Computability and Complexity

the Halting Problem
Will a given TM halt on a given input?

1e. Given as nput:
code(S) for a standard TM S
a word w of C

..can we determine whether S halts and succeeds on input w?

We assume that we have a TM which determines whether S halts and
succeeds - and derive a contradiction

| > Assumption is wrong

| > There 1s no such TM
The Halting Problem 1s unsolvable

Computability and Complexity
Lecture 8



Computability and Complexity

Formal specification of the Halting Problem:

Define h: C* =C* such that
h(x) =1 1i1fx=code(S)*w for a standard TM, S, and
S halts and succeeds on input w.
= (0 1f x=code(S)*w for some S, w, and
S does not Halt and Succeed
on input w

1s undefined if x 1s not of the form code(S)*w for any
standard TM, S and input w.

h 1s a partial function C*=C*

is there a TM H such that fy;=h?
Such a TM would solve the Halting Problem.

Computability and Complexity
Lecture 8



Computability and Complexity

Proof of the Halting Problem
assume Turing Machine Hs.t. fg=h

define a partial function g: g: C* =C* such that

g(w)=11f h(w*w) =0
undefined otherwise

Let M be a TM with f,=¢

M has a code, code(M)

[we know how to encode the alphabet if M is not standard, using
only characters of C.]

Consider g(code(M))..it either has value 1 or is undefined..

Computability and Complexity
Lecture 8



Computability and Complexity

Suppose g(code(M)) = 1

=h(code(M)*code(M)) =0 by defn. of g

= M does not Halt and Succeed on input code(M) by defn. of h
= fy(code(M)) 1s undefined by defn. of Turing Machines

= g(code(M)) 1s undefined...CONTRADICTION

Suppose g(code(M)) 1s not defined

= fy(code(M)) 1s not defined by defn of M

=M does not Halt and Succeed on input code(M) by TM detn.
= h(code(M)*code(M)) = 0 by defn of h

= g(code(M)) =1 ...another CONTRADICTION

> erroneous assumption: 3 H

=>> there is no H= by the Church-Turing Thesis

the Halting problem is unsolvable

Computability and Complexity

Lecture 8



Computability and Complexity

the Halting Problem diagrammatically..

we deduce that M has a code W) to M

M l assume input is weC

Add *w after w
on the tape

(input w*w to H)

\ 4

Halt & Succeed 423(;)72 H 1 on tape Halt & Fail

M Halts & Succeeds iff output of H 1s 0
1ff h(code(M)*code(M))=0
1ff M does not H & S on input code(M)

M Halts & Fails iff output of H 1s 1

iff h(code(M)*code(M))=1

iff M H & S on input code(M).
CONTRADICTIONS

Computability and Complexity
Lecture 8



Computability and Complexity
Consequences of Halting Problem unsolvability:
e we cannot write a program ““ to see whether our programs loop™

because this program (algorithm) would be implementable by a
Turing Machine(by the Church-Turing thesis)
...and we have just shown that no such TM exists.

« we can use the Halting Problem result to prove
other unsolvability results..

if we can show that a solution to a new problem could be used to
build a solution to the Halting Problem..we know this 1s impossible..
..50 we conclude that the new problem must also be unsolvable.

Computability and Complexity
Lecture 8



Computability and Complexity

Summary

We have proved ..
..by assuming that the Halting Problem had a
Turing Machine (1.e. algorithmic) solution
and demonstrating that this leads to a contradiction,
that no such TM exists and

therefore the Halting Problem is unsolvable..

there 1s no algorithmic solution

Computability and Complexity
Lecture 8



Computability and Complexity

The run-time function of a Turing Machine

M =(Q, >, I, qy, 0,F)
for input words w of length n (n=1, 2, 3..):

M runs a varying number of steps for various words w of length n.

define
time,,; (n) = length of longest run of M for input of length n

the function
timey (n) : {0, 1,2,..} = {0, 1, 2, ...,0}

1s the run-time function of M.

Computability and Complexity
Lecture 8



Computability and Complexity

We measure the complexity of a Turing machine by the order of its time function.

Here we just investigate the running time in terms of the number of ‘steps’, or
O-function entries executed during a run.

This will be infinite if the TM does not halt. (see Part III, lectures 16-18).

Time functions may be: linear: time,,(n) =an+b
quadratic: time,,(n) = an’*tbn+c
logarithmic: time,,(n) =alogn+b
log linear: time,(n) anlogn+b
exponential: time,,(n) = ba”+c or ae™®
Polynomial: timey,(n) = a;nP+a,nP!+a;nP2+...+a n+c

An important property of a TM 1s whether 1t runs in polynomial time.
We describe Polynomial (or p-time) TMs as fast.

Computability and Complexity
Lecture 8



Computability and Complexity
Time function for the Tail Turing machine:

timep,,(n) - longest run of Tail on input of length n.

Input length 0 - 1 step
1 -2 steps - set squ 0 to *, move right, read * & go into halting state.
3...set squ 0 to *, move right: for each of n -1 symbols, move left, write symboland move right;

move right: 3 steps
1 step to move into halting state when symbol read = .

timer,;(n) = 1+3(n-1) + 1 for n>0. time,;(0) = 1.

. d-function
\@ %Aﬁ% 6((1093) — (qla/\al)
6(q09b) - (qla/\al)
6(qlaa) — (qaa/\a'l)
6(qlab) - (qba/\a'l)
6(qa9/\) - (‘haa»l)
6(qb9/\) - (qzabal)
6((12,/\) - (qla/\al)
6(q19/\) - (q39/\90)

Computability and Complexity continued..
Lecture 8

(/\,/\,O)

d3




Computability and Complexity

Computability and Complexity
Lecture 8



