
1 

 
 

An Adaptive Policy Based Framework for Network Services Management 
 

Leonidas Lymberopoulos, Emil Lupu and Morris Sloman 
Imperial College, Department of Computing, 180 Queen’s Gate, SW7 2BZ, London, UK  

{llymber, e.c.lupu, mss}@doc.ic.ac.uk 
 
 

Abstract 
 

This paper presents a framework for specifying 
policies for the management of network services. 
Although policy-based management has been the 
subject of intensifying research efforts, proposed 
solutions are often restricted to condition-action rules 
where conditions are matched against incoming traffic 
flows. This results in static policy configurations where 
manual intervention is required to cater for 
configuration changes and to enable policy deployment. 
The framework presented in this paper supports 
automated policy deployment and flexible event triggers 
to permit dynamic policy configuration. Whilst current 
research focuses mostly on rules for low-level device 
configuration, significant challenges remain to be 
addressed in order to: a) provide policy specification 
and adaptation across different abstraction layers and 
b) provide tools and services for the engineering of 
policy-driven systems. In particular, this paper focuses 
on solutions for dynamic adaptation of policy in 
response to changes within the managed environment. 
Policy adaptation includes both dynamically changing 
policy parameters and reconfiguring the policy objects. 
Access control for network  services is also discussed. 
 
1. Introduction 
 

Network services are developing from best-effort 
packet forwarding services to services that provide 
Quality of Service (QoS) guarantees to the user. Two 
approaches have been proposed for providing QoS to 
services within IP networks. Integrated Services 
(IntServ) [1] uses the Resource ReSerVation Protocol 
(RSVP) [2] to provide per-flow QoS support by 
dynamically reserving resources on RSVP-enabled 
routers. Differentiated Services (DiffServ) is a much 
simpler alternative to IntServ/RSVP. The QoS 
information is encoded in the Type of Service (ToS) 
byte in the IP header to identify different classes of 
service.  

Service Level Agreements (SLAs) are established 
between a service provider and its customers to formally 

define the expectations and obligations that exist in their 
business relationship. SLAs can also be defined between 
multiple peer service providers who cooperate to 
provide an overall service that spans multiple 
administrative domains. 

Many current approaches to specifying Service Level 
Agreements, particularly for network services, 
concentrate on specifying quality of service parameters 
such as delay, throughput, error rates and availability.  
The specification of the service is essentially static in 
that it often assumes a single type of service is provided 
at all times.  However, many clients require services, 
which vary according to date or time.  In addition, 
‘fallback’ classes of services should be provided under 
failure conditions when the main class of service cannot 
be provided – service adaptation should take place either 
resulting from failures within the network or possibly 
adaptations to the changes in service requirements 
relating to the client application.  The latter implies that 
the client application must be able to trigger changes to 
the service within the service provider. 

A service provider may provide a sophisticated set of 
services, which are offered to a client organisation 
consisting of many different users.  Not all users within a 
client organisation may need access to all the offered 
services.  Authorization should be part of the SLA 
management system to specify which users are able to 
access particular services or functions within the 
services.  This information is also dynamic in that it is 
likely to change during the lifetime of the SLA as new 
services or service functions are offered, or the set of 
client users changes.   

The Ponder language developed at Imperial College 
provides a framework for specifying both authorization 
policies – the conditions under which users can perform 
actions on resources and obligation policies – event 
triggered condition-action rules.  It is a declarative 
object oriented language with support for policy 
structuring to cater for policy specification in complex 
systems. In this paper we discuss some of the issues of 
using Ponder for service management and then focus on 
how our policy-based management framework can be 
used to provide dynamic management of services in 
Differentiated Services (DiffServ) networks. 
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 The rest of the paper is organized as follows: in 
section 2 we outline the requirements of a policy-based 
system for service management. Section 3 briefly 
presents the Ponder language and section 4 analyses the 
use of policy adaptation and gives an outline 
implementation of an adaptive policy system. Section 5 
presents how our adaptive policy framework can apply 
in a Differentiated Services environment. In section 6 we 
present and compare our approach with related work and 
we outline conclusions and directions for future work in 
section 7.  
 
2. Service Management Issues 

 
Consider a typical network of a large enterprise. Such 

a network consists of several local area networks 
(LANs) interconnected with a wide area network 
(WAN) through one or more access routers.  

The IT department of the enterprise is responsible for 
operating the network so as to satisfy the SLA 
established in the enterprise. Following the policy based 
management approach, the administrator will deploy 
network policy rules and the management system will 
automatically distribute the rules to the network devices. 
The enforcement of the policy rules will provide the 
network service’s QoS guarantees to the applications, 
which are using the service. For example, if the 
established SLA in the enterprise states that “A video 
application between clients in Site A and a video server 
in Site B should receive Gold Service” and 
Differentiated Services architecture [3] is deployed in 
the network then the administrator perhaps should 
deploy a policy rule that instructs the network to forward 
the packets that belong to the video application 
according to the Expedited Per Hop Behavior [4].    

