Universal Turing Machines

So far,

different problems \Rightarrow different Turing machines..

a TM has been single-algorithm special purpose hardware.
Turing also defined \mathbf{U}, the Universal Turing Machine

- an ordinary TM
- which calculates $\mathbf{f}_{M}(\mathbf{w})$ for a TM, M running on input w

We give U a description of M and the input word w .
U calculates what M would do

- it is an interpreter for arbitrary TMs.

Universal Turing Machines...continued

necessary conditions:

- the input alphabet of M must not contain symbols absent from the input alphabet of U
- the output alphabet of M must not contain symbols absent from the output alphabet of U

So we build U for Standard Turing Machines with a fixed alphabet which is also the alphabet of U.

Our fixed alphabet, \mathbf{C} is the typical typewriter alphabet without the blank symbol,^:

$$
\text { C = \{a,b,c,d,e,f,g,..y,z,A,B,C,D...,Z,1,2,3,4..,9,+_)(*,\&,\%,\$,£,@...\} }
$$

Definition of a Standard Turing Machine

1. let C be the alphabet $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, . . \mathrm{A}, \mathrm{B}, \mathrm{C} \ldots 1,2,3 . .!@ £, \ldots\}$ (the typewriter alphabet without ${ }^{\wedge}$)
2. a Turing Machine S is said to be Standard if it - is a 6 -tuple $\left(\mathrm{Q}, \sum, \mathrm{I}, \mathrm{q}_{0}, \delta, F\right)$ with Q finite set of states
δ a partial function $\delta: Q \times \sum \Rightarrow \mathrm{Q} \times \sum \mathrm{x}\{-1,0,1\}$
$\mathrm{F} \subset \mathrm{Q}$, halting states
q_{0} starting state
$\mathrm{I}=\mathrm{C}$
$\sum=C \cup\{\wedge\}$
3. $\quad \Rightarrow \mathrm{S}$ has \cdot a single 1-way infinite tape

- one-track tape
- marking of square 0 must be explicit - no alphabet

Computability and Complexity extension.

Coding a standard Turing Machine, S

Q is finite: label the states with integers $0,1, \ldots \mathrm{n} ., \mathrm{q}_{0} \equiv 0$, with the halting states $f, f+1, \ldots n$ for some $0<f \leq n$.

The description of S to be given to U must use only the alphabet C.
$\mathbf{S}=\left(\mathbf{Q}, \mathrm{C} \cup\{\wedge\}, \mathbf{C}, \mathbf{q}_{0}, \boldsymbol{\delta}, \mathbf{F}\right)$.
Suppose $Q=\{0,1,2,3 . . n\}, q_{0}=0$

$$
\mathrm{F}=\{\mathrm{f}, \mathrm{f}+1, . . \mathrm{n}\} \mathrm{n} \geq 0, \mathrm{f} \leq \mathrm{n}
$$

the δ-function entries: $\delta(\mathrm{q}, \mathrm{s})=\left(\mathrm{q}^{\prime}, \mathrm{s}^{\prime}, \mathrm{d}\right)$ where

$$
\begin{array}{ll}
\mathrm{s}, \mathrm{~s}^{\prime} \in \mathrm{C} \cup\{\wedge\} \\
\mathrm{d} \in\{-1,0,1\}, & 0 \leq \mathrm{q}<\mathrm{f}, \\
\mathrm{q}^{\prime} \leq \mathrm{n}
\end{array}
$$

We represent a δ-function entry by the 5 -tuple ($\mathrm{q}, \mathrm{s}, \mathrm{q}^{\prime}, \mathrm{s}^{\prime}, \mathrm{d}$)

..code of a standard TM, S..

