Universal Turing Machines

So far,

different problems \implies different Turing machines..

a TM has been single-algorithm special purpose hardware.

Turing also defined U, the **Universal Turing Machine**
- an ordinary TM
- which calculates $f_M(w)$ for a TM, M
 running on input w

We give U a description of M and the input word w.

U calculates what M would do
- it is an interpreter for arbitrary TMs.
Universal Turing Machines...continued

necessary conditions:

- the input alphabet of M must not contain symbols absent from the input alphabet of U
- the output alphabet of M must not contain symbols absent from the output alphabet of U

So we build U for Standard Turing Machines with a fixed alphabet which is also the alphabet of U.

Our fixed alphabet, C is the typical typewriter alphabet without the blank symbol, ^:

\[C = \{a, b, c, d, e, f, g,..y, z, A, B, C, D..., Z, 1, 2, 3, 4..., 9, +\}(*, &, %, $, £, @...) \]
Definition of a **Standard Turing Machine**

1. let C be the alphabet $\{a, b, c, \ldots A, B, C \ldots 1, 2, 3 \ldots @, £, ,,\}$ (the typewriter alphabet without $^\wedge$)

2. a Turing Machine S is said to be Standard if it
 - is a 6-tuple $(Q, \Sigma, I, q_0, \delta, F)$ with
 - Q finite set of states
 - δ a partial function $\delta: Q \times \Sigma \Rightarrow Q \times \Sigma \times \{-1, 0, 1\}$
 - $F \subset Q$, halting states
 - q_0 starting state
 - $I = C$
 - $\Sigma = C \cup \{^\wedge\}$

3. S has
 - a single 1-way infinite tape
 - one-track tape
 - marking of square 0 must be explicit - no alphabet extension.
Coding a standard Turing Machine, S

Q is finite: label the states with integers 0, 1, ...n., $q_0 \equiv 0$,
with the halting states f, $f+1$, ...n for some $0 < f \leq n$.

The description of S to be given to U must use only the alphabet C.

$S = (Q, C \cup \{^\uparrow\}, C, q_0, \delta, F)$.

Suppose $Q = \{0,1,2,3..n\}$, $q_0 = 0$

$F = \{f, f+1, ..n\}$ $n \geq 0$, $f \leq n$

the δ-function entries: $\delta(q, s) = (q', s', d)$ where

$s, s' \in C \cup \{^\uparrow\}$, $0 \leq q < f$,

d$\in \{-1,0,1\}$, $0 \leq q' \leq n$

We represent a δ-function entry by the 5-tuple (q, s, q', s', d)
..code of a standard TM, S..

General form of the code:

\[n, f, t_1, t_2, t_3, \ldots, t_N \]

a word in \(C \cup \{^\text{^}\}\) \n
the 5-tuples \((q, s, q', s', d)\)

replace all \(^\text{^}\) by 'blank' in the code \(\Rightarrow\) \(\text{code}(S) \in C^*\)

So \(\text{code}(S) = n, f, (q, s, q', s', d), \ldots (q, s, q', s', d)\)

where

\begin{align*}
 n, f, q, q', d & \text{ are decimal numbers} \\
 0 \leq f, q < f, q' & \leq n \\
 d & \in \{-1, 0, 1\} \\
 s, s' & \in C \text{ or } = '\text{blank}'
\end{align*}
which words of C code a TM?

eg “::(*)165ase?
2,2,(1,a,2,blank,-1)?

• ordering of instructions in the code doesn’t matter
• numbering of states..not a restriction
• Q is finite..so its members can be listed with the initial state always 0

code(S) has some redundancy..it is not unique for S..
..variation in:
 .. allocation of numbers to states
 .. permutation of the f-1 non-starting, non-halting states
 .. permutation of the n-f+1 halting states.
 .. permutation of the δ-function entries
Building the Universal Turing Machine, U

For any standard TM, S, and any word w of C, we require

$$f_U (\text{code}(S) \ast w) = f_S (w)$$

U has input alphabet C, full alphabet $C \cup \{^\wedge\}$

U simulates S, using code(S).

U has 3 tapes:

- Tape 1 of U contains code(S)
- Tape 2 of U same as the single tape of S
- Tape 3 of U contains the current state of S
Computability and Complexity

Standard TM, S

Universal TM U simulating S

T1
code(S)

T2
a b c d e f ^ ^ ^ ^

T3
Current state of S, in decimal
the Operation of U

1. Initialise:
 - U writes 0 in square 0 of Tape 3
 - U copies w from tape1 to Tape 2
 - U returns all 3 heads to square 0.