A more sophisticated approach towards the automatic 
deployment of SLAs is a management system which can 

automatically derive network policy information from 
service specific information. In this approach, the 
technical part of the SLA is formally specified as a set of 
Service Level Specifications (SLSs). A SLS is a set of 
parameters and their values which together define the 
service offered to a traffic stream by a QoS-enabled  
network.  It includes specific values or bounds for the 

traffic stream’s QoS metrics (e.g. round-trip delay, 
throughput, packet loss probability, etc.). The 
management system will perform a mapping function 
from the SLSs that are specific to a negotiated SLA, in 
order to derive network policy information, as shown in 
Figure1. 

An interesting variation of the above, could be the 
deployment of a mapping function responsible not only 
for deriving the parameters of a network policy from the 
SLS parameters, but also for selecting which network 
policy will be used for the application described in the 
SLS. For example, if “Gold Network Service” is defined 
with specific low values on the upper bounds of round-
trip delay and packet loss, then a network policy, which 
can guarantee these specific bounds should be chosen 
for the video application. 
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Figure 2: Service management with a policy-

based management system 
 
However, in addition to mapping from SLS to 

network policy information, a management system 
should also support dynamic service management in 
order to react to changes that require modification of  
the existing network configuration. Typical cases where 
the management system should change the existing 
network configuration are outlined in Figure 2. These 
can be: 

 
• New user or application requirements requiring 
changes to QoS. In the video application example, 
clients in site A may request more network resources for 
a running session, in order to receive better video quality 
from the video server located at Site B.  Moreover, the 
application itself can change its QoS requirements at 
run-time.  An example is the case of adaptive 

 

SLS 

Mapping 
function 

Network -
Level Policy 
information

SLS 

Network -
Level Policy 
information

 
 

Figure 1: SLS to network-level policy mapping 
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applications, which tailor their behavior according to the 
available network resources. This in turn means that 
network policies attributes must be changed at run-time 
to support the new user’s/application’s requirements. 
• Performance measurements coming from a 
monitoring service may indicate performance 
degradation and thus may require changes in the 
service’s network configuration or even the selection of 
a new service to cater for the client application. This in 
turn may require attribute changes in the deployed 
network policy rules or even the selection of a different 
network policy to cater for the application. For example, 
if a deployed network policy that handles the video 
application’s packets can no longer guarantee low 
packet loss due to high congestion, then a different 
network policy rule which can guarantee low packet loss 
should be chosen for the video application. 
• Events indicating network failures or time 
events may trigger changes. For example, a network 
policy deployed only within a specific path of routers in 
the managed network may not be suitable for the video 
application when the routing path inside the managed 
domain changes. In this case, a new network policy, 
which can be applied to the new path, must be 
automatically configured and distributed in order to 
handle the video application’s packets.  

  
In addition to the above, it is necessary to specify 

who is authorised to access specific services or 
management functions. A certain group of users should 
be able to access either specific services or functions 
within the provided service. For example, the 
administrator may want  “Gold” service to be accessible 
only to users in Sites A and C, but not to users in Site D 
of the enterprise. On the other hand, only users with 
administrative privileges in Sites A and B should be 
given the ability to change parameters of the service, 
such as the bandwidth allocated to the service. This 
information can also change dynamically as new 
services are being offered or the set of client users 
changes.  

We propose an adaptive policy-based framework to 
cover the wide range of requirements identified above 
for the management of services. In this, policy is 
specified with Ponder [5], a declarative, object-oriented 
language, developed at Imperial College for specifying 
security and management policies for distributed 
systems. Policy adaptation is specified and enforced by 
other policies, specified in the same Ponder policy 
notation. 

3. The Ponder Policy Language 

Ponder is an object-oriented, declarative language for 
specifying management and security policies. This paper 
focuses on the use of obligation policies, which specify 
the actions that managers must perform when certain 
events occur, and provide the ability to respond to 
changing circumstances. Obligations are event-triggered 
condition-action rules, which explicitly identify the 
subjects (i.e., managers or configuration agents) that are 
responsible for performing the management actions on 
target objects. Both subject and target objects are 
specified in terms of domains, which are a means of 
grouping objects to which policies apply [6]. Events can 
be internal, e.g. a timer event, or external events, which 
are collected and distributed by a monitoring service. 
Composite events can be specified using the event 
composition operators that the language supports. The 
syntax of obligation policies is shown in Figure 3.  
 
inst oblig policyName “{” 
 subject [<type>] domain-Scope-Expression ; 
 [ target [<type>] domain-Scope-Expression ;] 
 on event-specification ; 
 do obligation-action-list ; 
 [ catch  exception-specification ; ] 
 [ when constraint-Expression ; ] “}” 
 

Figure 3 Obligation Policy Syntax 
 

Actions can be operations defined in the management 
interface of the target object or internal operation of the 
management agent. In the latter case, the target element 
of a policy is optional. Concurrency operators specify 
whether actions should be executed sequentially or in 
parallel and are used to separate actions in an obligation 
policy. The optional catch-clause specifies an exception 
that is executed if the execution of the policy actions 
fails  for some reason. The above syntax is used for the 
declaring a policy instance. The language provides reuse 
by supporting definition of policy types, which can be 
instantiated for each specific environment. Figure 4 
shows the syntax for declaring obligation policy types 
and instantiations. 
 
type oblig policyType “(” formalParameters “)” “{” 
  { obligation-policy-parts } “}” 
inst oblig policyName = policyType “(” actualParameters “)” ; 
 

Figure 4 Obligation Types and Instantiations 

Policies are automatically deployed into the relevant 
Policy Management Agents (PMA) specified by the 
subject of the policy. The PMA interprets and enforces 
the obligation policies on a domain of target devices. In 
the current Ponder prototype implementation [7], an 
obligation policy enforcement object is implemented as 
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a Java program downloaded to a PMA. The PMA 
registers with the event service to receive the relevant 
events, which will trigger the policies it holds. Events 
may pass parameters to the PMA. 

