
1

An Adaptive Policy Based Framework for Network Services Management

Leonidas Lymberopoulos, Emil Lupu and Morris Sloman
Imperial College, Department of Computing, 180 Queen’s Gate, SW7 2BZ, London, UK

{llymber, e.c.lupu, mss}@doc.ic.ac.uk

Abstract

This paper presents a framework for specifying
policies for the management of network services.
Although policy-based management has been the
subject of intensifying research efforts, proposed
solutions are often restricted to condition-action rules
where conditions are matched against incoming traffic
flows. This results in static policy configurations where
manual intervention is required to cater for
configuration changes and to enable policy deployment.
The framework presented in this paper supports
automated policy deployment and flexible event triggers
to permit dynamic policy configuration. Whilst current
research focuses mostly on rules for low-level device
configuration, significant challenges remain to be
addressed in order to: a) provide policy specification
and adaptation across different abstraction layers and
b) provide tools and services for the engineering of
policy-driven systems. In particular, this paper focuses
on solutions for dynamic adaptation of policy in
response to changes within the managed environment.
Policy adaptation includes both dynamically changing
policy parameters and reconfiguring the policy objects.
Access control for network services is also discussed.

1. Introduction

Network services are developing from best-effort
packet forwarding services to services that provide
Quality of Service (QoS) guarantees to the user. Two
approaches have been proposed for providing QoS to
services within IP networks. Integrated Services
(IntServ) [1] uses the Resource ReSerVation Protocol
(RSVP) [2] to provide per-flow QoS support by
dynamically reserving resources on RSVP-enabled
routers. Differentiated Services (DiffServ) is a much
simpler alternative to IntServ/RSVP. The QoS
information is encoded in the Type of Service (ToS)
byte in the IP header to identify different classes of
service.

Service Level Agreements (SLAs) are established
between a service provider and its customers to formally

define the expectations and obligations that exist in their
business relationship. SLAs can also be defined between
multiple peer service providers who cooperate to
provide an overall service that spans multiple
administrative domains.

Many current approaches to specifying Service Level
Agreements, particularly for network services,
concentrate on specifying quality of service parameters
such as delay, throughput, error rates and availability.
The specification of the service is essentially static in
that it often assumes a single type of service is provided
at all times. However, many clients require services,
which vary according to date or time. In addition,
‘fallback’ classes of services should be provided under
failure conditions when the main class of service cannot
be provided – service adaptation should take place either
resulting from failures within the network or possibly
adaptations to the changes in service requirements
relating to the client application. The latter implies that
the client application must be able to trigger changes to
the service within the service provider.

A service provider may provide a sophisticated set of
services, which are offered to a client organisation
consisting of many different users. Not all users within a
client organisation may need access to all the offered
services. Authorization should be part of the SLA
management system to specify which users are able to
access particular services or functions within the
services. This information is also dynamic in that it is
likely to change during the lifetime of the SLA as new
services or service functions are offered, or the set of
client users changes.

The Ponder language developed at Imperial College
provides a framework for specifying both authorization
policies – the conditions under which users can perform
actions on resources and obligation policies – event
triggered condition-action rules. It is a declarative
object oriented language with support for policy
structuring to cater for policy specification in complex
systems. In this paper we discuss some of the issues of
using Ponder for service management and then focus on
how our policy-based management framework can be
used to provide dynamic management of services in
Differentiated Services (DiffServ) networks.

2

 The rest of the paper is organized as follows: in
section 2 we outline the requirements of a policy-based
system for service management. Section 3 briefly
presents the Ponder language and section 4 analyses the
use of policy adaptation and gives an outline
implementation of an adaptive policy system. Section 5
presents how our adaptive policy framework can apply
in a Differentiated Services environment. In section 6 we
present and compare our approach with related work and
we outline conclusions and directions for future work in
section 7.

2. Service Management Issues

Consider a typical network of a large enterprise. Such

a network consists of several local area networks
(LANs) interconnected with a wide area network
(WAN) through one or more access routers.

The IT department of the enterprise is responsible for
operating the network so as to satisfy the SLA
established in the enterprise. Following the policy based
management approach, the administrator will deploy
network policy rules and the management system will
automatically distribute the rules to the network devices.
The enforcement of the policy rules will provide the
network service’s QoS guarantees to the applications,
which are using the service. For example, if the
established SLA in the enterprise states that “A video
application between clients in Site A and a video server
in Site B should receive Gold Service” and
Differentiated Services architecture [3] is deployed in
the network then the administrator perhaps should
deploy a policy rule that instructs the network to forward
the packets that belong to the video application
according to the Expedited Per Hop Behavior [4].

A more sophisticated approach towards the automatic
deployment of SLAs is a management system which can

automatically derive network policy information from
service specific information. In this approach, the
technical part of the SLA is formally specified as a set of
Service Level Specifications (SLSs). A SLS is a set of
parameters and their values which together define the
service offered to a traffic stream by a QoS-enabled
network. It includes specific values or bounds for the

traffic stream’s QoS metrics (e.g. round-trip delay,
throughput, packet loss probability, etc.). The
management system will perform a mapping function
from the SLSs that are specific to a negotiated SLA, in
order to derive network policy information, as shown in
Figure1.

An interesting variation of the above, could be the
deployment of a mapping function responsible not only
for deriving the parameters of a network policy from the
SLS parameters, but also for selecting which network
policy will be used for the application described in the
SLS. For example, if “Gold Network Service” is defined
with specific low values on the upper bounds of round-
trip delay and packet loss, then a network policy, which
can guarantee these specific bounds should be chosen
for the video application.

