C240 Computability and Complexity Tutorial 6

Questions 1,2,5 use the machine M[w], EDIT, and the Universal Turing Machine, U; all are assumed to be standard; see sections 4.3 and 5.3 of the notes.

1. Let R be a standard Turing machine that reverses its input. So, for example,

$$
\mathrm{f}_{\mathrm{R}}(\mathrm{abc})=\mathrm{cba} \text {. Evaluate: }
$$

a) f_{R} (alucard)
b) $f_{\text {RLLee }}$ (Cushing);
c) $\mathrm{f}_{\mathrm{R}[\text { marb }]}(\square$
2.Let S be any standard Turing machine, and let v , w be any words of C .

Check that : $\mathrm{f}_{\mathrm{U}}\left(\mathrm{f}_{\text {EDIT }}(\operatorname{code}(\mathrm{S}) * \mathrm{v}) * \mathrm{w}\right)=\mathrm{f}_{\mathrm{S}}(\mathrm{v})$.
3.Uniform Halting problem (the problem of whether a Turing machine halts on every input). Show by reduction that there is no Turing machine UH such that for all standard Turing machines S,

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{UH}}(\operatorname{code}(\mathrm{~S}))=\mathrm{y} \text { if } \mathrm{S} \text { halts and succeeds on every input } \\
& \mathrm{n} \\
& \text { otherwise }
\end{aligned}
$$

[Adapt the argument for the empty input halting problem].
4.Inverse problem. Show by reduction that there is no Turing machine INV such that for all
standard Turing machines S_{1}, S_{2} and all words w of C :

$$
\mathrm{f}_{\mathrm{INV}}\left(\operatorname{code}\left(\mathrm{~S}_{1}\right) * \operatorname{code}\left(\mathrm{~S}_{2}\right) * \mathrm{w}\right)=\text { da } \quad \text { if } \mathrm{f}_{\mathrm{S}_{2}}\left(\mathrm{f}_{\mathrm{S}_{1}}(\mathrm{w})\right)=\mathrm{w}
$$

nyet otherwise
That is, on input w, S_{2} inverts the effect of S_{1}. Note that $f_{S_{2}}\left(f_{S_{1}}(w)\right)$ is undefined if $f_{S_{1}}(w)$ is undefined, so $\mathrm{f}_{\mathrm{INV}}\left(\operatorname{code}\left(\mathrm{S}_{1}\right) * \operatorname{code}\left(\mathrm{~S}_{2}\right) * \mathrm{w}\right)=$ nyet in this case.
[you might try to transform an instance code(S)*w of HP into code(S)*code(W)*w for some suitable Turing machine W.]
5.['Recursion Theorem',Stephen Kleene, 1938]. The Turing machine ADIT is similar to EDIT (see 5.3), but, on input code (M)*w, it outputs code(M\{w\}). M\{w\} is a standard TM similar to $\mathrm{M}\left[\mathrm{w}\right.$], but on input x , it writes w^{*} in front of x (shifting x right to make room), then runs M. So $f_{M\{w\}}(x)=f_{M}\left(w^{*} x\right)$. Let S be any standard TM and consider the TM G, below:

G is assumed standard by scratch character elimination. On input code(M)*w, G splits off code(M), duplicates it, and runs ADIT then S; G then tacks on w to the output and runs U. So $\mathrm{f}_{\mathrm{G}}(\operatorname{code}(\mathrm{M}) \mathrm{w})=\mathrm{f}_{\mathrm{U}}\left(\mathrm{f}_{\mathrm{S}}\left(\mathrm{f}_{\text {ADIT }}\left(\mathrm{f}_{\text {Duplicator }}(\operatorname{code}(\mathrm{M}))\right)\right) * \mathrm{w}\right)$.
a). Let $K=G\{\operatorname{code}(G)\}$ Check that for any word w of C, we have $f_{K}(w)=f_{U}\left(f_{s}(\operatorname{code}(K)) * w\right)$.
b) Deduce that, given any algorithm to modify TMs (ie their codes) in any way whatever, there is always some TM whose input/output function is unchanged by the modification.

