
Computability and Complexity
Lecture 7

Computability and Complexity

Universal Turing Machines
So far,

 different problems ⇒ different Turing machines..

a TM has been single-algorithm special purpose hardware.

Turing also defined U, the Universal Turing Machine
- an ordinary TM
- which calculates f M(w) for a TM, M

running on input w

We give U a description of M and the input word w.

U calculates what M would do
 - it is an interpreter for arbitrary TMs.

Computability and Complexity
Lecture 7

Computability and Complexity

Universal Turing Machines…continued

necessary conditions:

- the input alphabet of M must not contain symbols absent
from the input alphabet of U

- the output alphabet of M must not contain symbols absent
 from the output alphabet of U

So we build U for Standard Turing Machines with a fixed alphabet
which is also the alphabet of U.

Our fixed alphabet, C is the typical typewriter alphabet
 without the blank symbol,^:

C = {a,b,c,d,e,f,g,..y,z,A,B,C,D…,Z,1,2,3,4..,9,+_)(*,&,%,$,£,@…}

Computability and Complexity
Lecture 7

Computability and Complexity

Definition of a Standard Turing Machine

1. let C be the alphabet {a,b,c,..A,B,C…1,2,3..!@£,,,}
(the typewriter alphabet without ^)

2. a Turing Machine S is said to be Standard if it
- is a 6-tuple (Q, ∑, I, q0, δ, F) with

Q finite set of states
δ a partial function δ: Q x ∑ ⇒ Q x ∑ x {-1,0,1}
F ⊂ Q, halting states
q0 starting state
I = C
∑ = C ∪ {^}

3. ⇒ S has • a single 1-way infinite tape
 • one-track tape
 • marking of square 0 must be explicit - no alphabet

extension.

Computability and Complexity
Lecture 7

Computability and Complexity

The description of S to be given to U must use only the alphabet C.

S = (Q, C∪{^}, C, q0, δ, F).

Suppose Q = {0,1,2,3..n}, q0 = 0
 F = { f, f+1, ..n} n ≥ 0, f ≤ n
the δ-function entries: δ(q, s) = (q', s', d) where

s,s' ∈ C ∪ {^}, 0≤ q < f,
 d∈ {-1,0,1}, 0≤ q'≤ n

We represent a δ-function entry by the 5-tuple (q, s, q',s',d)

Coding a standard Turing Machine, S
Q is finite: label the states with integers 0, 1, …n., q0 ≡ 0,

 with the halting states f, f+1,…n for some 0 < f ≤ n.

Computability and Complexity
Lecture 7

Computability and Complexity

..code of a standard TM, S..

General form of the code:
n, f, t1, t2, t3,…,tN a word in C ∪ {^}

the 5-tuples (q, s, q', s', d)

replace all ^ by 'blank' in the code ⇒ code(S) ∈ C*

So code(S) = n, f, (q, s, q', s', d),…(q, s, q', s', d)

where n, f, q, q', d are decimal numbers
0≤ f, q<f, q' ≤ n
d ∈ {-1, 0, 1}
s, s' ∈ C or = 'blank'

Computability and Complexity
Lecture 7

Computability and Complexity

which words of C code a TM?

eg “::(*)165ase? 2,2,(1,a,2,blank,-1)?

• ordering of instructions in the code doesn’t matter
• numbering of states..not a restriction
• Q is finite..so its members can be listed with
 the initial state always 0

code(S) has some redundancy..it is not unique for S..
 ..variation in:

.. allocation of numbers to states
 .. permutation of the f-1 non-starting, non-halting states

.. permutation of the n-f+1 halting states.

.. permutation of the δ-function entries

Computability and Complexity
Lecture 7

Computability and Complexity

Building the Universal Turing Machine, U
For any standard TM, S, and any word w of C, we require

fU (code(S) * w) = fS (w)

U has input alphabet C, full alphabet C ∪ {^}
U simulates S, using code(S).
U has 3 tapes:

Tape1 of U contains code(S)
Tape 2 of U same as the single tape of S
Tape 3 of U contains the current state of S

Computability and Complexity
Lecture 7

Computability and Complexity

Standard TM, S

a b c d e f ^ ^ ^ ^ ^

T1

Universal TM U simulating S

code(S)

T2 a b c d e f ^ ^ ^ ^

T3 Current state of S, in decimal

Computability and Complexity
Lecture 7

Computability and Complexity

the Operation of U
1. Initialise: U writes 0 in square 0 of Tape 3

 U copies w from tape1 to Tape 2
U returns all 3 heads to square 0.