Service
Level

Specification

SLS processing
component

Network Policy
rules database

Managed Network

User preferences or
Application changes

Performance
measurements /

events

Management System

Monitoring and
Event Service

Network Policy
Enforcement

Figure 2: Service management with a policy-

based management system

However, in addition to mapping from SLS to

network policy information, a management system
should also support dynamic service management in
order to react to changes that require modification of
the existing network configuration. Typical cases where
the management system should change the existing
network configuration are outlined in Figure 2. These
can be:

• New user or application requirements requiring
changes to QoS. In the video application example,
clients in site A may request more network resources for
a running session, in order to receive better video quality
from the video server located at Site B. Moreover, the
application itself can change its QoS requirements at
run-time. An example is the case of adaptive

SLS

Mapping
function

Network -
Level Policy
information

SLS

Network -
Level Policy
information

Figure 1: SLS to network-level policy mapping

3

applications, which tailor their behavior according to the
available network resources. This in turn means that
network policies attributes must be changed at run-time
to support the new user’s/application’s requirements.
• Performance measurements coming from a
monitoring service may indicate performance
degradation and thus may require changes in the
service’s network configuration or even the selection of
a new service to cater for the client application. This in
turn may require attribute changes in the deployed
network policy rules or even the selection of a different
network policy to cater for the application. For example,
if a deployed network policy that handles the video
application’s packets can no longer guarantee low
packet loss due to high congestion, then a different
network policy rule which can guarantee low packet loss
should be chosen for the video application.
• Events indicating network failures or time
events may trigger changes. For example, a network
policy deployed only within a specific path of routers in
the managed network may not be suitable for the video
application when the routing path inside the managed
domain changes. In this case, a new network policy,
which can be applied to the new path, must be
automatically configured and distributed in order to
handle the video application’s packets.

In addition to the above, it is necessary to specify

who is authorised to access specific services or
management functions. A certain group of users should
be able to access either specific services or functions
within the provided service. For example, the
administrator may want “Gold” service to be accessible
only to users in Sites A and C, but not to users in Site D
of the enterprise. On the other hand, only users with
administrative privileges in Sites A and B should be
given the ability to change parameters of the service,
such as the bandwidth allocated to the service. This
information can also change dynamically as new
services are being offered or the set of client users
changes.

We propose an adaptive policy-based framework to
cover the wide range of requirements identified above
for the management of services. In this, policy is
specified with Ponder [5], a declarative, object-oriented
language, developed at Imperial College for specifying
security and management policies for distributed
systems. Policy adaptation is specified and enforced by
other policies, specified in the same Ponder policy
notation.

3. The Ponder Policy Language

Ponder is an object-oriented, declarative language for
specifying management and security policies. This paper
focuses on the use of obligation policies, which specify
the actions that managers must perform when certain
events occur, and provide the ability to respond to
changing circumstances. Obligations are event-triggered
condition-action rules, which explicitly identify the
subjects (i.e., managers or configuration agents) that are
responsible for performing the management actions on
target objects. Both subject and target objects are
specified in terms of domains, which are a means of
grouping objects to which policies apply [6]. Events can
be internal, e.g. a timer event, or external events, which
are collected and distributed by a monitoring service.
Composite events can be specified using the event
composition operators that the language supports. The
syntax of obligation policies is shown in Figure 3.

inst oblig policyName “{”
 subject [<type>] domain-Scope-Expression ;
 [target [<type>] domain-Scope-Expression ;]
 on event-specification ;
 do obligation-action-list ;
 [catch exception-specification ;]
 [when constraint-Expression ;] “}”

Figure 3 Obligation Policy Syntax

Actions can be operations defined in the management
interface of the target object or internal operation of the
management agent. In the latter case, the target element
of a policy is optional. Concurrency operators specify
whether actions should be executed sequentially or in
parallel and are used to separate actions in an obligation
policy. The optional catch-clause specifies an exception
that is executed if the execution of the policy actions
fails for some reason. The above syntax is used for the
declaring a policy instance. The language provides reuse
by supporting definition of policy types, which can be
instantiated for each specific environment. Figure 4
shows the syntax for declaring obligation policy types
and instantiations.

type oblig policyType “(” formalParameters “)” “{”
 { obligation-policy-parts } “}”
inst oblig policyName = policyType “(” actualParameters “)” ;

Figure 4 Obligation Types and Instantiations

Policies are automatically deployed into the relevant
Policy Management Agents (PMA) specified by the
subject of the policy. The PMA interprets and enforces
the obligation policies on a domain of target devices. In
the current Ponder prototype implementation [7], an
obligation policy enforcement object is implemented as

4

a Java program downloaded to a PMA. The PMA
registers with the event service to receive the relevant
events, which will trigger the policies it holds. Events
may pass parameters to the PMA.

We have given a very brief overview of Ponder.
More details on authorisation policies, event
composition, composite policies and constraints can be
found in [5] and a discussion on conflict detection and
resolution in [8].

4. Policy Adaptation within the Ponder

Framework

When applying policies to network elements, the

policy actions are those provided by the management
interface of the managed element. Thus, the “level of
abstraction” of the policies is determined by the
available implementation. However, as discussed in
section 2, service management may require adaptation of
existing network policies to cater for changes within the
managed network. Thus, policies themselves need to be
managed and adapted. In this paper, we identify
different adaptation requirements and show how policy
adaptation can itself be specified and enforced by other
policies, specified in the same Ponder policy notation.

We use the term “Policy Adaptation” to describe the
ability of the policy-based management system to
modify network behavior in one of the following ways:
• Adaptation by dynamically changing the parameters

of a QoS policy to specify new attribute values for
the run-time configuration of managed objects.

• Adaptation by selecting and enabling/disabling a
policy from a set of pre-defined QoS policies at run-
time. The parameters of the selected network QoS
policy are set at run-time.

• Adaptation by learning which are the most suitable
policy configuration strategies from the system’s
behavior. This can be used to select policies or even
generate new ones when needed.

