C240 Computability and Complexity Tutorial 3

If $n \geq 0$ is a number, let ' n ' $\square\{0,1\}^{*}$ be the binary expansion of n, without leading zeros, written for your convenience with the least significant digits on the left.

So, for example, ' 8 ' $=0001 \square\{0,1\}^{*}$, and ' 0 ' $=0$,

1. Design a 2-tape Turing machine A with $\mathrm{f}_{\mathrm{A}}\left({ }^{\prime} \mathrm{n}\right.$ ',' m ') $=$ ' $\mathrm{n}+\mathrm{m}$ ' for all $\mathrm{n}, \mathrm{m} \geq 0$ (so A adds two numbers in binary).
You can cheat and assume that initially ' n ' is on tape 1 , and ' m ' on tape 2,
State the input and full alphabet of A.
2. Explain briefly how to design a multi-tape Turing machine M such that $\mathrm{f}_{\mathrm{M}}\left({ }^{\prime} \mathrm{n}\right.$ '. 'm') $=$ ' $\mathrm{n} . \mathrm{m}$ '. That is, M multiplies two binary numbers. Hint: remember that multiplication is repeated addition; you can use A as a subroutine
3. A palindrome (of $\{0,1\}$) is a word $w=\mathrm{s}_{1} \mathrm{~s}_{2} \mathrm{~s}_{3} \mathrm{~s}_{4}, \mathrm{~s}_{\mathrm{n}}$ in $\{0,1\}^{*}$ such that $\mathrm{w}=\mathrm{s}_{\mathrm{n}} \mathrm{s}_{\mathrm{n}-1} \ldots \mathrm{~s}_{3} \mathrm{~s}_{2} \mathrm{~s}_{1}$. for example, $0110,010,0$ and . \square are palindromes; 011 is not.
Design a flowchart or give pseudocode for a Turing machine M with input alphabet $\mathrm{I}=\{0,1\}$ such that for all w $\square \mathrm{I}^{*}, \mathrm{M}$ halts and succeeds on w iff w is a palindrome.
Write 2 versions of this TM: with one tape and with 2 tapes. What is the full alphabet of your TM?