We have given a very brief overview of Ponder. 
More details on authorisation policies, event 
composition, composite policies and constraints can be 
found in [5] and a discussion on conflict detection and 
resolution in [8].  
 
4. Policy Adaptation within the Ponder 

Framework 
 
When applying policies to network elements, the 

policy actions are those provided by the management 
interface of the managed element. Thus, the “level of 
abstraction” of the policies is determined by the 
available implementation. However, as discussed in 
section 2, service management may require adaptation of 
existing network policies to cater for changes within the 
managed network. Thus, policies themselves need to be 
managed and adapted. In this paper, we identify 
different adaptation requirements and show how policy 
adaptation can itself be specified and enforced by other 
policies, specified in the same Ponder policy notation. 

We use the term “Policy Adaptation” to describe the 
ability of the policy-based management system to 
modify network behavior in one of the following ways: 
• Adaptation by dynamically changing the parameters 

of a QoS policy to specify new attribute values for 
the run-time configuration of managed objects.  

• Adaptation by selecting and enabling/disabling a 
policy from a set of pre-defined QoS policies at run-
time. The parameters of the selected network QoS 
policy are set at run-time.  

• Adaptation by learning which are the most suitable 
policy configuration strategies from the system’s 
behavior. This can be used to select policies or even 
generate new ones when needed.  

In this paper, we will focus only on the first two 
categories of policy adaptation as adaptation by learning 
still requires considerable further work. 

 
4.1 Run-Time modification of policy 

parameters 
 

In the general case, the specification of a network-
level QoS policy follows the format shown in Figure 5. 

 

inst oblig NetworkQoSPolicy { 
subject  NetworkLevelPMA; 
target targetSet = TargetDomainofDevices;  
on  Event(EventParameters[]); 
do  ActionParameters[] = 
  CalculateActionParameters(EventParameters[]) -> 
  targetSet.executeAction (ActionParameters[]); } 

 
Figure 5 Generic format for network QoS policy 

 
In this type of network-level QoS policy adaptation, 

the parameters of the policy action(s) are dynamically 
calculated from the event attributes. Thus, a re-
configuration of the network devices can be changed 
dynamically by triggering the policy with a new event 
containing the new values.  
 
4.2 Adaptation by dynamically selecting and 
enabling policies from a set of policies  
 

In this approach, higher-level control policies receive 
events, which require system adaptation and decide 
which lower-level network policy must be 
enabled/disabled to adapt the configuration of the 
managed system. The advantage of using policies rather 
than a procedural language for selecting and enabling 
the appropriate network-level policies is that modifying 
the management strategy at this level can be achieved by 
dynamically changing the control policy. Furthermore, 
the same Ponder deployment framework can be used to 
distribute both high-level control policies and network 
DiffServ policies [7]. 

In the general case, a control policy is specified with 
the template obligation rule GenericControlPolicy, 
presented in Figure 6.  

 
inst oblig  GenericControlPolicy { 
subject  ControlPMA; 
on  AdaptationRequest (params[]); 
do  QoSpolicy = selectPolicy (params[])-> 
  QoSPolicy.enable() -> 
  QoSpolicy’sParams [] =  

 calculate (QoSPolicy, params[]) -> 
EventService.GenerateEvent ( 

     QoSPolicy’sObligationEvent, 
     QoSpolicy’sParameters []);} 
 

Figure 6 Specification of a generic control 
policy 

 
 
4.3 Enforcement architecture 
 

In the general case, the management functionality of 
the generic Policy Management Agent ControlPMA is 
specified with the obligation rule GenericControlPolicy, 
presented in Figure 6. 
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The ControlPMA must be able to: 
a) Select, using a suitable algorithm, the most 

appropriate lower-level policy to actually implement 
the configuration adaptation, when the event 
AdaptationRequest occurs. 

b) Calculate the selected policy’s specific parameters. 
c) Enable and trigger the selected policy with the 

derived parameters. 
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Figure 7 Enforcement architecture for policy 
adaptation 

 
The enforcement architecture is presented in Figure 7. 

 
1. The ControlPMA receives the event 

AdaptationRequest from the event service.  
2. The ControlPMA invokes a selection algorithm to 

choose a suitable policy from the policy description 
database in the policy service. 

3. The policy service replies with the selected policy 
object.  

4. The enable() method is called on the selected policy 
object, which in turn calls the enable() method  on 
the relevant PMAs. Enabling the policy means that 
policy enforcement objects within the PMAs register 
the obligation event with the event service, as 
described in [7]. At this point, the selected policy is 
activated on its PMAs. In addition, an “old” policy 

can be unloaded or disabled from the corresponding 
PMA’s.  