In this paper, we will focus only on the first two
categories of policy adaptation as adaptation by learning
still requires considerable further work.

4.1 Run-Time modification of policy

parameters

In the general case, the specification of a network-
level QoS policy follows the format shown in Figure 5.

inst oblig NetworkQoSPolicy {
subject NetworkLevelPMA;
target targetSet = TargetDomainofDevices;
on Event(EventParameters[]);
do ActionParameters[] =
 CalculateActionParameters(EventParameters[]) ->
 targetSet.executeAction (ActionParameters[]); }

Figure 5 Generic format for network QoS policy

In this type of network-level QoS policy adaptation,

the parameters of the policy action(s) are dynamically
calculated from the event attributes. Thus, a re-
configuration of the network devices can be changed
dynamically by triggering the policy with a new event
containing the new values.

4.2 Adaptation by dynamically selecting and
enabling policies from a set of policies

In this approach, higher-level control policies receive
events, which require system adaptation and decide
which lower-level network policy must be
enabled/disabled to adapt the configuration of the
managed system. The advantage of using policies rather
than a procedural language for selecting and enabling
the appropriate network-level policies is that modifying
the management strategy at this level can be achieved by
dynamically changing the control policy. Furthermore,
the same Ponder deployment framework can be used to
distribute both high-level control policies and network
DiffServ policies [7].

In the general case, a control policy is specified with
the template obligation rule GenericControlPolicy,
presented in Figure 6.

inst oblig GenericControlPolicy {
subject ControlPMA;
on AdaptationRequest (params[]);
do QoSpolicy = selectPolicy (params[])->
 QoSPolicy.enable() ->
 QoSpolicy’sParams [] =

 calculate (QoSPolicy, params[]) ->
EventService.GenerateEvent (

 QoSPolicy’sObligationEvent,
 QoSpolicy’sParameters []);}

Figure 6 Specification of a generic control
policy

4.3 Enforcement architecture

In the general case, the management functionality of
the generic Policy Management Agent ControlPMA is
specified with the obligation rule GenericControlPolicy,
presented in Figure 6.

5

The ControlPMA must be able to:
a) Select, using a suitable algorithm, the most

appropriate lower-level policy to actually implement
the configuration adaptation, when the event
AdaptationRequest occurs.

b) Calculate the selected policy’s specific parameters.
c) Enable and trigger the selected policy with the

derived parameters.

Policy Service

Event Service

Control PMA

Network Level PMA(s)

Selected
Policy
Object1

2

3

5

6

4

load,
enable,
disable,

etcAdaptation
Request

Figure 7 Enforcement architecture for policy
adaptation

The enforcement architecture is presented in Figure 7.

1. The ControlPMA receives the event

AdaptationRequest from the event service.
2. The ControlPMA invokes a selection algorithm to

choose a suitable policy from the policy description
database in the policy service.

3. The policy service replies with the selected policy
object.

4. The enable() method is called on the selected policy
object, which in turn calls the enable() method on
the relevant PMAs. Enabling the policy means that
policy enforcement objects within the PMAs register
the obligation event with the event service, as
described in [7]. At this point, the selected policy is
activated on its PMAs. In addition, an “old” policy

can be unloaded or disabled from the corresponding
PMA’s.

5. An event is generated with the policy’s calculated
parameters to trigger the policy.

6. The obligation event is sent by the event service to
the registered Policy Enforcement Objects.

5. Service Management over Differentiated
Services Networks

In our approach, adaptation is enforced by higher-

level policies. This section presents a usage scenario,
where network policy that provides Per Domain
Behavior in a Differentiated Services environment is
adapted by service management policies. Service
management policies are enforced by Policy
Management Agents at the service-level. The latter are
responsible for the management of services that run
within the managed DiffServ network. Section 5.3
presents how authorisation policy, specified in the
Ponder notation can be used to control access to the
services provided in the DiffServ network.

5.1 Per Domain Behavior policies

The IETF DiffServ working group has proposed in
[9] the term Per Hop Behavior (PDB) to describe the
behavior experienced by a particular set of packets as
they cross a DiffServ domain. A PDB is characterized
by specific metrics that quantify the treatment a set of
packets with a particular DSCP (or set of DSCPs) will
receive as it crosses a DiffServ domain. A PDB specifies
a forwarding path treatment for a specific aggregate. A
PDB is implemented with a PHB or a set of PHB’s.

Each PDB has measurable attributes that can be used
to describe what happens to its packets as they enter and
cross the DS domain. In our framework, each PDB is
implemented as a network-level policy rule. Each rule
guarantees the PDB attributes to the corresponding
traffic aggregate. Table 1 presents examples of QoS
guarantees that PDB policies can offer to their
associated traffic aggregates.

In our framework, PDB policies are specified as

Table 1. PDB policies and their QoS characteristics

PDB
identifier

Enforcement
Network Policy

Assured
bandwidth

(Mbps)

Delay
(ms)

Jitter
(ms)

Loss
(%)

Enforcement
Routers

Path

Time
when
valid

PDB1 /Policies/Policy1 10 ≤ 20 ≤ 3 ≤ 1 <r1,…, rN> Every day
PDB2 /Policies/Policy2 20 ≤ 10 < 1 ≤ 0.1 <r1,…, rM> Working

hours

… … … … … … …

6

Ponder obligation rules. The actual implementation of
the PDB policy, i.e. the implementation of the PHB (or
the set of PHBs) that will guarantee the QoS
characteristics to the corresponding traffic aggregate, is
hidden from the customer. The customer (a customer can
be either human or an automated agent) is offered the
externally observable PDB’s QoS attributes. An
example of a PDB Ponder policy rule is given below.

