Computability and Complexity

Universal Turing Machines

So far,
different problems = diftferent Turing machines..

a TM has been single-algorithm special purpose hardware.

Turing also defined U, the Universal Turing Machine
- an ordinary TM
- which calculates f ,,(w) for a TM, M
running on input w

We give U a description of M and the input word w.

U calculates what M would do
- 1t 1s an Interpreter for arbitrary TMs.

Computability and Complexity
Lecture 7

Computability and Complexity

Universal Turing Machines...continued

necessary conditions:

- the input alphabet of M must not contain symbols absent
from the mput alphabet of U

- the output alphabet of M must not contain symbols absent
from the output alphabet of U

So we build U for Standard Turing Machines with a fixed alphabet
which 1s also the alphabet of U.

Our fixed alphabet, C 1s the typical typewriter alphabet
without the blank symbol,*:

C= {aabacadaeafagr°YaZ9A9B9C9D oo -9Z91929394"999_'__)(*9&9%9$9£9@' . '}

Computability and Complexity
Lecture 7

Computability and Complexity

Definition of a Standard Turing Machine

1. let C be the alphabet {a,b,c,..A,B,C...1,2,3..|@k£...}
(the typewriter alphabet without *)

2. a Turing Machine S is said to be Standard if 1t
-1s a 6-tuple (Q, >, L, gy, 0, F) with
Q finite set of states
0 apartial functiond: Qx> = Qx> x {-1,0,1}
F C Q, halting states
q, starting state

[=C
2.=CU"
3. = S has < a single 1-way infinite tape

e one-track tape
* marking of square 0 must be explicit - no alphabet

Computability and Complexity extension.
Lecture 7

Computability and Complexity

Coding a standard Turing Machine, S
Q 1s finite: label the states with integers 0, 1, ...n., q, = 0,
with the halting states f, f+1,...n for some 0 <f<n.

The description of S to be given to U must use only the alphabet C.
S =(Q, CU{*}, C, gy, 8, F).

Suppose Q = {0,1,2,3..n}, g, =0
F={f f+1,.n} n>0,f<n
the o-function entries: o(q, s) = (q', s', d) where
s,ss € CU {"}, 0<q<H,
de {-1,0,1}, 0<qg'<n

We represent a o-function entry by the 5-tuple (q, s, q',s',d)

Computability and Complexity
Lecture 7

Computability and Complexity

..code of a standard TM, S..

General form of the code:

Il, f, tl’ t2, t3,. . °9tN a word in C U {A}

2

the 5-tuples (q, s, q', s', d)
replace all * by 'blank' in the code = code(S) € C*
So code(S) =n, 1, (q, s, q', 8", d),...(q, s, q', s, d)

where n, f, q, q', d are decimal numbers
0<f,q<f,q'<n
de {-1,0, 1}
s, s' € C or ='blank’

Computability and Complexity
Lecture 7

Computability and Complexity

which words of C code a TM?
eg “::(*)165ase? 2,2,(1,a,2,blank,-1)?

 ordering of instructions in the code doesn’t matter
* numbering of states..not a restriction
* () is finite..so its members can be listed with

the initial state always 0

code(S) has some redundancy..it 1s not unique for S..
..variation 1in:
.. allocation of numbers to states
.. permutation of the f-1 non-starting, non-halting states
.. permutation of the n-f+1 halting states.
.. permutation of the o-function entries

Computability and Complexity
Lecture 7

Computability and Complexity

Building the Universal Turing Machine, U
For any standard TM, S, and any word w of C, we require

fy (code(S) * w) = 1 (W)

U has input alphabet C, full alphabet C U {*}

U simulates S, using code(S).
U has 3 tapes:

Tapel of U contains code(S)
Tape 2 of U same as the single tape of S
Tape 3 of U contains the current state of S

Computability and Complexity
Lecture 7

Computability and Complexity

Universal TM U simulating S
T1l code(S)

™ a | b | c¢c | d|e |[f |~ | A A A

T3| Current state of S, 1n decimal

Computability and Complexity
Lecture 7

Computability and Complexity

the Operation of U

1. Imitialise: U writes 0 in square 0 of Tape 3
U copies w from tapel to Tape 2
U returns all 3 heads to square 0.

2. Simulation of S, current state q, for each step of execution
- 1f g>f = halting state..1f so, output of S 1s on Tape 2 of U.
U copies this to Tape 1, then *.
U Halts & Succeeds with S’s output on Tape 1.

