
Computability and Complexity
Lecture 8

Computability and Complexity

the Halting Problem
Will a given TM halt on a given input?

ie. Given as input:
code(S) for a standard TM S
a word w of C

..can we determine whether S halts and succeeds on input w?

We assume that we have a TM which determines whether S halts and
 succeeds - and derive a contradiction

Assumption is wrong

There is no such TM
The Halting Problem is unsolvable

Computability and Complexity
Lecture 8

Computability and Complexity

Formal specification of the Halting Problem:

Define h: C* ⇒C* such that
h(x) = 1 if x =code(S)*w for a standard TM, S, and

 S halts and succeeds on input w.
= 0 if x=code(S)*w for some S, w, and

 S does not Halt and Succeed
on input w

is undefined if x is not of the form code(S)*w for any
standard TM, S and input w.

h is a partial function C*⇒C*

is there a TM H such that fH = h ?
Such a TM would solve the Halting Problem.

Computability and Complexity
Lecture 8

Computability and Complexity

Proof of the Halting Problem

assume Turing Machine H s.t. f H = h

define a partial function g: g: C* ⇒C* such that

g(w) = 1 if h(w*w) = 0
undefined otherwise

Let M be a TM with fM=g
M has a code, code(M)
[we know how to encode the alphabet if M is not standard, using
only characters of C.]

Consider g(code(M))..it either has value 1 or is undefined..

Computability and Complexity
Lecture 8

Computability and Complexity

1. Suppose g(code(M)) = 1
⇒h(code(M)*code(M)) = 0 by defn. of g
⇒ M does not Halt and Succeed on input code(M) by defn. of h
⇒ fM(code(M)) is undefined by defn. of Turing Machines
⇒ g(code(M)) is undefined…CONTRADICTION

2. Suppose g(code(M)) is not defined
⇒ fM(code(M)) is not defined by defn of M
⇒M does not Halt and Succeed on input code(M) by TM defn.
⇒ h(code(M)*code(M)) = 0 by defn of h
⇒ g(code(M)) = 1 …another CONTRADICTION

there is no H ⇒ by the Church-Turing Thesis
 the Halting problem is unsolvable

erroneous assumption: ∃ H

Computability and Complexity
Lecture 8

Computability and Complexity

the Halting Problem diagrammatically..

M

HHalt & Succeed Halt & Fail

assume input is w∈C

Add *w after w
 on the tape

(input w*w to H)

1 on tape0 on
tape

M Halts & Succeeds iff output of H is 0
iff h(code(M)*code(M))=0
iff M does not H & S on input code(M)

M Halts & Fails iff output of H is 1
iff h(code(M)*code(M))=1
iff M H & S on input code(M).

CONTRADICTIONS

we deduce that M has a code and input code(M) to M

Computability and Complexity
Lecture 8

Computability and Complexity

Consequences of Halting Problem unsolvability:

• we cannot write a program “ to see whether our programs loop”

 because this program (algorithm) would be implementable by a
 Turing Machine(by the Church-Turing thesis)
 …and we have just shown that no such TM exists.

• we can use the Halting Problem result to prove
other unsolvability results..

if we can show that a solution to a new problem could be used to
build a solution to the Halting Problem..we know this is impossible..
..so we conclude that the new problem must also be unsolvable.

Computability and Complexity
Lecture 8

Computability and Complexity

Summary
We have proved ..

..by assuming that the Halting Problem had a
Turing Machine (i.e. algorithmic) solution

 and demonstrating that this leads to a contradiction,

that no such TM exists and

therefore the Halting Problem is unsolvable..

 there is no algorithmic solution

Computability and Complexity
Lecture 8

Computability and Complexity

The run-time function of a Turing Machine

M = (Q, ∑, I, q0, δ,F)

for input words w of length n (n=1, 2, 3..):

M runs a varying number of steps for various words w of length n.

define
 timeM (n) = length of longest run of M for input of length n

the function
timeM (n) : {0, 1, 2, ..} ⇒ {0, 1, 2, …,∞}

is the run-time function of M.

Computability and Complexity
Lecture 8

Computability and Complexity

We measure the complexity of a Turing machine by the order of its time function.
Here we just investigate the running time in terms of the number of ‘steps’, or
δ-function entries executed during a run.
This will be infinite if the TM does not halt. (see Part III, lectures 16-18).

Time functions may be: linear: timeM(n) = an+b
 quadratic: timeM(n) = an2+bn+c
logarithmic: timeM(n) =alogn+b
log linear: timeM(n) anlogn+b
exponential: timeM(n) = ban +c or aen+b

Polynomial: timeM(n) = a1np+a2np-1+a3np-2+…+apn+c

An important property of a TM is whether it runs in polynomial time.
We describe Polynomial (or p-time) TMs as fast.

Computability and Complexity
Lecture 8

Computability and Complexity

Time function for the Tail Turing machine:

q0 q1 qa

q2

qb
q3

(a,^,1)
(b,^,1)

(a,^,-1)

(^,a,1)
(^,^,1)

(b,^,-1)

(^,b,1)

(^,^,0)

δ-function
δ(q0,a) = (q1,^,1)
δ(q0,b) = (q1,^,1)
δ(q1,a) = (qa,^,-1)
δ(q1,b) = (qb,^,-1)
δ(qa,^) = (q2,a,1)
δ(qb,^) = (q2,b,1)
δ(q2,^) = (q1,^,1)
δ(q1,^) = (q3,^,0)

continued..

timeTail(n) - longest run of Tail on input of length n.
Input length 0 - 1 step
 1 - 2 steps - set squ 0 to ^, move right, read ^ & go into halting state.
 3…set squ 0 to ^, move right: for each of n -1 symbols, move left, write symboland move right;

move right: 3 steps
1 step to move into halting state when symbol read = ^.

timeTail(n) = 1+3(n-1) + 1 for n>0. timeTail(0) = 1.

Computability and Complexity
Lecture 8

Computability and Complexity