Example 1 Policy rule for providing a specific PDB

inst oblig /Policies/PDBPolicy1 {
subject /DiffServAgents/DiffServAgent;
target r = /DiffServDomainA/Routers/CoreRouters;
on PDB1_ConfigRequest(DS, max_input_rate,
 min_output_rate);
do /* DS: The Diffserv codepoint for EF: 101110. PDB1
is implemented with the EF PHB*/
 r.applyEFPHB(DS, max_input_rate, min_output_rate);
when max_input_rate <= min_output_rate;
 /* Property that EF traffic must satisfy */ }

In this example, the PDB policy is implemented with

the EF PHB. Upon the request PDB1_ConfigRequest,
the network-level PMA DiffServAgent will invoke the
applyEFPHB action to all routers that belong in the
target domain. This way, all core routers within the
target domain will guarantee low delay and low loss to
the EF-marked packets. In addition, a minimum output
rate (throughput) is guaranteed to the EF-marked
packets, when these packets do not exceed the
configured maximum input rate at the ingress router’s
interface. More details on the specification of network-
level DiffServ policies can be found in [10], which also
describes the generic enforcement architecture within the
Ponder deployment model.

Our current implementation extends the Ponder
toolkit [11] with the functionality to enforce DiffServ
policies. Policies in the Ponder toolkit are Java RMI
objects. The DiffServ specific policy actions (e.g.
applyEFPHB) are methods within the policy object that
the network-level Policy Management Agents invoke
when triggered by the configuration request event.
Policy actions are constructed using the DiffServ
element classes that the DiffServ implementation [12]
provides. In this implementation, element classes
represent DiffServ functional elements (e.g. classifiers,
filters, meters, droppers, etc). These classes have been
modelled based on the DiffServ MIB [13] data model. A
Java component is used to translate the DiffServ device-
independent element classes to Linux “tc” [14] traffic
control commands. This translation is done in the
network-level PMA’s engine. After the translation
process, the network PMA opens a telnet session and
downloads the “tc” commands to the policy’s target
Linux routers.

We also intend to provide an implementation using
the SNMP as the management protocol. In this, DiffServ
functional elements within the PMA are also modelled
according to the DiffServ MIB, but SNMP will be used
to communicate the functional elements to the SNMP
agent at the target device. The latter will have the
capability of translating the DiffServ MIB objects to the
corresponding kernel configuration, using “netlink”
sockets as the communication mechanism between the
agent (user) and the kernel.

5.2 Service Management policies

Per Hop Domain Behavior policies are enforced by

DiffServ enabled Network-level PMAs (Figure 7). This
configures the QoS mechanisms of the managed devices
within the DiffServ network. However, as we have
already discussed in section 2, network services
management requires additional functionality.

The required functionality that enables dynamic
service management is provided in our framework by
Policy Management Agents at the service level. A PMA
responsible for performing service management tasks
(ServiceManagementAgent) is a specific case of a
control PMA in our generic policy adaptation
architecture, which was explained in section 4.3. In the
following, we will provide examples of service
management policies for dynamic service management.

SLS to PDB mapping policy

SLS to PDB mapping can be performed by the

ServiceManagementAgent when the administrator
triggers the policy rule SLSMappingPolicy by means of
an SLS request.

Example 2 SLS to PDB mapping policy

inst oblig SLSMappingPolicy {
subject ServiceManagementAgent;
on SLS_Request (SLS_parameters[]);
do pdb_policy =
select_using_algorithmA(SLS_parameters[])->
pdb_policy_parameters[] =
 calculate (pbd_policy, SLS_parameters[])->
pdb_policy.enable()->

 EventService.GenerateEvent (pdb_policy’sObligationEvent,
 pdb_policy_parameters[]);}

The obligation rule SLSMappingPolicy instructs the

ServiceManagementAgent to perform the SLS to PDB
mapping function upon a SLS request. The SLS request
conveys the SLS parameters to the agent. These SLS
parameters and their semantics can be described in a
formal model for SLS specification. An example for

7

Differentiated Services could be the Tequila’s project
[15] SLS specification.

[16] lists and presents the semantics of a set of basic
SLS parameters when Differentiated Services is used as
the underlying QoS mechanism. A “parser” component
within the Ponder management toolkit is used to
translate the Tequila’s external SLS specification to
pairs of <parameter, value>. These pairs are stored in
the structure SLS_parameters and are conveyed to the
agent with the obligation event SLS_Request.

Upon the receipt of the SLS_Request, the
ServiceManagementAgent will select the appropriate
PDB policy for this specific service request. An example
of a selection algorithm is outlined in [17], where the
PDB is selected according to the triple <delay, loss,
throughput>.

The advantage of implementing the mapping
functionality in the ServiceManagementAgent’s engine,
is that different mapping strategies can be loaded into
the agent at run-time and selected by different policy
rules. If the mapping function is written in a procedural
language, the implementation of a new mapping
algorithm would require the recompilation of this
component to include the new algorithm. In our
framework, new mapping strategies can be loaded as
new actions to the ServiceManagementAgent. A new
policy, with action a new mapping function (e.g.
selection_algorithmB) will instruct the agent to perform
the new mapping function.

Policy to handle service’s performance degradation

A number of different adaptation strategies could be

adopted for handling service’s performance degradation
(notified by the monitoring service, see Figure 2) at run-
time. There may be a need to dynamically change these
strategies by replacing a policy within the
ServiceManagementAgent with a new version or by
enabling/disabling different versions of the policy.
Policies provide a more flexible means of implementing
this type of service-level adaptation than scripts or
special purpose code. Events indicating high delay, high
jitter or high packet loss could trigger policies in the
ServiceManagementAgent. In the following examples,
we indicate adaptation strategies, which could be
implemented by Ponder policies for the management of
the network service that the video client application
described in section 2 receives, but omit the actual
policies. In all the examples, we assume that the video
application receives the EF network service.