5. An event is generated with the policy’s calculated 
parameters to trigger the policy.  

6. The obligation event is sent by the event service to 
the registered Policy Enforcement Objects.  
 

5. Service Management over Differentiated 
Services Networks 

  
In our approach, adaptation is enforced by higher- 

level policies. This section presents a usage scenario, 
where network policy that provides Per Domain 
Behavior in a Differentiated Services environment is  
adapted by service management policies. Service 
management policies are enforced by Policy 
Management Agents at the service-level. The latter are 
responsible for the management of services that run 
within the managed DiffServ network.  Section 5.3 
presents how authorisation policy, specified in the 
Ponder notation can be used to control access to the 
services provided in the DiffServ network.  

 
5.1 Per Domain Behavior policies 
 

The IETF DiffServ working group has proposed in 
[9] the term Per Hop Behavior (PDB) to describe the 
behavior experienced by a particular set of packets as 
they cross a DiffServ domain. A PDB is characterized 
by specific metrics that quantify the treatment a set of 
packets with a particular DSCP (or set of DSCPs) will 
receive as it crosses a DiffServ domain. A PDB specifies 
a forwarding path treatment for a specific aggregate. A 
PDB is implemented with a PHB or a set of PHB’s.  

Each PDB has measurable attributes that can be used 
to describe what happens to its packets as they enter and 
cross the DS domain. In our framework, each PDB is 
implemented as a network-level policy rule. Each rule 
guarantees the PDB attributes to the corresponding 
traffic aggregate. Table 1 presents examples of QoS 
guarantees that PDB policies can offer to their 
associated traffic aggregates.  

In our framework, PDB policies are specified as 

Table 1. PDB policies and their QoS characteristics 
 

PDB 
identifier 

Enforcement 
Network Policy 

Assured 
bandwidth 

(Mbps) 

Delay 
(ms) 

Jitter 
(ms) 

Loss 
(%) 

Enforcement 
Routers 

Path 

Time 
when 
valid 

PDB1 /Policies/Policy1 10 ≤ 20 ≤ 3 ≤ 1 <r1,…, rN> Every day 
PDB2 /Policies/Policy2 20 ≤ 10 < 1 ≤ 0.1 <r1,…, rM> Working 

hours 

… … … … … … …  
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Ponder obligation rules. The actual implementation of 
the PDB policy, i.e. the implementation of the PHB (or 
the set of PHBs) that will guarantee the QoS 
characteristics to the corresponding traffic aggregate, is 
hidden from the customer. The customer (a customer can 
be either human or an automated agent) is offered the 
externally observable PDB’s QoS attributes. An 
example of a PDB Ponder policy rule is given below. 
 
Example 1 Policy rule for providing a specific PDB 
 

inst oblig /Policies/PDBPolicy1 { 
subject   /DiffServAgents/DiffServAgent; 
target  r = /DiffServDomainA/Routers/CoreRouters; 
on   PDB1_ConfigRequest(DS, max_input_rate,  
        min_output_rate); 
do  /* DS: The Diffserv codepoint for EF: 101110. PDB1 
is implemented with the EF PHB*/ 
 r.applyEFPHB(DS, max_input_rate, min_output_rate); 
when  max_input_rate <= min_output_rate;  
  /* Property that EF traffic must satisfy */ } 

 
In this example, the PDB policy is implemented with 

the EF PHB. Upon the request PDB1_ConfigRequest, 
the network-level PMA DiffServAgent will invoke the 
applyEFPHB action to all routers that belong in the 
target domain. This way, all core routers within the 
target domain will guarantee low delay and low loss to 
the EF-marked packets. In addition, a minimum output 
rate (throughput) is guaranteed to the EF-marked 
packets, when these packets do not exceed the 
configured maximum input rate at the ingress router’s 
interface. More details on the specification of network-
level DiffServ policies can be found in [10], which also 
describes the generic enforcement architecture within the 
Ponder deployment model.  

Our current implementation extends the Ponder 
toolkit [11] with the functionality to enforce DiffServ 
policies. Policies in the Ponder toolkit are Java RMI 
objects. The DiffServ specific policy actions (e.g. 
applyEFPHB) are methods within the policy object that 
the network-level Policy Management Agents invoke 
when triggered by the configuration request event. 
Policy actions are constructed using the DiffServ 
element classes that the DiffServ implementation [12] 
provides. In this implementation, element classes 
represent DiffServ functional elements (e.g. classifiers, 
filters, meters, droppers, etc). These  classes have been 
modelled based on the DiffServ MIB [13] data model. A 
Java component is used to translate the DiffServ device-
independent element classes to Linux “tc” [14] traffic 
control commands. This translation is done in the 
network-level PMA’s engine. After the translation 
process, the network PMA opens a telnet session and 
downloads the “tc” commands to the policy’s target 
Linux routers.    

We also intend to provide an implementation using 
the SNMP as the management protocol. In this, DiffServ 
functional elements within the PMA are also modelled 
according to the DiffServ MIB, but SNMP will be used 
to communicate the functional elements to the SNMP 
agent at the target device. The latter will have the 
capability of translating the DiffServ MIB objects to the 
corresponding kernel configuration, using “netlink” 
sockets as the communication mechanism between the 
agent (user) and the kernel.     
 