- 1f g< f = not a halting state
U scans code(S) on Tape 1 for (q, s, q',s', d)
where s 1s the current symbol on tape 2 (tape of S)
1f no (q, s, q', s',d)=no applicable instruction
= U moves left repeatedly.. Halt & Fail.
otherwise 3(q,s,q',s',d) on Tapel in code(S) then
Computability and Complexity simulate actions of S...

Lecture 7

Computability and Complexity

(..actions of S: S writes s' on its tape
S Head moves d
S goes into state q')

so U: writes s' on Tape 2 (copy s' from tape 1)
writes q' on Tape 3 (copy q' from tape 1)

Head 1 returns to square 0
Head 2 moves d
Head 3 returns to square 0

...end of cycle for (state q, current-symbol). This 1s now
repeated.

What if S 1s non-standard with respect to its
input alphabet I,
or whole alphabet) ?

Computability and Complexity
Lecture 7

Computability and Complexity
elimination of Scratch Characters or

“alphabet C is always enough”
LetM =(Q, >, C, qq, 0, F) with f,;: C* = C*
ie. input and output are both words of C, full alphabet).
> includes C and scratch characters, so M is not standard:

...then there 1s a standard TM S equivalent to M..
S will use encoded characters to mimic M
...we need a code: Y = C* to represent symbols of > as words of C
YOC,sowEC*=>we HY*
a standard TM S first encodes w,,w,..w_ (all are in C) giving code(w).
S uses codes throughout and simulates the actions of M.
if M Halts =S decodes tape contents giving output; only chars in

CU {"}.

S simulates M, giving same output, so M and S are equivalent

Now U can interpret any TM M with f,,:C*=C*.

N | U operates on code(S).
Computability and Complexity

Lecture 7

Computability and Complexity

..coding whole alphabet > where > O C?

> may have symbols not in C, but must be finite
...we can code a finite alphabet > in C:

find an integer k such that
no.words of C of length k = 88% > size of ..

map the symbols of) onto words of C of length k.
ie. 1-1 function code:Y = Ck

for w=a,a,a..a of) *
code(w)=code(a,a,a,..a,) = code(a,).code(a,)..code(a,), which is a
word of C, of length kn

decode:C*=) *
such that decode(code(w)) =w, w €) * otherwise undefined.

Computability and Complexity
Lecture 7

Computability and Complexity

The code of the Tail TM

Q= {95,493 4495} F={as} =n=51=5
0(qp-a) = (q;,",1)
8(qy,b) = (q;,"1) code(Tail) = 5,5,(0,a,1,blank,1),(0,b,1,blank, 1),
5(q,.2) = (q,.a1) (1,a,1,a,1),(1,b,1,b,1),(1,blank,2,blank,-1)
8(q,,b) = (q,.b,1) (2,blank,5,blank,0),(2,a,3,blank,-1), (2,b,4,blank,-1)
9(q;,") = (q,,",-1) (3,a,3,a,-1),(3,b,4,a,-1),(3,blank,5,a,0)
5(0,7) = (0o0) (4,a,3,b,-1),(4,b,4,b,-1),(4,blank,5,b,0)

6(q29a) = (q39/\=_1)
6(q29b) = (q49/\9_1)

6(q_?,aa) = (q3aaa_1)
6(q39b) = (q4aaa_1)
0(q5,") = (45,2,0)

6(q49a) = (q39b9_1)
0(qy,b) = (qy,b,-1)
0(q,") = (95,b,0)

Computability and Complexity
Lecture 7

Computability and Complexity

Summary..Universal Turing Machines

Find a TM U such that for any TM M and input w to M
fy (description of M * w) =1, (W).

U needs to be able to read its input so we must standardise:

M is standard if
input alphabet = C
full alphabet = C U{"}
it has 1 tape, 1-way infinite

so M has 1 track only with no implicit marking of square 0

Computability and Complexity
Lecture 7