• The monitoring system detects that the EF
service’s packet delays exceed a threshold so it
generates a HighDelay event received by the
ServiceManagement Agent. Corrective actions which
may be performed include: a) Increase the minimum

departure rate of the EF traffic to guarantee that the
service’s packets (especially large ones) will remain in
the output queue for less time before being transmitted
to the next hop. b) Notify the client application to
choose a different state, which requires less bandwidth
and hence decrease the incoming traffic rate at the
ingress interface. This way, the EF aggregate will
experience less delay.
• Jitter is not reduced by increasing the EF
service rate, when the EF aggregate is constructed from
a single microflow. On the contrary, when the EF
aggregation degree increases, jitter increases rapidly
with the number of microflows and with the EF load.
Thus, there are two possible corrective actions for a
HighJitter event: a) Decrease the number of microflows,
by degrading other EF traffic to receive a lower service.
b) Reduce the EF load, by reducing resources assigned
to the client application.
• The action for a HighPacketLoss event would
be to increase the maximum arrival rate of the incoming
EF traffic. This will reduce the number of packets being
dropped by the policer at the ingress interface.
Alternatively, as packet loss is proportional to the
aggregation degree, the number of EF microflows can be
reduced, in order to reduce packet loss in the remaining
EF traffic.

Policy to support changes in routing or link failures

A PDB is usually associated with a path of routers

within the DiffServ domain (e.g. when using DiffServ
over MPLS.). When a link fails or routing changes for a
specific flow, the corresponding PDB may not be
appropriate for the routers in the new path, or it may no
longer be suitable. A new PDB must be selected, that
satisfies the service’s QoS expectations and that can be
applicable to the new path. This can be implemented
using the following policy inside the
ServiceManagementAgent:

Example 3 Policy for configuring DiffServ upon link
failures or routing changes

inst oblig PolicyUponRoutingChangesOrLinkFailures {
 subject ServiceManagementAgent;
 on routeIsChanged (newPath);
 do pdb = select_using_algorithmA(SLS_params[],
 newPath) ->

/* A PDB suitable for the new path must be selected
to cater for the service */

 pdb.enable() ->
 pdb_params[] = calculate(SLS_params[]) ->
 EventService.GenerateEvent (
 pdb’sObligationEvent, pdb_params[]); }

This policy instructs the ServiceManagementAgent to

find a suitable PDB for the service with SLS parameters

8

(SLS_parameters[]) when the path of routers that will
serve the service’s packets has changed. As in example
1, different algorithms can be used for the selection of
the new PDB.

Policy to reflect changes in application or user
requirements

The user/application may have the ability to demand

different QoS guarantees at run-time. This means that
the user or the application itself may change SLS
parameters at run-time by. As a consequence, network
policies’ attributes must be changed to support the new
user’s/application’s requirements. Below follows a
policy example, which enables the
ServiceManagementAgent to provide this type of service
adaptation.

Example 4 Policy for re-configuring DiffServ when SLS
parameters change at run-time

inst oblig SLSRenegotiationPolicy {
subject ServiceManagementAgent;
on SLS_Request (new_SLS_parameters[], service_id);
do pdb_policy = policyService.lookup (service_id) ->
 new_pdb_policy_parameters[] =
 calculate (pbd_policy, new_SLS_parameters[]);
 EventService.GenerateEvent
(pdb_policy’sObligationEvent, new_pdb_policy_parameters[]);}

In this policy example, the event SLS_Request

carries both the new SLS parameters that the
application/user requires and a unique identifier of the
client application that requires its SLS renegotiation
(this identifier could be the Flow Description parameter
[15] of the Tequila SLS). The PDB policy reference that
is responsible for this specific service is obtained via a
lookup() operation on the Policy service, assuming that a
table containing the service identifiers and their PDBs is
updated when the initial request for SLS to PDB
mapping has been succesful. Alternatively, the PDB that
will guarantee the new service requirements could be
selected at run-time among the set of implemented
PDBs, as in the SLSMappingPolicy in the example 1.

5.3 Service Authorisation policies

As we have discussed in section 2 of this paper,

authorisation should be part of the service management
system to specify which users are able to access
particular services or functions within the services.

Consider a scenario where users request network
services for their applications through Service Access
Points (SAPs). Access control agents should be
implemented at each SAP to interpret authorisation
policies and control requests related to the service.

In the following example, the policy rule
GoldServiceAccessControlPolicy allows only users from
sites A and C to perform the action of allocating “Gold
Service” to their client applications. “Gold Service” will
be allocated to the client application only if the
requested bandwidth is less than 100 Mbps.

Example 5 Policy for controlling users’ access to a
particular network service

inst auth+ GoldServiceAccessControlPolicy {
subject /Users/SiteA_users + /Users/SiteC_users;
target ServiceAccessPoint_Agent;
action allocateGoldService (client_application, bandwidth);
when bandwidth < 100; }

It possible to permit selected customer administrators
to access the SAP to set service parameters such as
changing the bandwidth allocated to the “Gold Service”.
This can be implemented using the following policy:

Example 6 Policy for controlling access to management
function within a network service

inst auth+ GoldService_BandwidthControlPolicy {
subject /Users/SiteA_users/Admins +
 /Users/SiteB_users/Admins;
target ServiceAccessPoint_Agent;
action allocateBandwidthToGoldService(bandwidth);

6. Related Work

Various frameworks have been proposed for
providing service management in QoS enabled
networks. Many of them propose a Service Level
Specification to configuration mapping function in their
architecture. Other research groups are working on
policy specification and enforcement. Our work aims at
bringing together these areas, by showing how to use the
flexibility of a policy based management framework for
dynamic service management.