5.2 Service Management policies 

 
Per Hop Domain Behavior policies are enforced by 

DiffServ enabled Network-level PMAs (Figure 7). This 
configures the QoS mechanisms of the managed devices 
within the DiffServ network. However, as we have 
already discussed in section 2, network services 
management requires additional functionality. 

The required functionality that enables dynamic 
service management is provided in our framework by 
Policy Management Agents at the service level. A PMA 
responsible for performing service management tasks 
(ServiceManagementAgent) is a specific case of a 
control PMA in our generic policy adaptation 
architecture, which was explained in section 4.3. In the 
following, we will provide examples of service 
management policies for dynamic service management.  

 
SLS to PDB mapping policy 

 
SLS to PDB mapping can be performed by the 

ServiceManagementAgent when the administrator 
triggers the policy rule SLSMappingPolicy by means of 
an SLS request. 
 
Example 2 SLS to PDB mapping policy 

 
inst oblig  SLSMappingPolicy { 
subject  ServiceManagementAgent; 
on   SLS_Request (SLS_parameters[]); 
do   pdb_policy = 
select_using_algorithmA(SLS_parameters[])-> 
pdb_policy_parameters[] = 
 calculate ( pbd_policy, SLS_parameters[])-> 
pdb_policy.enable()-> 

       EventService.GenerateEvent (pdb_policy’sObligationEvent,  
                   pdb_policy_parameters[]);} 

 
The obligation rule SLSMappingPolicy  instructs the 

ServiceManagementAgent to perform the SLS to PDB 
mapping function upon a SLS request. The SLS request 
conveys the SLS parameters to the agent. These SLS 
parameters and their semantics can be described in a 
formal model for SLS specification. An example for 
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Differentiated Services could be the Tequila’s project 
[15] SLS specification. 

[16] lists and presents the semantics of a set of basic 
SLS parameters when Differentiated Services is used as 
the underlying QoS mechanism.  A “parser” component 
within the Ponder management toolkit is used to 
translate the Tequila’s external SLS specification to 
pairs of <parameter, value>. These pairs are stored in 
the structure SLS_parameters and are conveyed to the 
agent with the obligation event SLS_Request.  

Upon the receipt of the SLS_Request, the 
ServiceManagementAgent will select the appropriate 
PDB policy for this specific service request. An example 
of a selection algorithm is outlined in [17], where the 
PDB is selected according to the triple <delay, loss, 
throughput>.  

The advantage of implementing the mapping 
functionality in the ServiceManagementAgent’s engine, 
is that different mapping strategies can be loaded into 
the agent at run-time and selected by different policy 
rules. If the mapping function is written in a procedural 
language, the implementation of a new mapping 
algorithm would require the recompilation of this 
component to include the new algorithm. In our 
framework, new mapping strategies can be loaded as 
new actions to the ServiceManagementAgent. A new 
policy, with action a new mapping function (e.g. 
selection_algorithmB) will instruct the agent to perform 
the new mapping function. 

 
Policy to handle service’s performance degradation 

 
A number of different adaptation strategies could be 

adopted for handling service’s performance degradation 
(notified by the monitoring service, see Figure 2) at run-
time. There may be a need to dynamically change these 
strategies by replacing a policy within the 
ServiceManagementAgent with a new version or by 
enabling/disabling different versions of the policy. 
Policies provide a more flexible means of implementing 
this type of service-level adaptation than scripts or 
special purpose code. Events indicating high delay, high 
jitter or high packet loss could trigger policies in the 
ServiceManagementAgent. In the following examples, 
we indicate adaptation strategies, which could be 
implemented by Ponder policies for the management of 
the network service that the video client application 
described in section 2 receives, but omit the actual 
policies. In all the examples, we assume that the video 
application receives the EF network service. 

• The monitoring system detects that the EF 
service’s packet delays exceed a threshold so it 
generates a HighDelay event received by the 
ServiceManagement Agent. Corrective actions which 
may be performed include: a) Increase the minimum 

departure rate of the EF traffic to guarantee that the 
service’s packets (especially large ones) will remain in 
the output queue for less time before being transmitted 
to the next hop. b) Notify the client application to 
choose a different state, which requires less bandwidth 
and hence decrease the incoming traffic rate at the 
ingress interface. This way, the EF aggregate will 
experience less delay. 
• Jitter is not reduced by increasing the EF 
service rate, when the EF aggregate is constructed from 
a single microflow. On the contrary, when the EF 
aggregation degree increases, jitter increases rapidly 
with the number of microflows and with the EF load. 
Thus, there are two possible corrective actions for a 
HighJitter event: a) Decrease the number of microflows, 
by degrading other EF traffic to receive a lower service. 
b) Reduce the EF load, by reducing resources assigned 
to the client application. 
• The action for a HighPacketLoss event would 
be to increase the maximum arrival rate of the incoming 
EF traffic. This will reduce the number of packets being 
dropped by the policer at the ingress interface. 
Alternatively, as packet loss is proportional to the 
aggregation degree, the number of EF microflows can be 
reduced, in order to reduce packet loss in the remaining 
EF traffic. 
 
