## C240 Computability and Complexity : Tutorial 1

We discuss the 'paradox' of the $\mathrm{P}_{\mathrm{n}} \mathrm{s}$ on pages $8-9$ of the notes. Recall that $\mathrm{P}_{0}, \mathrm{P}_{1}, \ldots$ are all the programs of our programming language, in alphabetical order. The program P was:

```
1 repeat forever
    2 generate the next program P P in the list
        run }\mp@subsup{P}{n}{}\mathrm{ as far as the nth bit of the output
        if }\mp@subsup{P}{n}{}\mathrm{ terminated or prompted for input
        before
            the nth bit was output then
                output 1
            else if the nth bit of }\mp@subsup{P}{n}{\prime}'s output is 0 the
                    output 1
        else if the nth bit of }\mp@subsup{P}{n}{\prime}'s output is 1 then
            output 0
        end if
        end repeat
```

1. P must be some $P_{n}$, but for any $n$ its output differs from $P_{n}$ 's at the nth bit. This is impossible. What is wrong with our reasoning?
2. Suppose $\mathrm{P}=\mathrm{P}_{19}$, (say). What would happen on the $19^{\text {th }}$ loop of P ?
3. Suppose that $\mathrm{H}(\mathrm{x})$ is a procedure in our language, having the following property: for any program Q (supplied as a text string), $\mathrm{H}(\mathrm{Q})=1$ if Q halts when run, $\mathrm{H}(\mathrm{Q})=0$ otherwise
(i) modify P using H to obtain a genuinely paradoxical program [Hint: use $H$ (run $P_{n}$ as far as the nth bit of the output)]
(ii) Deduce that H does not exist.
4. (i) what is the least number that is not the answer to an English question having fewer than 200 letters?
(ii)C.C.Chang and H.J.Keisler kindly dedicated their book 'Model Theory' to all those people who haven't got a book dedicated to them. Is it dedicated to you or not?
(iii) What are the implications for your reasoning powers if the following sentence is (a) true, or (b) false? "The reader has no way of convincing him/herself that this sentence is true".