The IETF Policy working group [18] is defining a
framework for managing QoS within networks, [19].
They do not have a language for specifying policies but
are using the X.500 directory schema. IETF policies are
of the form if <set of conditions> then do <a set of
actions>. Directories are used for storing policies but
not for grouping subjects and targets. They do not have
the concepts of subject and target that can be used to
determine to which components a policy applies, so the
mapping of policies to components has to be done by
other means (i.e., interface roles). Furthermore, they do
not support policy rules that can be dynamically
triggered by events to reconfigure the managed system
according to changing circumstances. The policy work
in the IETF seems to be focused only in the network

9

layer and they have not considered the interaction
between application and network policy.

 A number of vendors are marketing policy toolkits
for defining policies for DiffServ enabled networks, e.g.,
[20], [21]. Most of these are similar to the IETF ideas.
None of them supports a language but they do have
graphical editors that allow the administrator to define
individual policies and then explicitly identify the
enforcement components to which the policies must be
loaded. None of these tools appear to have considered
the automation of the policy lifecycle and how to adapt
the configuration of network elements when conditions
change. New configurations need to be imposed
manually by the administrator through the management
console.

 In [22], a policy-based management system is
proposed for managing Service Level Agreements
within DiffServ networks. They use a tabular
specification (described in detail in [23]) where a policy
table contains entries, which map traffic aggregates into
classes of service. The list of PHBs that different
devices support is obtained by a resource discovery
mechanism. Thus, rather than providing a policy-based
management system for managing the characteristics of
DiffServ devices, the proposed system only maps
application flows into predefined and already
implemented PHBs. Moreover, this system can only
communicate policies to the enforcement devices during
the configuration process, initiated by the administrator.
Configuration can not dynamically be changed at run-
time to reflect changes in the managed environment. In
addition, the scope of this approach is specifically aimed
at a management system for a DiffServ network, whereas
our work is applicable to a wide range of management
areas.

A SLS to DiffServ configuration mapping framework
is proposed in [17]. In their architecture, the
management system consists of two parts. The first
performs both the SLS to PDB mapping process and an
admission control process. The mapping module uses an
N-dimensional space (e.g. delay, packet loss, and
throughput) to classify an input SLS into an available
intra-domain service, which is offered by an
implemented PDB within the DiffServ network. The
second is the policy-based control part. This controls the
SLS mapping and the admission control processes.
Network policy is used as the device configuration
mechanism. However, this work does not have any
concrete proposals for the policy part of the framework.
Furthermore, the SLS to PDB mapping process is only
initiated by the user; no actions are undertaken by the
management system to dynamically select a new PDB
when network conditions change.

[24] proposes a contract-based architecture for
application-level service management. Contracts are

used for defining, deploying, monitoring and enforcing
SLAs in a dynamic e-Business environment. A generic
object-oriented model describes the various sections of a
contract between a client and a service provider.
Contracts are managed by a Contract Management
System, whose main functional components are: a
measurement, a violation detection and a management
component. The measurement component is responsible
for collecting data relevant to service’s QoS parameters.
The violation detection component retrieves data from
the measurement component and evaluates if the
guarantees defined in the contract are met. In case of a
QoS violation, a notification is sent to the management
component. The latter, upon reception of a violation
notification, initiates corrective measures to remedy the
causes of the violation. The advantage of our proposed
framework for network-level service management is the
flexibility to implement dynamically new management
strategies within the service management system.

A Customer Service Management (CSM) architecture
is proposed in [25]. This allows delegation of the service
management task from the service provider to the
customer. A CSM module is the basic block of the
proposed management system. Customers can adjust
SLS parameters through a parameter setting function
block within the CSM module. A SLS mapping function
is implemented within the CSM module, to derive
device configuration from SLS information. Our
framework can provide this functionality, by allowing
users to trigger the execution of management actions
within the Service Management Agent.

The framework proposed in [26] adapts policy
parameters on monitoring the network. A management
script includes policies, expressed in the IETF
representation, and also specifies how the policy life
cycle should be managed. The script notifies the
management system about QoS threshold violations. In
this work, a prototype implementation is provided for
Differentiated Services, where policy parameters, such
as the peak rate of a traffic profile, its peak burst size
and the associated DSCPs, are changed dynamically to
adapt to system behaviour. The framework we propose
for the adaptive management of DiffServ can specify, in
a uniform way, all the necessary information required for
enforcement and adaptation of policies using obligation
rules. Furthermore, in addition to providing adaptation
by changing policy parameters, we can also select new
policies to be enabled upon events other than just QoS
violation events.

The system proposed in [27] for the management of
QoS in Multi-Protocol Label Switching (MPLS)
networks, also follows the IETF Policy working group
approach. They have extended the Common Information
Model (CIM) policy model with MPLS specific classes.
This system has the same limitations as the IETF

10

framework. In [28], IETF’s Policy Core Information
Model (PCIM) is extended, to provide support for goal
specification. Service-level goals can be specified to
enforce QoS on a per-user, per-application basis.
Monitored data is used to evaluate whether the specified
goals are satisfied. These service-level goals can be
expressed in our framework as higher-level obligation
policy rules.

[29] presents an architecture for the management of a
network offering active services. In their architecture, a
bacterial algorithm forms the basis for the adaptation
performed by autonomous controllers. These controllers
are programmed (like a bacterium) to autonomously
replicate policies that improve its performance and de-
activate policies that degrade performance. This way,
“useful” policies spread and “poor” policies die out. A
policy is evaluated though a fitness (revenue-cost)
function. In this work, each policy is related to one
active service; policies control the deployment of
services (proxylets) in their active services environment.
[30] presents an example of this type of adaptation for
providing QoS differentiation of active services, where
the queue length of network servers (DPSs) is adapted to
provide either short delay or low loss to service(s),
depending on the users QoS requirements. Example of
these requirements (policies or service genes) can be:
“Accept request for service A if DPS <80% busy” of
“Accept request for service C if queue length < 20”. In
our framework, policies are used in a more generic
sense, describing the actions that management agents
must undertake when receiving different types of
requests. We provide adaptation, in a more systematic
way, by adapting the policy based management system
itself, either by changing attributes of policies or by
removing and adding new policies.

