
Computability and Complexity
Lecture 6

Computability and Complexity

Turing Machine variants

We extend the hardware of our Turing Machine..

 + 2-way infinite tape (M±)
++ more than one tape (M2, M3..)
+++ 2-dimensional tape and explore Church’s thesis..

..if it is true, the enhanced TMs should be no more powerful than the
ordinary one..

?can the same problems be solved?.. speed, space irrelevant)

..if we can demonstrate that an ordinary TM can solve any problem
that a +, ++ or +++ TM can solve

support for Church’s thesis that a TM is
general enough to represent all algorithms

Computability and Complexity
Lecture 6

Computability and Complexity

Equivalence of Turing Machines

Suppose M1, M2 are Turing Machines, possibly different kinds of TM,
with the same input alphabet:

M1 and M2 are equivalent if fM 1 = fM 2
that is, M1 and M2 compute
the same function…they have the same input-output function.

We show that 2 kinds of TM are equivalent by showing that for any
 machine of one kind there is an equivalent machine of the other kind
 (and vice versa).

..that is, given the same input they compute the same output
 or both Halt & Fail

or both run forever

Computability and Complexity
Lecture 6

Computability and Complexity
..proving equivalence :

Given M a simple TM
M+ a variant with extra features (..more expensive..?)

any function computable by M
- show there is an M+ with f M+ = fM

 - usually straightforward..
 typically M’s features are a subset of M+

any function computable by M+
- show there is an M with fM = f M+

 - not so easy
- done by simulation..

M mimics Machine M+

-copies what M+ does at detailed level
For big differences in complexity..need to show in stages..M,M+,M++

Computability and Complexity
Lecture 6

Computability and Complexity

M± a TM with 2-way infinite tape…
input word on squares 0, 1, 2.. output stored onto squares 0, 1, 2..

prove the equivalence of M and M±
a) …for each M show there is an M± such that f M± = fM

for each M = { Q, ∑, I, q0, d,F}
define M± = {Q', ∑» {fail}, I, q0, d',F}

d': the first action of M± : move left
write fail
move right

add instructions to Halt and Fail if M+ reads fail at any time.
otherwise all instructions are as for M.

fM± = fM

0 1 2 3-1-2-3-4

fail a b c z ^ ^ ^^^^

Computability and Complexity
Lecture 6

Computability and Complexity

b) for each M± show there is an M (ordinary TM) s. t. fM = f M±

M±
-3 -2 -1 0 1 2 3 4 5 6 7

 0 1 2 3 4 5 6

^ C F A B A ^ 3 ^ ^ ^

A B A ^ 3 ^ ^

* F C ^ ^ ^ ^
M

The 2-way infinite tape of M± is simulated by 2 tracks on M’s tape, square 0 marked
by * in track2.

It uses a variable track in the states to remember whether it is using track 1 of M±
 (right of sq 0, track = 1) or track 2 (left of sq 0, track = -1)

Computability and Complexity
Lecture 6

Computability and Complexity

M and M±

M mimics M±. The output of M± is built up in track 1 of M’s tape,
starting in Square 0.

When M± reaches a halting state, M restores its tape to a single track
 before Halt & Succeed.

If M± has no applicable instruction, neither does M, it will Halt & Fail

If M± does not halt, neither will M.

We conclude that M and M± are equivalent

Computability and Complexity
Lecture 6

Computability and Complexity

Multi-tape Turing machines - with a read head for each tape.
The heads move independently. Each reads a symbol from its tape
The d-function determines the action to be taken.

e.g for a 3-tape TM this depends on the
current state and the 3 symbols read:

write 3 symbols, 3 head moves, next state.
Formal definition:
M = (Q, ∑, I, q0, d, F), where

d: Qx∑x∑x∑fiQx ∑x∑x∑x{-1,0,1}x{-1,0,1}x{-1,0,1}

In general: d: Qx∑nfiQx ∑nx{-1,0,1}n for an n-tape TM

Computability and Complexity
Lecture 6

Computability and Complexity

Multi-tape Turing machines..continued

• if n=1 this is an ordinary 1-tape Turing Machine

• the number of tapes is determinable only from the d-function

• there is one state set, Q, one input alphabet, I and one full alphabet,∑

• input and output: always on tape 1 from square 0, up to the first ^.