General form of the code:

$$
\text { n, } \mathrm{f}, \mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \ldots, \mathrm{t}_{\mathbf{N}} \quad \text { a word in } \mathrm{C} \cup\{\wedge\}
$$

replace all ${ }^{\wedge}$ by 'blank' in the code $\Rightarrow \operatorname{code}(S) \in C^{*}$
So code $(\mathbf{S})=\mathbf{n}, \mathbf{f},\left(\mathbf{q}, \mathbf{s}, \mathbf{q}^{\prime}, \mathbf{s}^{\prime}, \mathbf{d}\right), \ldots\left(\mathbf{q}, \mathbf{s}, \mathbf{q}^{\prime}, \mathbf{s}^{\prime}, \mathbf{d}\right)$

$$
\text { where } \begin{array}{ll}
\mathrm{n}, \mathrm{f}, \mathrm{q}, \mathrm{q}^{\prime}, \mathrm{d} \text { are decimal numbers } \\
& 0 \leq \mathrm{f}, \mathrm{q}<\mathrm{f}, \mathrm{q}^{\prime} \leq \mathrm{n} \\
& \mathrm{~d} \in\{-1,0,1\} \\
\mathrm{s}, \mathrm{~s}^{\prime} \in \mathrm{C} \text { or }=\text { 'blank' }^{\prime}
\end{array}
$$

Computability and Complexity

which words of C code a TM?

eg " $\because:(*) 165$ ase? 2,2,(1,a,2,blank,-1)?

- ordering of instructions in the code doesn't matter
- numbering of states..not a restriction
- Q is finite..so its members can be listed with the initial state always 0
code(S) has some redundancy..it is not unique for S..
..variation in:
.. allocation of numbers to states
.. permutation of the f-1 non-starting, non-halting states
.. permutation of the $\mathrm{n}-\mathrm{f}+1$ halting states.
.. permutation of the δ-function entries

Computability and Complexity
Lecture 7

Building the Universal Turing Machine, U

For any standard TM, S, and any word w of C, we require

$$
\mathbf{f}_{\mathrm{U}}(\operatorname{code}(\mathbf{S}) * \mathbf{w})=\mathbf{f}_{\mathrm{S}}(\mathbf{w})
$$

U has input alphabet C , full alphabet $\mathrm{C} \cup\{\wedge\}$
U simulates S , using code(S).
U has 3 tapes:

Tape1 of U contains code(S)
Tape 2 of U same as the single tape of S
Tape 3 of U contains the current state of S

Universal TM U simulating S

T3 Current state of S, in decimal
Computability and Complexity
Lecture 7

the Operation of U

1. Initialise: U writes 0 in square 0 of Tape 3

U copies w from tape 1 to Tape 2
U returns all 3 heads to square 0 .
2. Simulation of S, current state q, for each step of execution

- if $\mathrm{q} \geq \mathrm{f} \Rightarrow$ halting state..if so, output of S is on Tape 2 of U .

U copies this to Tape 1 , then ${ }^{\wedge}$.
U Halts \& Succeeds with S's output on Tape 1.

- if $\mathrm{q}<\mathrm{f} \Rightarrow$ not a halting state

U scans code(S) on Tape 1 for ($\mathrm{q}, \mathrm{s}, \mathrm{q}^{\prime}, \mathrm{s}^{\prime}, \mathrm{d}$) where s is the current symbol on tape 2 (tape of S) if no ($\mathrm{q}, \mathrm{s}, \mathrm{q}^{\prime}, \mathrm{s}^{\prime}, \mathrm{d}$) \Rightarrow no applicable instruction \Rightarrow U moves left repeatedly.. Halt \& Fail. otherwise $\exists\left(\mathrm{q}, \mathrm{s}, \mathrm{q}^{\prime}, \mathrm{s}^{\prime}, \mathrm{d}\right)$ on Tape 1 in code (S) then
(..actions of $\mathrm{S}: \mathrm{S}$ writes s' on its tape

S Head moves d S goes into state q^{\prime})
so U: writes s' on Tape 2 (copy s' from tape 1) writes q' on Tape 3 (copy q' from tape 1)

Head 1 returns to square 0 Head 2 moves d Head 3 returns to square 0
...end of cycle for (state q, current-symbol). This is now repeated.