[31] presents a policy-driven framework for QoS
management of multimedia applications. They specify
policy at the application layer using the Ponder
language, although they rely on violation of constraints
to trigger policy rules instead of events. Their QoS
policy only provides the QoSHostManager component
with a notification message; the corrective actions which
are enforced upon QoS violation are described in other
types of rules. No formal specification is discussed for
these rules, although they could be specified with
Ponder’s obligation policies as well. Furthermore, they
use the term “adaptation” to refer only to the actions,
which are taken when a QoS violation occurs. We can
support the type of adaptation provided in [31], but we
consider our approach to be more general than theirs.

[32] presents a QoS Architecture transport system for
a multicast, multimedia networking environment. It
offers a QoS configurable API at the transport layer,
which enables applications to have control over QoS.
QoS is specified at the API in terms of a flow

specification, which includes parameters such as delay,
throughput, jitter etc. and a QoS policy. The QoS policy
enables users to advise the infrastructure on how to deal
with the flow when resource availability changes. A
distributed QoS adapter interprets the policy and is
responsible for informing applications when resources
become available. A QoS adaptation protocol is
implemented for the communication between QoS
adapters. Our framework can provide this functionality,
but also it may apply adaptive behavior in other
circumstances, as we presented through the examples in
section 4.

A lot of work on QoS adaptation has also been
carried out in the Distributed Systems area, e.g. [33, 34].
Most of this work provides adaptation by hard coded
QoS management and monitoring in middleware systems
for supporting multimedia applications.

7. Conclusions and Future Work

In this paper we have presented an adaptive policy-
based framework for network services management. Our
approach provides the administrator the flexibility to
define network, service management and service
authorisation policy. Policy is specified in the Ponder
policy language.

Network policy rules configure the QoS mechanisms
of the devices within the target domain. We presented
how Per Hop Domain Behavior policies are specified
and deployed automatically to configure Linux DiffServ
routers. For the enforcement part, we are currently using
the DiffServ modules of the implementation described in
[12]. We intend to provide an additional enforcement
implementation using the SNMP as the management
protocol. Network rules specified within our framework
are dynamically triggered by events, in order to change
the configuration of the managed objects under certain
circumstances. This dynamic configuration of policy
forms the basis of the adaptive management our
framework can provide.

We presented how policy adaptation in our
framework is enforced by higher-level Ponder policies.
Adaptation is provided in one of the following ways: a)
by dynamically changing the parameters of a QoS policy
to specify new attribute values for the run-time
configuration of managed objects and b) by selecting
and enabling/disabling a policy from a set of pre-defined
QoS policies at run-time. The parameters of the selected
network QoS policy are calculated and set at run-time.
An enforcement architecture for our ideas on policy
adaptation was also presented.

Service management policies are a specific case of
higher-level management policies which adapt the
underlying network policy. We presented examples that

11

demonstrate how service management policies cater for
the dynamic management of services in a Differentiated
Services network.

Finally, in order to protect network services from
unauthorised usage, we provide the administrator the
ability to specify with service authorisation policies
which users are able to access particular services or
functions within the services.

An important issue that needs to be addressed is to
enhance the functionality of the Service Management
system to initiate corrective actions which are not pre-
defined. Currently, its task is to adapt the set of
underlying network policies upon pre-defined
conditions. However, corrective measures should be
undertaken to remedy any causes of violations in the
delivery of the service to the client application. This will
require the management system to carry out problem
determination tasks and to perform root cause analysis in
order to initiate the corrective actions when violations
are detected. We also intend to experiment with Linux
based routers as well as commercial routers or switches
to evaluate the performance implications of executing
policies on routers. Future work also includes the
application of our approach to the management of MPLS
networks.

References

[1] Braden, R., Clark, D. & Shenker, D., Integrated Services

in the Internet Architecture: an Overview, RFC 1633,
June 1994.

[2] Braden, R., Zhang, L., Berson, S., Herzog, S. & Jamin,
S., ReSerVation Protocol (RSVP) Version 1 Functional
Specification, RFC 2205, September 1997.

[3] Carlson, M., Weiss, W., Blake, S., Wang, Z., Black, D.
& Davies, E., An Architecture for Differentiated
Services, RFC 2475, December1998.

[4] Jacobson, V., Nichols, K. & Poduri, K., An Expedited
Forwarding PHB, RFC2598, September 1999.

[5] Damianou, N., Dulay, N., Lupu, E. & Sloman, M. The
Ponder Policy Specification Language. Proc. Policy
2001: International Workshop on Policies for
Distributed Systems and Networks, Bristol, UK, 29-31
Jan. 2001, Springer-Verlag LNCS 1995, pp. 18-39.

[6] Sloman, M. & Twidle, K., Domains: A framework for
Structuring Management Policy. Chapter 16 in Networks
and Distributed Systems Management (Sloman,
1994ed), 1994a: pp. 433-453.

[7] Dulay, N., Lupu, E., Sloman, M. & Damianou, N. A
Policy Deployment Model for the Ponder Language.
Proc. IM 2001: 2001 IEEE/IFIP International
Symposium on Intergrated Network Management,
Seattle, USA, 14-18 May 2001, pp. 529-544.

[8] Lupu, E. & Sloman, M., Conflicts in Policy-Based
Distributed Systems Management. IEEE Transactions on
Software Engineering, Special Issue on Inconsistency
Management, 25(6):852-869, Nov./Dec. 1999.

