C240 Computability and Complexity Tutorial 4

1. Design a Turing Machine M with input alphabet $\{\mathrm{a}, \mathrm{b}\}$, which, given as input a word w of this alphabet, outputs the word obtained from w by writing out it's a's, and then its b's, in order.For example:

$$
\mathrm{f}_{\mathrm{M}}(\mathrm{ababaa})=\mathrm{aaabb}
$$

You may use pseudo-code or a flow-chart (state) diagram; in the latter case you should explain your notation for instructions.
You may use several tapes, and you can assume that square 0 of each tape is implicitly marked.
2. (a) What is meant by the term "standard Turing machine"
(b) What does the following standard Turing machine N do?
(ie. What is its input/output function?)

3. The Universal Turing machine U can be made a standard Turing machine. So can M and N above. (assume M Halts \& Fails if its input word is not in $\{\mathrm{a}, \mathrm{b}\}$. So they have codes, namely code(U), code(M), code(N). Calculate
$\mathrm{f}_{\mathrm{U}}(\operatorname{Code}(\mathrm{U}) * \operatorname{code}(\mathrm{M}) *$ babba $)$
$\mathrm{f}_{\mathrm{U}}\left(\operatorname{code}(\mathrm{U}) * \operatorname{code}(\mathrm{~N})^{*}\right)$
$\left.\mathrm{f}_{\mathrm{U}} \operatorname{code}(\mathrm{U}) * \operatorname{code}(\mathrm{U}) * \operatorname{code}(\mathrm{~N}) * \mathrm{c}\right)$

