to the definition of a Turing Machine.

Computability and Complexity
Lecture 5

Computability and Complexity

state diagrams for the necessary operations:

q1
(a, (a,^), 1), a≠^

(^, (^,^),1)
to set up 2 tracks

to shift w2 left to start at square 0 (see next slide)..
to read both tracks in the current square, comparing the symbols, starting at square 0

q
((x,x),^,1) if x≠^

H & S

((^,^),^,1)

the TM Halts & Succeeds if w1=w2, Halts & Fails otherwise.

q0
(a, (a,*),1)if a≠^

For this example we set up with w1 in track 1 and w2 in track 2:
(a, (a,*),1)if a≠^ (a, (a,^),1)if a≠*

(*, (*,*),1)
(a, (^,a),1)if a≠^

(^, (^,^),1)

Computability and Complexity
Lecture 5

Computability and Complexityto shift w2 left to start at square 0

q1

q3

q4

q6

q7 q8

q2

q5

q10

H & S
((*,*),(*,*),1) ((^,^),(^,^),1)

(x,x,1) if x≠ (*,*)

(x,x,1) if x≠ (*,*)

((^,w),(*,^),1)
 y:=w if w≠ ^

(*,*),(*,^),1)

((^,w),(*,^),-1)
z:=w if w≠ ^

((x,^),(x,^),-1)

((x,b),(x,b),1) if x≠^,b≠^)

((x,^),(x,z),1)) if x≠*((^,w),(*,^),-1)
z:=w if w≠ ^

((x,^),(x,^),1) if x≠ ^)

((^,^),(^,^),-1) ((*,^),(^,^),-1)

((a,b),(a,b),-1)
if a≠^,b≠^

H & S if w1= ε and w2= ε

 † H & F if w1= ε and w2≠ ε†

††

†† H & F if w1≠ε and w2=ε

q0

Determine w1, w2 ≠ ε
Store first char of w2 in y

Loop to shift w2 symbol to
track 2 of w1

Return to Sq 0
 and write y
 in track 2.

{length(w1)=
length(w2)}

q9

#

H & F if w1 longer than w2

((a,b),(a,b),-1)if b≠*
((a,*),(a,y),0)

##(^,^),(^,^),-1)

H & F if w2 longer than w1

Computability and Complexity
Lecture 5

Computability and Complexity

if the TM has output
- the output is built up in the first track, starting at square 0
- the single track must be restored before Halt & Succeed
 starting with head in square 0:

((a,b),a,1) if a≠^

((^,a),^,0)

H & S

..how do we identify square 0?…

output with 2-track tape..

Computability and Complexity
Lecture 5

Computability and Complexity

Help for Programmers....identifying square 0..

• put a special character in square 0 and shift the input right 1 square.
 shift output word left 1 square before H & S
or
• use a second track..put a special character in it just in square 0
 restore to single track before H & S

Why?
 to avoid trying to move left from square 0 - causes Halt & Fail

Computability and Complexity
Lecture 5

Computability and Complexity

Turing Machines as subroutines

We can run a series of TMs as a single operation:

• at interchange, convert H & S to initial state for next TM

• all states of all the component TMs + the δ-function form
 a single large TM.

•ensure tape state and head position are valid at each
interchange
 (return to square 0?)

Help for Programmers ..3

Computability and Complexity
Lecture 5

Computability and Complexity

Summary

We have seen how to:

• hold finite amounts of data in a state by using a parameter which
has a finite number of possible values..

 this is a shorthand notation for the “full” TM which has separate
 δ-function entries for each symbol and may use different states to
 ‘remember’ values.

• simulate multiple tracks on the tape by extending the alphabet, ∑.
input and output have a single track as the TM is defined

• identify square 0..one way is to use a second track in square 0

• connect TMs together in a sequence like subroutines
 • (coming next…2-way tape and multiple tapes)