2. Simulation of S, current state q, for each step of execution
- if q≥f ⇒ halting state..if so, output of S is on Tape 2 of U.

U copies this to Tape 1, then ^.
U Halts & Succeeds with S’s output on Tape 1.

- if q< f ⇒ not a halting state
U scans code(S) on Tape 1 for (q, s, q',s', d)
 where s is the current symbol on tape 2 (tape of S)
 if no (q, s, q', s',d)⇒no applicable instruction

⇒ U moves left repeatedly.. Halt & Fail.
 otherwise ∃(q,s,q',s',d) on Tape1 in code(S) then

simulate actions of S… (ie. S has write x’, S head moves d, S now in state q’)..

Computability and Complexity
Lecture 7

Computability and Complexity

(..actions of S: S writes s' on its tape
S Head moves d
S goes into state q')

so U: writes s' on Tape 2 (copy s' from tape 1)
writes q' on Tape 3 (copy q' from tape 1)

Head 1 returns to square 0
Head 2 moves d
Head 3 returns to square 0

. …end of cycle for (state q, current-symbol). This is now
repeated.

What if S is non-standard with respect to its
 input alphabet I,
or whole alphabet ∑?

Computability and Complexity
Lecture 7

Computability and Complexity

elimination of Scratch Characters or
“alphabet C is always enough”

Let M = (Q, ∑, C, q0, δ, F) with fM: C* ⇒ C*
ie. input and output are both words of C, full alphabet ∑.
∑ includes C and scratch characters, so M is not standard:

…then there is a standard TM S equivalent to M..
 S will use encoded characters to mimic M
…we need a code: ∑⇒ C* to represent symbols of ∑ as words of C

∑⊇ C, so w ∈ C* ⇒ w ∈ ∑*
a standard TM S first encodes w1,w2..wn (all are in C) giving code(w).
S uses codes throughout and simulates the actions of M.
 if M Halts ⇒S decodes tape contents giving output; only chars in

C ∪ {^}.
S simulates M, giving same output, so M and S are equivalent
Now U can interpret any TM M with fM:C*⇒C*.
 U operates on code(S).

Computability and Complexity
Lecture 7

Computability and Complexity

..coding whole alphabet ∑ where ∑ ⊃ C?

∑ may have symbols not in C, but must be finite
 …we can code a finite alphabet ∑ in C:

find an integer k such that
 no.words of C of length k = 88k ≥ size of ∑.

map the symbols of ∑ onto words of C of length k.
 ie. 1-1 function code:∑⇒ Ck

for w = a1a2a3..an of ∑*
code(w)=code(a1a2a3..an) = code(a1).code(a2)..code(an), which is a

word of C, of length kn

 decode:C*⇒∑*
 such that decode(code(w)) = w, w ∈ ∑*, otherwise undefined.

Computability and Complexity
Lecture 7

Computability and Complexity

δ(q0,a) = (q1,^,1)
δ(q0,b) = (q1,^,1)

δ(q1,a) = (q1,a,1)
δ(q1,b) = (q1,b,1)
δ(q1,^) = (q2,^,-1)

δ(q2,^) = (q5,^,0)
δ(q2,a) = (q3,^,-1)
δ(q2,b) = (q4,^,-1)

δ(q3,a) = (q3,a,-1)
δ(q3,b) = (q4,a,-1)
δ(q3,^) = (q5,a,0)

δ(q4,a) = (q3,b,-1)
δ(q4,b) = (q4,b,-1)
δ(q4,^) = (q5,b,0)

The code of the Tail TM

Q = {q0, q1, q2, q3, q4 q5} F = {q5 } ⇒ n = 5, f = 5

code(Tail) = 5,5,(0,a,1,blank,1),(0,b,1,blank,1),
 (1,a,1,a,1),(1,b,1,b,1),(1,blank,2,blank,-1)

 (2,blank,5,blank,0),(2,a,3,blank,-1), (2,b,4,blank,-1)
 (3,a,3,a,-1),(3,b,4,a,-1),(3,blank,5,a,0)
 (4,a,3,b,-1),(4,b,4,b,-1),(4,blank,5,b,0)

Computability and Complexity
Lecture 7

Computability and Complexity

Summary..Universal Turing Machines

Find a TM U such that for any TM M and input w to M
fU (description of M * w) = f M (w).

U needs to be able to read its input so we must standardise:

M is standard if
input alphabet = C
full alphabet = C ∪{^}
it has 1 tape, 1-way infinite

 so M has 1 track only with no implicit marking of square 0

