Help for Turing Machine Programmers

First, another variation of the Tail function: overwrites the current symbol with ${ }^{\wedge}$ at q_{0} and q_{1}.

Design a $\mathrm{TM} \mathrm{M}^{*}$ such that for input w , where $\mathrm{w}=\mathrm{s} . \mathrm{w}^{\prime}, \mathrm{s} \in \sum, \mathrm{w}^{\prime} \in \sum^{*}$,

δ-function

$$
\delta\left(\mathrm{q}_{0}, \mathrm{a}\right)=\left(\mathrm{q}_{1}, \wedge, 1\right)
$$

$$
\delta\left(\mathrm{q}_{0}, \mathrm{~b}\right)=\left(\mathrm{q}_{1}, \wedge, 1\right)
$$

$$
\delta\left(q_{1}, a\right)=\left(q_{a}, \wedge,-1\right)
$$

$$
\delta\left(q_{1}, b\right)=\left(q_{b},,,-1\right)
$$

$$
\delta\left(\mathrm{q}_{\mathrm{a}}, \wedge\right)=\left(\mathrm{q}_{2}, \mathrm{a}, 1\right)
$$

$$
\delta\left(q_{b}, \wedge\right)=\left(q_{2}, b, 1\right)
$$

$$
\delta\left(\mathrm{q}_{2}, \wedge\right)=\left(\mathrm{q}_{1},{ }^{\wedge}, 1\right)
$$

$$
\delta\left(\mathrm{q}_{1}, \wedge\right)=\left(\mathrm{q}_{3},{ }^{\wedge}, 0\right)
$$

Computability and Complexity
continued..

M* has •3-state cycle corresponding to each of $\{\mathrm{a}, \mathrm{b}\}$

- states q_{a} and q_{b} for "seen-an-a","seen-a-b"

Limitations of M^{*} ?

$$
\text { ..if } \sum=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g}, \mathrm{~h}, \mathrm{i}, \mathrm{j}, \mathrm{k}, 1, \mathrm{~m}, \mathrm{n}, \mathrm{o}, \mathrm{p} . \mathrm{.}\} ?
$$

..M* would need a state for "seen-an- α " for each $\alpha \in \sum$.
..but the actions of the TM are the same for each symbol ..
we need the facility to indicate actions for a range of possible symbols, instead of defining separate state(s) to handle each one...
this will allow us to abstract in defining our TM..
BUT we know that a TM will implement this with all the separate states (ok as \sum is finite - so finite number of states required)..........

Computablity and Complexity
Lecture 5

Programmers' help-1

Storing a finite amount of information in the state
This is a convenient notation for the programmer, not a new definition

- using variables • to represent (finite) sets of symbols
- to remember a value from a previous state

Any subset of symbols in \sum must be finite.

Computability and Complexity
Lecture 5

Programmers' help 1...continued

Is M^{\prime} a valid TM ?

It is a shorter representation of a TM which has
$Q^{I}=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right.$, seena ${ }_{1}$, seena $_{2}, \ldots$ seena $\left._{n}\right\}$, all $a_{i} \in I$ (finite) $\delta^{I}: Q^{I} \times I \cup\{\wedge\}$ into $Q^{I} \times I \cup\{\wedge\} \times(1,0,-1\}$, a partial function
$M^{I}=\left\{Q^{I}, I, I \cup\{\wedge\}, q_{0}, \delta^{I}, F\right\}$ which is a valid Turing Machine.
M^{\prime} is just a shorthand notation for a valid Turing Machine.