What if S is non-standard with respect to its
input alphabet I, or whole alphabet \sum ?
Computability and Complexity

elimination of Scratch Characters or

"alphabet C is always enough"
Let $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \mathrm{C}, \mathrm{q}_{0}, \delta, \mathrm{~F}\right)$ with $\mathrm{f}_{\mathrm{M}}: \mathrm{C}^{*} \Rightarrow \mathrm{C}^{*}$ ie. input and output are both words of C , full alphabet \sum. \sum includes C and scratch characters, so M is not standard:
...then there is a standard TM S equivalent to M..
S will use encoded characters to mimic M
\ldots...we need a code: $\sum \Rightarrow \mathrm{C}^{*}$ to represent symbols of \sum as words of C

$$
\sum \supseteq \mathrm{C}, \text { so } \mathrm{w} \in \mathrm{C}^{*} \Rightarrow \mathrm{w} \in \sum^{*}
$$

a standard TM S first encodes $\mathrm{w}_{1}, \mathrm{w}_{2} . . \mathrm{w}_{\mathrm{n}}$ (all are in C) giving code(w).
S uses codes throughout and simulates the actions of M .
if M Halts $\Rightarrow \mathrm{S}$ decodes tape contents giving output; only chars in
$C \cup\{\wedge\}$.
S simulates M , giving same output, so M and S are equivalent Now U can interpret any $T M M$ with $f_{M}: C^{*} \Rightarrow C^{*}$.

U operates on code(S).

..coding whole alphabet \sum where $\sum \supset \mathbf{C}$?

\sum may have symbols not in C, but must be finite
...we can code a finite alphabet \sum in C :
find an integer \mathbf{k} such that no.words of C of length $k=88^{k} \geq$ size of \sum.
map the symbols of \sum onto words of C of length k . ie. 1-1 function code: $\Sigma \Rightarrow \mathrm{C}^{\mathbf{k}}$
for $w=a_{1} a_{2} a_{3} . . a_{n}$ of \sum^{*}
$\operatorname{code}(w)=\operatorname{code}\left(a_{1} a_{2} a_{3} . . a_{n}\right)=\operatorname{code}\left(a_{1}\right) \cdot \operatorname{code}\left(a_{2}\right) . . \operatorname{code}\left(a_{n}\right)$, which is a word of C , of length kn
decode: $\mathrm{C}^{*} \Rightarrow \Sigma^{*}$
such that decode $(\operatorname{code}(\mathrm{w}))=\mathrm{w}, \mathrm{w} \in \sum^{*}$, otherwise undefined.
Computability and Complexity
Lecture 7

The code of the Tail TM

```
\(\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4} \mathrm{q}_{5}\right\} \quad \mathrm{F}=\left\{\mathrm{q}_{5}\right\} \Rightarrow \mathrm{n}=5, \mathrm{f}=5\)
\(\delta\left(\mathrm{q}_{0}, \mathrm{a}\right)=\left(\mathrm{q}_{1}, \wedge, 1\right)\)
\(\delta\left(\mathrm{q}_{0}, \mathrm{~b}\right)=\left(\mathrm{q}_{1}, \wedge, 1\right) \quad \operatorname{code}(\) Tail \()=5,5,(0, \mathrm{a}, 1\), blank, 1\(),(0, \mathrm{~b}, 1\), blank, 1\()\),
    (1,a,1,a,1),(1,b,1,b,1),(1,blank,2,blank,-1)
    (2,blank,5,blank,0),(2,a,3,blank,-1), (2,b,4,blank,-1)
    (3,a,3,a,-1),(3,b,4,a,-1),(3,blank,5,a,0)
    (4,a,3,b,-1),(4,b,4,b,-1),(4,blank,5,b,0)
```

Computability and Complexity

Summary..Universal Turing Machines

Find a TM U such that for any TM M and input w to M $f_{U}($ description of $M * w)=f_{M}(w)$.

U needs to be able to read its input so we must standardise:
M is standard if

$$
\begin{aligned}
& \text { input alphabet }=\mathrm{C} \\
& \text { full alphabet }=\mathrm{C} \cup\{\wedge\} \\
& \text { it has } 1 \text { tape, 1-way infinite }
\end{aligned}
$$

so M has 1 track only with no implicit marking of square 0