Policy to support changes in routing or link failures 

 
A PDB is usually associated with a path of routers 

within the DiffServ domain (e.g. when using DiffServ 
over MPLS.). When a link fails or routing changes for a 
specific flow, the corresponding PDB may not be 
appropriate for the routers in the new path, or it may no 
longer be suitable. A new PDB must be selected, that 
satisfies the service’s QoS expectations and that can be 
applicable to the new path. This can be implemented 
using the following policy inside the 
ServiceManagementAgent:  

 
Example 3 Policy for configuring DiffServ upon link 
failures or routing changes 
 

inst oblig  PolicyUponRoutingChangesOrLinkFailures { 
 subject ServiceManagementAgent; 
 on routeIsChanged (newPath); 
 do pdb = select_using_algorithmA(SLS_params[], 
       newPath) ->  

/* A PDB suitable for the new path must be selected 
to cater for the service */ 

  pdb.enable() -> 
  pdb_params[] = calculate(SLS_params[]) -> 
  EventService.GenerateEvent ( 
    pdb’sObligationEvent, pdb_params[]); } 

 
This policy instructs the ServiceManagementAgent to 

find a suitable PDB for the service with SLS parameters 
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(SLS_parameters[]) when the path of routers that will 
serve the service’s packets has changed. As in example 
1, different algorithms can be used for the selection of 
the new PDB. 

 
Policy to reflect changes in application or user 
requirements 

 
The user/application may have the ability to demand 

different QoS guarantees at run-time. This means that 
the user or the application itself may change SLS 
parameters at run-time by. As a consequence, network 
policies’ attributes must be changed to support the new 
user’s/application’s requirements. Below follows a 
policy example, which enables the 
ServiceManagementAgent to provide this type of service 
adaptation. 

 
Example 4 Policy for re-configuring DiffServ when SLS 
parameters change at run-time 
 
inst oblig  SLSRenegotiationPolicy { 
subject ServiceManagementAgent; 
on  SLS_Request (new_SLS_parameters[], service_id); 
do pdb_policy = policyService.lookup (service_id) -> 
 new_pdb_policy_parameters[] = 
    calculate ( pbd_policy, new_SLS_parameters[]); 
 EventService.GenerateEvent 
(pdb_policy’sObligationEvent, new_pdb_policy_parameters[]);} 

 
In this policy example, the event SLS_Request 

carries both the new SLS parameters that the 
application/user requires and a unique identifier of the 
client application that requires its SLS renegotiation 
(this identifier could be the Flow Description parameter 
[15] of the Tequila SLS). The PDB policy reference that 
is responsible for this specific service is obtained via a 
lookup() operation on the Policy service, assuming that a 
table containing the service identifiers and their PDBs is 
updated when the initial request for SLS to PDB 
mapping has been succesful. Alternatively, the PDB that 
will guarantee the new service requirements could be 
selected at run-time among the set of implemented 
PDBs, as in the SLSMappingPolicy in the example 1.  
 
5.3 Service Authorisation policies 

 
As we have discussed in section 2 of this paper, 

authorisation should be part of the service management 
system to specify which users are able to access 
particular services or functions within the services. 

Consider a scenario where users request network 
services for their applications through Service Access 
Points (SAPs). Access control agents should be 
implemented at each SAP to interpret authorisation 
policies and control requests related to the service.  

In the following example, the policy rule 
GoldServiceAccessControlPolicy allows only users from 
sites A and C to perform the action of allocating “Gold 
Service” to their client applications. “Gold Service” will 
be allocated to the client application only if the 
requested bandwidth is less than 100 Mbps.  

 
Example 5 Policy for controlling users’ access to a 
particular network service 
 
inst auth+ GoldServiceAccessControlPolicy { 
subject /Users/SiteA_users + /Users/SiteC_users; 
target  ServiceAccessPoint_Agent; 
action allocateGoldService ( client_application, bandwidth ); 
when  bandwidth < 100; }  
 

It possible to permit selected customer administrators 
to access the SAP to set service parameters such as  
changing the bandwidth allocated to the “Gold Service”. 
This can be implemented using the following policy:  
 
Example 6 Policy for controlling access to management 
function within a network service 
 
inst auth+ GoldService_BandwidthControlPolicy { 
subject /Users/SiteA_users/Admins + 
 /Users/SiteB_users/Admins; 
target  ServiceAccessPoint_Agent; 
action allocateBandwidthToGoldService(  bandwidth );  

 
6. Related Work 
 

Various frameworks have been proposed for 
providing service management in QoS enabled 
networks. Many of them propose a Service Level 
Specification to configuration mapping function in their 
architecture. Other research groups are working on 
policy specification and enforcement. Our work aims at 
bringing together these areas, by showing how to use the 
flexibility of a policy based management framework for 
dynamic service management.  