Programmers' help 2..Multiple Track Tape

First an example with 2 input values:

- a TM M which takes 2 strings separated by *

M determines whether the strings are identical.
We need just a yes/no result..represented as Halt and Succeed or Halt and Fail

M has input alphabet I , full alphabet $\sum=\mathrm{I} \cup\{\wedge, \sqrt{ }\}$
M compares w_{1} and w_{2} character by character.
It will $\mathrm{H} \& \mathrm{~F}$ if any corresponding pair is not equal
$H \& S$ if all pairs are equal ie. $\mathrm{w}_{\mathbf{1}}$ and $\mathrm{w}_{\mathbf{2}}$ are identical
Computability and Complexity
Lecture 5

Programmers' help 2..continued

| \sqrt{V} | $*$ | $*$ |
| :--- | :--- | :--- | :--- |

Computability and Complexity
Lecture 5

Programmers' help 2..continued

M moved up and down the tape using strings $\mathrm{w}_{\mathbf{1}}$ and $\mathrm{w}_{\mathbf{2}}$ in parallel
..2-track tape would:

- permit symbols to be compared to be read together
- eliminate the repeated head movement along the tape

Computability and Complexity
Lecture 5
the TM to compare w_{1} and w_{2} for equality..
Starting with a single track,

W_{1}	$*$	w_{2}	\wedge	\wedge	\wedge	

convert to 2-track working using the extended \sum

shift w_{2} left to permit reading of w_{1} and w_{2} together

Computability and Complexity
Lecture 5
..so 2-track working is simulated by

- extending the alphabet, \sum, to include new symbols
- representing a pair of symbols by a new symbol
eg. $\left(a_{1}, a_{2}\right),\left(a_{1}, a_{4}\right) \ldots$ we interpret the first component as being on the first track..
..extended to n tracks, symbols represent an n-tuple $\left(a_{1}, a_{2}, \ldots a_{n}\right)$.
is a TM with n-track tape still a valid TM according to our definition?
- we have extended \sum, but it is still finite.
- the δ-function must be altered for this extended alphabet, but is still a partial function on the state and the symbol read So NO CHANGE to the definition of a Turing Machine.
state diagrams for the necessary operations:

For this example we set up with w1 in track 1 and w2 in track 2: \leftarrow
$(\mathrm{a},(\mathrm{a}, *), 1) \mathrm{if} \mathbf{a} \neq \wedge$
$\bigcirc\left(a,\left(a,{ }^{,}\right), 1\right) \mathbf{i f} a \neq \wedge$

$\xrightarrow{(\wedge,(\wedge, \wedge), 1)}$
to shift w2 left to start at square 0 (see next slide).
to read both tracks in the current square, comparing the symbols, starting at square 0

the TM Halts \& Succeeds if w1=w2, Halts \& Fails otherwise.

Computability and Complexity
Lecture 5
to shift w_{2} left to start at square 0

output with 2-track tape..

if the TM has output

- the output is built up in the first track, starting at square 0
- the single track must be restored before Halt \& Succeed starting with head in square 0 :

..how do we identify square 0 ?...

Computability and Complexity
Lecture 5

Help for Programmers....identifying square 0..
Why?
to avoid trying to move left from square 0 - causes Halt \& Fail

- put a special character in square 0 and shift the input right 1 square. shift output word left 1 square before H \& S
or
- use a second track..put a special character in it just in square 0 restore to single track before $\mathrm{H} \& \mathrm{~S}$

Help for Programmers .. 3

Turing Machines as subroutines
We can run a series of TMs as a single operation:

- at interchange, convert $\mathrm{H} \& \mathrm{~S}$ to initial state for next TM
- all states of all the component TMs + the δ-function form a single large TM.
-ensure tape state and head position are valid at each interchange
(return to square 0 ?)

Computability and Complexity
Lecture 5

Summary

We have seen how to:

- hold finite amounts of data in a state by using a parameter which has a finite number of possible values.. this is a shorthand notation for the "full" TM which has separate δ-function entries for each symbol and may use different states to 'remember' values.
- simulate multiple tracks on the tape by extending the alphabet, \sum. input and output have a single track as the TM is defined
- identify square 0 ..one way is to use a second track in square 0
- connect TMs together in a sequence like subroutines

[^0] Lecture 5

[^0]: Computability and Complexity

 - (coming next...2-way tape and multiple tapes)

