C240 Computability and Complexity Tutorial 3

If $n \ge 0$ is a number, let 'n' $\in \{0,1\}^*$ be the binary expansion of n, without leading zeros, written for your convenience with the least significant digits on the left.

So, for example, '8' = $0001 \in \{0,1\}^*$, and '0' = 0,

- Design a 2-tape Turing machine A with f_A('n','m')= 'n+m' for all n,m≥ 0 (so A adds two numbers in binary).
 You can cheat and assume that initially 'n' is on tape 1, and 'm' on tape 2,
 State the input and full alphabet of A.
- 2. Explain briefly how to design a multi-tape Turing machine M such that $f_M(`n'.`m') = `n.m'$. That is, M multiplies two binary numbers. Hint: remember that multiplication is repeated addition; you can use A as a subroutine
- 3. A palindrome (of $\{0,1\}$) is a word $w = s_1s_2s_3s_4, s_n$ in $\{0,1\}^*$ such that $w = s_ns_{n-1}...s_3s_2s_1$. for example, 0110,010,0 and . ε are palindromes; 011 is not. Design a flowchart or give pseudocode for a Turing machine M with input alphabet I = $\{0,1\}$ such that for all $w \in I^*$, M halts and succeeds on w iff w is a palindrome. Write 2 versions of this TM: with one tape and with 2 tapes. What is the full alphabet of your TM?