The IETF Policy working group [18] is defining a 
framework for managing QoS within networks, [19]. 
They do not have a language for specifying policies but 
are using the X.500 directory schema. IETF policies are 
of the form if <set of conditions> then do <a set of 
actions>. Directories are used for storing policies but 
not for grouping subjects and targets. They do not have 
the concepts of subject and target that can be used to 
determine to which components a policy applies, so the 
mapping of policies to components has to be done by 
other means (i.e., interface roles). Furthermore, they do 
not support policy rules that can be dynamically 
triggered by events to reconfigure the managed system 
according to changing circumstances. The policy work 
in the IETF seems to be focused only in the network 
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layer and they have not considered the interaction 
between application and network policy. 

 A number of vendors are marketing policy toolkits 
for defining policies for DiffServ enabled networks, e.g., 
[20], [21]. Most of these are similar to the IETF ideas. 
None of them supports a language but they do have 
graphical editors that allow the administrator to define 
individual policies and then explicitly identify the 
enforcement components to which the policies must be 
loaded. None of these tools appear to have considered 
the automation of the policy lifecycle and how to adapt 
the configuration of network elements when conditions 
change. New configurations need to be imposed 
manually by the administrator through the management 
console.  

 In [22], a policy-based management system is 
proposed for managing Service Level Agreements 
within DiffServ networks. They use a tabular 
specification (described in detail in [23]) where a policy 
table contains entries, which map traffic aggregates into 
classes of service. The list of PHBs that different 
devices support is obtained by a resource discovery 
mechanism. Thus, rather than providing a policy-based 
management system for managing the characteristics of 
DiffServ devices, the proposed system only maps 
application flows into predefined and already 
implemented PHBs. Moreover, this system can only 
communicate policies to the enforcement devices during 
the configuration process, initiated by the administrator. 
Configuration can not dynamically be changed at run-
time to reflect changes in the managed environment. In 
addition, the scope of this approach is specifically aimed 
at a management system for a DiffServ network, whereas 
our work is applicable to a wide range of management 
areas.  

A SLS to DiffServ configuration mapping framework 
is proposed in [17]. In their architecture, the 
management system consists of two parts. The first 
performs both the SLS to PDB mapping process and an 
admission control process. The mapping module uses an 
N-dimensional space (e.g. delay, packet loss, and 
throughput) to classify an input SLS into an available 
intra-domain service, which is offered by an 
implemented PDB within the DiffServ network. The 
second is the policy-based control part. This controls the 
SLS mapping and the admission control processes. 
Network policy is used as the device configuration 
mechanism. However, this work does not have any 
concrete proposals for the policy part of the framework. 
Furthermore, the SLS to PDB mapping process is only 
initiated by the user; no actions are undertaken by the 
management system to dynamically select a new PDB 
when network conditions change.  

[24] proposes a contract-based architecture for 
application-level service management. Contracts are 

used for defining, deploying, monitoring and enforcing 
SLAs in a dynamic e-Business environment. A generic 
object-oriented model describes the various sections of a 
contract between a client and a service provider. 
Contracts are managed by a Contract Management 
System, whose main functional components are: a 
measurement, a violation detection and a management 
component. The measurement component is responsible 
for collecting data relevant to service’s QoS parameters. 
The violation detection component retrieves data from 
the measurement component and evaluates if the 
guarantees defined in the contract are met. In case of a 
QoS violation, a notification is sent to the management 
component. The latter, upon reception of a violation 
notification, initiates corrective measures to remedy the 
causes of the violation. The advantage of our proposed 
framework for network-level service management is the  
flexibility to implement dynamically new management 
strategies within the service management system. 

A Customer Service Management (CSM) architecture 
is proposed in [25]. This allows delegation of the service 
management task from the service provider to the 
customer. A CSM module is the basic block of the 
proposed management system. Customers can adjust  
SLS parameters through a parameter setting function 
block within the CSM module. A SLS mapping function 
is implemented within the CSM module, to derive 
device configuration from SLS information.  Our 
framework can provide this functionality, by allowing 
users to trigger the execution of management actions 
within the Service Management Agent.   

The framework proposed in [26] adapts policy 
parameters on monitoring the network. A management 
script includes policies, expressed in the IETF 
representation, and also specifies how the policy life 
cycle should be managed. The script notifies the 
management system about QoS threshold violations. In 
this work, a prototype implementation is provided for 
Differentiated Services, where policy parameters, such 
as the peak rate of a traffic profile, its peak burst size 
and the associated DSCPs, are changed dynamically to 
adapt to system behaviour. The framework we propose 
for the adaptive management of DiffServ can specify, in 
a uniform way, all the necessary information required for 
enforcement and adaptation of policies using obligation 
rules. Furthermore, in addition to providing adaptation 
by changing policy parameters, we can also select new 
policies to be enabled upon events other than just QoS 
violation events.   

The system proposed in [27] for the management of 
QoS in Multi-Protocol Label Switching (MPLS) 
networks, also follows the IETF Policy working group 
approach. They have extended the Common Information 
Model (CIM) policy model with MPLS specific classes. 
This system has the same limitations as the IETF 
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framework.  In [28], IETF’s Policy Core Information 
Model (PCIM) is extended, to provide support for goal 
specification. Service-level goals can be specified to 
enforce QoS on a per-user, per-application basis. 
Monitored data is used to evaluate whether the specified 
goals are satisfied. These service-level goals can be 
expressed in our framework as higher-level obligation 
policy rules.   