[9] K. Nichols, K. & Carpenter, B., Definition of
Differentiated Services Per Domain Behaviors and Rules
for their Specification, RFC 3086, April 2001

[10] Lymberopoulos, L., Lupu, E. & Sloman, M. An An
Adaptive Policy Based Management Framework for
Differentiated Services Networks. To appear in Proc.
Policy 2002: IEEE 3rd International Workshop on
Policies for Distributed Systems and Networks,
Monterey, CA, USA, 5-7 Jun. 2002.

[11] Damianou, N., Dulay, N., Lupu, E., Sloman, M.,
Tonouchi, T. Tools for Domain-based Policy
Management of Distributed Systems. Proc. NOMS
2002: 8th Network Operations and Management
Symposium, Florence, Italy, 15-19 Apr. 2002.

[12] Martinez, M. et al. Using the Script MIB for Policy-
based Configuration Management. Proc. NOMS 2002:
8th Network Operations and Management Symposium,
Florence, Italy, 15-19 Apr. 2002.

[13] Baker, F., Smith, A. & Chan, K., Differentiated Services
MIB, Internet Draft, draft-ietf-diffserv-mib-09.txt,
March 2001.

[14] Linux Advanced Routing & Traffic Control,
http://lartc.org.

[15] Tequila project, http://www.ist-tequila.org.
[16] Goderis, D. et al. Service Level Specification Semantics,
 Parameters and negotiation requirements, draft-tequila-

sls-01.txt, June 2001.
[17] Prieto, A. & Brunner, M. SLS to DiffServ configuration

mappings, Proc. DSOM 2001: 12th IFIP/IEEE
International Workshop on Distributed Systems:
Operations and Management, Nancy, France, 15-17 Oct.
2001.

[18] Internet Engineering Task Force, Policy Working Group,
http://www.ietf.org/html.charters/policy-charter.html

[19] Snir, Y., Ramberg, Y., Strassner, J. & Cohen, R., Policy
Framework QoS Information Model, Internet Draft,
draft-ietf-policy-qos-info-model-03.txt, April 2001.

[20] Cisco COPS QoS Policy Manager product
documentation,
htttp://www.cisco.com/univercd/cc/td/doc/product/rtrmg
mt/qos/qpm2_1/index.htm

[21] Allot Communications NetPolicy Policy Based
Management System product documentation,
http://www.allot.com/html/products_netpolicy.shtm

[22] Verma, D., Beigi, M. & Jennings, R. Policy Based SLA
Management in Enterprise Networks. Proc. Policy 2001:
International Workshop on Policies for Distributed
Systems and Networks, Bristol, UK, 29-31 Jan. 2001,
Springer-Verlag LNCS 1995, pp. 137-152.

[23] Verma, D. (2001). Policy-Based Networking,
Architecture and Algorithms. New Riders Publishing.

[24] Keller, A., Kar, G., Ludwig, H., Dan, A. & Hellerstein,
J. Managing Dynamic Services: A Contract-based
Approach to a Conceptual Architecture. Proc. NOMS
2002: 8th Network Operations and Management
Symposium, Florence, Italy, 15-19 Apr. 2002.

[25] Sprenkels, R. Pras A., et al. A Customer Service
Management Architecture for the Internet. Proc. DSOM
2000: 11th IFIP/IEEE International Workshop on
Distributed Systems: Operations and Management,
Texas, USA, 4-6 Dec. 2000.

12

[26] Yoshihara. K., Isomura M. & Horiuchi, H. Distributed
Policy-based Management Enabling Policy Adaptation
on Monitoring using Active Network Technology. Proc.
DSOM 2001: 12th IFIP/IEEE International Workshop
on Distributed Systems: Operations and Management,
Nancy, France, 15-17 Oct. 2001.

[27] Brunner, M. & Quittek, J. MPLS Management using
Policies. Proc. IM 2001: 2001 IEEE/IFIP International
Symposium on Intergrated Network Management,
Seattle, USA, 14-18 May 2001, pp. 515-528.

[28] Bearden, M., Garg, S. & Lee, W. Integrating Goal
Specification in Policy-Based Management Proc. Policy
2001: International Workshop on Policies for
Distributed Systems and Networks, Bristol, UK, 29-31
Jan. 2001, Springer-Verlag LNCS 1995, pp. 153-170.

[29] Marshall, I., Gharib, H., Hardwicke, H. &.Roadknight C.
A novel architecture for active service management.
Proc. IM 2001: 2001 IEEE/IFIP International
Symposium on Intergrated Network Management,
Seattle, USA, May 2001, pp. 795-810.

[30] I.W.Marshall and C.M.Roadknight "Provision of quality
of service for active services" Computer Networks, Vol.
36, No. 1, June 2001.

[31] Lutfiyya, H., Molenkamp, G., Katchabaw, M. & Bauer,
M. Issues in Managing Soft QoS Requirements in
Distributed Systems Using a Policy-Based Framework.
Proc. Policy 2001: International Workshop on Policies
for Distributed Systems and Networks, Bristol, UK, 29-
31 Jan. 2001, Springer-Verlag LNCS 1995, pp. 185-201.

[32] Campbell, A.T., "A Quality of Service Architecture",
PhD Thesis, Lancaster University , UK, January 1996.

[33] Gordon, G. et al. Adaptive Middleware for Mobile
Multimedia Applications. Proc. NOSSDAV '97:
Network and Operating System Support for Digital
Audio and Video , St Louis, USA 1997.

[34] Wang, N. et al. “Adaptive and Reflective Middleware
for QoS-Enabled CCM Applications”, Distributed
Systems Online (www.computer.org/dsonline)

	An Adaptive Policy Based Framework for Network Services Management
	4.1 Run-Time modification of policy parameters

