((a,x),(a,a),(1,1)) ((b,x),(b,x),(1,0))any x

$$
\begin{aligned}
& ((\mathrm{x}, \mathrm{y}),(\mathrm{x}, \mathrm{y}),(-1,0)) \text { if } \mathrm{h} 1 \text { not in sq } 0 \\
& ((\mathrm{x}, \mathrm{y}),(\mathrm{x}, \mathrm{y}),(0,-1,)) \text { if } \mathrm{h} 1 \text { but not } \mathrm{h} 2 \text { in sq } 0
\end{aligned}
$$

copy a's to tape 2

Copy t2 to t1 and add b's to end of t1

Qu. 1 solution

Tutorial 4 Solutions

1. Here is a flowchart for a 2-tape solution. It copies a's from tape 1 to tape 2 . Then it rewinds both heads, copies tape 2 to tape 1 , and then pads out the rest of tape 1 , up to the first blank, with b's. This fills in the right number of b's. It avoids a second pass to copy the b's yet gives the correct answer.
2.(a) A Turing machine is said to be standard if it has a single one-way-infinite tape, its input alphabet is C (the ordinary typewriter characters), and its full alphabet is $\mathrm{C} \square\{\wedge\}$. Note that only one track is therefore possible, and (hence) any marking of sq. 0 must be done explicitly.
(b) The TM given calculates the Head of w.

Its code is:
3,2,(0,a,1,a,1),(0,b,1,b,1),(0,blank,2,blank,0),(1,a,3,blank,0),(1,b,3,blank,0), (1,blank,3,blank,0)
At the beginning, " 3,2 " : ' 3 ' indicate that the state set is $\{0,1,2,3$), and the ' 2 ' that the set F of final states is $\{2,3\}$.

3. $\mathrm{f}_{\mathrm{U}}(\operatorname{code}(\mathrm{U}) * \operatorname{code}(\mathrm{M}) * \mathrm{babba})=\mathrm{f}_{\mathrm{U}}(\operatorname{code}(\mathrm{M}) * \mathrm{babba})=\mathrm{f}_{\mathrm{M}}(\mathrm{babba})=\mathrm{aabbb}$
$\mathrm{f}_{\mathrm{U}}\left(\operatorname{code}(\mathrm{U}) * \operatorname{code}(\mathrm{~N})^{*}\right)=\mathrm{f}_{\mathrm{U}}\left(\operatorname{cade}(\mathrm{N})^{*}\right)=\mathrm{f}_{\mathrm{N}}(\mathrm{D})=\square$
$\mathrm{f}_{\mathrm{II}}(\operatorname{code}(\mathrm{U}) * \operatorname{code}(\mathrm{U}) * \operatorname{code}(\mathrm{~N}) * \mathrm{c})=\mathrm{f}_{\mathrm{TI}}(\operatorname{code}(\mathrm{U}) * \operatorname{code}(\mathrm{~N}) * \mathrm{c})=\mathrm{fU}(\operatorname{code}(\mathrm{N}) * \mathrm{c})=\mathrm{fN}(\mathrm{c})$. undefined.