[29] presents an architecture for the management of a 
network offering active services. In their architecture, a 
bacterial algorithm forms the basis for the adaptation 
performed by autonomous controllers. These controllers 
are programmed (like a bacterium) to autonomously 
replicate policies that improve its performance and de-
activate policies that degrade performance. This way, 
“useful” policies spread and “poor” policies die out. A 
policy is evaluated though a fitness (revenue-cost) 
function. In this work, each policy is related to one 
active service; policies control the deployment of 
services (proxylets) in their active services environment. 
[30] presents an example of this type of adaptation for 
providing QoS differentiation of active services, where 
the queue length of network servers (DPSs) is adapted to 
provide either short delay or low loss  to service(s), 
depending on the users QoS requirements. Example of 
these requirements (policies or service genes) can be: 
“Accept request for service A if DPS <80% busy” of  
“Accept request for service C if queue length < 20”.   In 
our framework, policies are used in a more generic 
sense, describing the actions that management agents 
must undertake when receiving different types of 
requests. We provide adaptation, in a more systematic 
way, by adapting the policy based management system 
itself, either by changing attributes of policies or by 
removing and adding new policies.  

[31] presents a policy-driven framework for QoS 
management of multimedia applications. They specify 
policy at the application layer using the Ponder 
language, although they rely on violation of  constraints 
to trigger policy rules instead of events. Their QoS 
policy only provides the QoSHostManager component 
with a notification message; the corrective actions which 
are enforced upon QoS violation are described in other 
types of rules. No formal specification is discussed for 
these rules, although they could be specified with  
Ponder’s  obligation policies as well. Furthermore, they 
use the term “adaptation” to refer only to the actions, 
which are taken when a QoS violation occurs. We can  
support the type of adaptation provided in [31], but we 
consider our approach to be more general than theirs. 

[32] presents a QoS Architecture transport system for 
a multicast, multimedia networking environment. It 
offers a QoS configurable API at the transport layer, 
which enables applications to have control over QoS. 
QoS is specified at the API in terms of a flow 

specification, which includes parameters such as delay, 
throughput, jitter etc. and a QoS policy.  The QoS policy 
enables users to advise the infrastructure on how to deal 
with the flow when resource availability changes. A 
distributed QoS adapter interprets the policy and is 
responsible for informing applications when resources 
become available. A QoS adaptation protocol is 
implemented for the communication between QoS 
adapters. Our framework can provide this functionality, 
but also it may apply adaptive behavior in other 
circumstances, as we presented through the examples in 
section 4.   

A lot of work on QoS adaptation has also been 
carried out in the Distributed Systems area, e.g. [33, 34]. 
Most of this work provides adaptation by hard coded 
QoS management and monitoring in middleware systems 
for supporting multimedia applications.  
 
7. Conclusions and Future Work  
 

In this paper we have presented an adaptive policy-
based framework for network services management. Our 
approach provides the administrator the flexibility to 
define network, service management and service 
authorisation policy. Policy is specified in the Ponder 
policy language.  

Network policy rules configure the QoS mechanisms 
of the devices within the target domain. We presented 
how Per Hop Domain Behavior policies are specified 
and deployed automatically to configure Linux DiffServ 
routers. For the enforcement part, we are currently using 
the DiffServ modules of the implementation described in 
[12]. We intend to provide an additional enforcement 
implementation using the SNMP as the management 
protocol. Network rules specified within our framework 
are dynamically triggered by events, in order to change 
the configuration of the managed objects under certain 
circumstances. This dynamic configuration of policy 
forms the basis of the adaptive management our 
framework can provide.  

We presented how policy adaptation in our 
framework is enforced by higher-level Ponder policies. 
Adaptation is provided in one of the following ways: a) 
by dynamically changing the parameters of a QoS policy 
to specify new attribute values for the run-time 
configuration of managed objects and b) by selecting 
and enabling/disabling a policy from a set of pre-defined 
QoS policies at run-time. The parameters of the selected 
network QoS policy are calculated and set at run-time. 
An enforcement architecture for our ideas on policy 
adaptation was also presented. 

Service management policies are a specific case of 
higher-level management policies which adapt the 
underlying network policy. We presented examples that 
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demonstrate how service management policies cater for 
the dynamic management of services in a Differentiated 
Services network.  

Finally, in order to protect network services from 
unauthorised usage, we provide the administrator the 
ability to specify with service authorisation policies 
which users are able to access particular services or 
functions within the services.   

An important issue that needs to be addressed is to 
enhance the functionality of the Service Management 
system to initiate corrective actions which are not pre-
defined. Currently, its task is to adapt the set of 
underlying network policies upon pre-defined 
conditions. However, corrective measures should be 
undertaken to remedy any causes of violations in the 
delivery of the service to the client application. This will 
require the management system to carry out problem 
determination tasks and to perform root cause analysis in 
order to initiate the corrective actions when violations 
are detected. We also intend to experiment with Linux 
based routers as well as commercial routers or switches 
to evaluate the performance implications of executing 
policies on routers. Future work also includes the 
application of our approach to the management of MPLS 
networks. 
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