• state diagram notation: we need to accommodate all the tapes:
eg for 2 tapes the label on the transition from one state to another
 ((a, b), (a', b'), (d, d'))

symbol on tape 1 symbol on tape 2 write to tape 1 write to tape 2 move head 1 move head 2

Computability and Complexity
Lecture 6

Computability and Complexity

n-Tape TMs are equivalent to 1-tape TMs..

a) Show that for any 1-tape TM there is an equivalent n-tape TM:

Given a 1-tape TM, M = (Q, ∑, I, q0, d, F)
let Mn = (Q, ∑, I, q0, d', F) where

d': Q x∑n fiQ x ∑n x{-1,0,1}n

d' (q,a1, a2, …an) = (q', b1,^,^,…^, d1, 0,0…,0)

Where d(q, a1) = (q', b1, d1)

Mn computes the same function as M:
 it uses only tape 1, in exactly the same way as M uses its tape,
producing the same output for the same input.

Computability and Complexity
Lecture 6

Computability and Complexity

b) (for n=2) there is a 1-tape TM equivalent to any 2-tape TM
Given M2 - a 2-tape TM..construct a 1-tape simulation of M2
which has the same input-output function.

M has 1 tape with 4 tracks:
M updates its tape to follow the actions of M2

Same contents as tape 1 of .M2

^ ^ X ^ ^ ^ ^ ^ ^ ^ ^ ……..

Same contents as tape 2 of M2

^ ^ ^ ^ ^ ^ X ^ ^ ^ ^…

Position of Head 1 of M2
Position of Head 2 of M2

0 1 2 3 4 5 6 7..

Computability and Complexity
Lecture 6

Computability and Complexity

The TM M, equivalent to M2..

• Initialise M: start in q0. Set up square 0: d(q0,a) = (q',(a,x,^,x),1)
(assume square 0 marked..as if 5th track)

we use dynamic track setup to set up 4 tracks to the end of the input:
d(q',a') = (q',(a', ^,^,^), 1) if a' ≠ ^. Return M’s head to square 0.

• Operation of M: we know current state q;
 Find inputs by moving head right from squ 0 looking for ‘x’ in track 2

when found, current symbol from M2’s tape 1 is in track1
 when ‘x’ is found in track 4, current symbol of M tape 2 is in track3.

these 2 symbols can be remembered in the state, say y and z.
 Look for d(q,y,z) = (q'', b1, b2, d1, d2)

 if no instruction d(q,y,z) then Halt & Fail
 otherwise M’s head updates tracks 1,2 for M’s tape 1

 3,4 for M’s tape 2.
 M’s head returns to sq 0; now in state q''.

Computability and Complexity
Lecture 6

Computability and Complexity

If q'' is a halting state of M2 then M
 restores its tape to a single track
H&S with output the same as tape 1 of M2

 otherwise M continues to simulate M2 until it reaches a halting state

or Halts and Fails because: no applicable instruction

or tries to move left from square 0
or if M2 does not halt, neither does M.

Operation of M..continued

Computability and Complexity
Lecture 6

Computability and Complexity

a TM M++ with 2-dimensional tape

 (0,0) (1,0) (2,0) (3,0)…

(0,1)

(0,3)

^ 1 ^ a 1 ^ ^

1 1 1 0 a ^ ^

a b ^ a ^ ^ ^

d: Q x ∑ fi Q x ∑ x {L, R, U, D, 0}.

Input in squares: (0,0), (1,0), (2,0), (3,0), (4,0),…(k,0), k≥ 0;
all other squares ^.

Output also along the “x-axis”. Rest of tape is workspace
≡ a 1-tape TM with an unbounded number of tracks

move≤ 1 square right, left, up, down each instruction.

Computability and Complexity
Lecture 6

Computability and Complexity

..show equivalence to a 2-tape ordinary TM
(fiequivalence to a 1-tape ordinary TM)

Tape 1:

^ 1 ^ a 1 * 1 1 1 0 a * a b ^ a ^ *
*

 ‘rows’ of the 2-dim. Tape
- filled with blanks to length of the longest
- separated by * and terminated by **.

Tape 2: used for scratch work, especially to keep track of where in the
2-dim tape the M++ head is.

Computability and Complexity
Lecture 6

Computability and Complexity

Summary - enhanced hardware TMs

 with: 2-way tape
 multiple tapes
 2-dimensional tape

all these are equivalent to ordinary TMs..

i.e. they cannot calculate anything which cannot be done with
an ordinary TM
...they are not more powerful: cannot calculate anything new

This supports the Church-Turing thesis:

that the Turing Machine is a valid formalism for algorithms:

any algorithm it can be implemented by a TM