2. Simulation of S, current state q, for each step of execution
 - if \(q \geq f \) ⇒ halting state..if so, output of S is on Tape 2 of U.
 - U copies this to Tape 1, then ^.
 - U Halts & Succeeds with S’s output on Tape 1.
 - if \(q < f \) ⇒ not a halting state
 - U scans code(S) on Tape 1 for \((q, s, q', s', d)\) where s is the current symbol on tape 2 (tape of S)
 - if no \((q, s, q', s', d)\)⇒no applicable instruction
 ⇒ U moves left repeatedly.. Halt & Fail.
 - otherwise \(\exists(q,s,q',s',d) \) on Tape1 in code(S) then
 simulate actions of S...
(..actions of S: S writes s' on its tape
S Head moves d
S goes into state q')

so U: writes s' on Tape 2 (copy s' from tape 1)
writes q' on Tape 3 (copy q' from tape 1)

Head 1 returns to square 0
Head 2 moves d
Head 3 returns to square 0

...end of cycle for (state q, current-symbol). This is now repeated.

What if S is non-standard with respect to its
input alphabet I,
or whole alphabet Σ?
elimination of Scratch Characters or "alphabet C is always enough"

Let $M = (Q, \Sigma, C, q_0, \delta, F)$ with $f_M : C^* \Rightarrow C^*$

ie. input and output are both words of C, full alphabet Σ.

Σ includes C and scratch characters, so M is not standard:

...then there is a standard TM S equivalent to M.

S will use encoded characters to mimic M

...we need a code: $\Sigma \Rightarrow C^*$ to represent symbols of Σ as words of C

$\Sigma \supseteq C$, so $w \in C^* \Rightarrow w \in \Sigma^*$

a standard TM S first encodes $w_1, w_2, .., w_n$ (all are in C) giving code(w).

S uses codes throughout and simulates the actions of M.

if M Halts $\Rightarrow S$ decodes tape contents giving output; only chars in $C \cup \{^\wedge\}$.

S simulates M, giving same output, so M and S are equivalent

Now U can interpret any TM M with $f_M : C^* \Rightarrow C^*$.

U operates on code(S).
..coding whole alphabet \(\Sigma \) where \(\Sigma \supset C \)?

\(\Sigma \) may have symbols not in \(C \), but must be finite
...we can code a finite alphabet \(\Sigma \) in \(C \):

find an integer \(k \) such that
\[\text{no. words of } C \text{ of length } k = 88^k \geq \text{size of } \Sigma. \]

map the symbols of \(\Sigma \) onto words of \(C \) of length \(k \).
\(\text{ie. 1-1 function code:\ } \Sigma \rightarrow C^k \)

for \(w = a_1a_2a_3..a_n \) of \(\Sigma^* \)

\(\text{code}(w) = \text{code}(a_1a_2a_3..a_n) = \text{code}(a_1)\cdot\text{code}(a_2)\cdot..\text{code}(a_n) \), which is a
word of \(C \), of length \(kn \)

\(\text{decode: } C^* \rightarrow \Sigma^* \)
such that \(\text{decode(code}(w)) = w, w \in \Sigma^* \), otherwise undefined.
The code of the Tail TM

\[Q = \{q_0, q_1, q_2, q_3, q_4, q_5\} \quad F = \{q_5\} \quad \Rightarrow n = 5, f = 5 \]

\[
\begin{align*}
\delta(q_0, a) &= (q_1, \^, 1) \\
\delta(q_0, b) &= (q_1, \^, 1) \\
\delta(q_1, a) &= (q_1, a, 1) \\
\delta(q_1, b) &= (q_1, b, 1) \\
\delta(q_1, \^) &= (q_2, \^, -1) \\
\delta(q_2, \^) &= (q_5, \^, 0) \\
\delta(q_2, a) &= (q_3, \^, -1) \\
\delta(q_2, b) &= (q_4, \^, -1) \\
\delta(q_3, a) &= (q_3, a, -1) \\
\delta(q_3, b) &= (q_4, a, -1) \\
\delta(q_3, \^) &= (q_5, a, 0) \\
\delta(q_4, a) &= (q_3, b, -1) \\
\delta(q_4, b) &= (q_4, b, -1) \\
\delta(q_4, \^) &= (q_5, b, 0) \\
\end{align*}
\]

code(Tail) = 5, 5, (0, a, 1, blank, 1), (0, b, 1, blank, 1),
(1, a, 1, a, 1), (1, b, 1, b, 1), (1, blank, 2, blank, -1),
(2, blank, 5, blank, 0), (2, a, 3, blank, -1), (2, b, 4, blank, -1),
(3, a, 3, a, -1), (3, b, 4, a, -1), (3, blank, 5, a, 0),
(4, a, 3, b, -1), (4, b, 4, b, -1), (4, blank, 5, b, 0)
Summary..Universal Turing Machines

Find a TM U such that for any TM M and input w to M

$$f_U(\text{description of } M \ast w) = f_M(w).$$

U needs to be able to read its input so we must standardise:

M is standard if

- input alphabet = C
- full alphabet = C ∪ {^}
- it has 1 tape, 1-way infinite

so M has 1 track only with no implicit marking of square 0