

Imperial College of Science, Technology and Medicine

University of London

Department of Computing

Trust Management for Internet Applications

Tyrone W. A. Grandison

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of

Philosophy in the Faculty of Engineering of the University of London, and for the Diploma of

the Imperial College of Science, Technology and Medicine

London, July 2003

(To my parents, Lloyd and Pearline)

 iii

Abstract

The Internet is now being used for commercial, social and educational interactions, which

previously relied on direct face-to-face contact to establish trust relationships. Consequently,

there is a need to establish and evaluate trust relationships relying only on electronic

interactions over the Internet. For example, trust plays an important role in all e-commerce

interactions. Customers must trust that sellers will provide the services they advertise, and will

not disclose private customer information. Trust in the supplier’s competence and honesty will

influence the customer’s decision as to which supplier to choose. Sellers must trust that the

buyer is able to pay for goods or services, is authorised to make purchases on behalf of an

organisation or is not underage for accessing services or purchasing certain goods. Thus, trust

management has to be an intrinsic part of e-commerce for it to achieve the same acceptance

levels as traditional commerce. However, business transactions span multiple organisations,

possibly in different countries and not all of these administrative domains may be trusted to the

same degree. A domain may need to support a range of different trust relationships and hence

be capable of supporting different types of security management policy. Applications will need

to be able to navigate through these possibly inconsistent trust relationships. There is a need for

a general-purpose trust management system that supports specification and reasoning about trust

and its relationship to risk and experience for Internet applications. Trust management involves

the specification of trust requirements, the analysis of these requirements to ascertain possible

conflicts and the use of risk and experience information to aid in the on-line monitoring of these

trust relationships.

This thesis presents the SULTAN Trust Management framework, which consists of a simple

notation for specifying trust and recommendation concepts and a set of tools for specifying,

analysing and monitoring trust specifications. The SULTAN notation is simple compared to

other trust notations and caters for the key concepts relating to a trust relationship between a

trustor, the subject that trusts a target entity, called the trustee; the specific context with

associated level of trust, and a set of constraints which must be true for the trust relationship to

hold. Recommendations have similar components and the notation also caters for distrust and

negative recommendation specifications. The toolkit includes a compiler for translating the

Sultan notation into Prolog, and a Prolog-based analysis query builder, as well as pre-defined,

typical queries relating to detecting conflicts or inconsistencies in the trust specification. In

addition to queries about the source specifications, the system caters for queries that are related

to the actual trust scenarios for which state information is held in the system. A monitoring

service updates the experience information on which trust is based. The toolkit also includes a

Abstract

iv

risk service for evaluation of simple risk queries, which can form constraints within a trust or

recommendation.

This thesis also suggests how the SULTAN trust management system can be used to enforce

security, to help in access control and generally to make informed trust decisions. Abstract trust

specifications can be refined to lower-level security authorisations or obligations that are related

to encryption. Authorisation policy can query the trust database for policies dependent on

current levels of trust etc.

This thesis presents a novel analysis of the trust literature, giving a useful classification scheme

for trust contexts and the properties of trust while highlighting the relationship between trust,

risk and experience.

 v

Acknowledgements

I must first thank my supervisor Professor Morris Sloman. This thesis would not have been

possible without him. His guidance, understanding, criticism and support were inspiring and

motivational. I wholeheartedly thank Morris for organising the financial support required for

me to pursue my PhD studies. I am also grateful to all the other members of the Distributed

Software Engineering Group at Imperial College, in particular Dr. Emil Lupu, Dr. Alessandro

Russo and Dr. Naranker Dulay. Their input has been instrumental in this project.

I would also like to thank my colleagues at Imperial College for their friendship and lively

discussions, namely: Dr. Nicodemus Damianou, Dr. Ioannis Georgiadis, Leonidas

Lymberopoulos and Siv Sivzattian. To all my other friends in the Department of Computing

whose names I have forgotten to mention, thank you.

Special thanks to my friends and family who have been a beacon of strength. To my best

friend, Prudence Kahawa. Thank you for understanding when I needed a break and when I

needed solitude. To my parents, Lloyd and Pearline, to whom this thesis is dedicated. Thanks

for providing me with the inspiration to never give up.

 vi

Table of Contents

ABSTRACT...III

ACKNOWLEDGEMENTS ...V

TABLE OF CONTENTS ... VI

LIST OF FIGURES .. XI

LIST OF TABLES ... XIV

LIST OF ABBREVIATIONS ...XV

CHAPTER 1 INTRODUCTION ... 17

1.1 MOTIVATION... 20
1.2 REQUIREMENTS FOR TRUST MANAGEMENT... 21
1.3 OBJECTIVES .. 22
1.4 CONTRIBUTION ... 23
1.5 THESIS STRUCTURE .. 24

CHAPTER 2 BACKGROUND AND RELATED WORK.. 26

2.1 TRUST DEFINITIONS.. 26
2.2 TRUST PROPERTIES... 30

2.2.1 Context of Trust Relationship.. 30
2.2.2 Arity of a Trust Relationship ... 30
2.2.3 Measurability of a Trust Relationship... 30
2.2.4 Applying Mathematical Properties To Trust Relationships 31
2.2.5 Relationship Indicators ... 33

2.3 TRUST CLASSIFICATION.. 34
2.3.1 Access to a Trustor’s Resources.. 35
2.3.2 Provision of Service by the Trustee... 36
2.3.3 Certification of Trustees.. 37
2.3.4 Delegation ... 38
2.3.5 Infrastructure Trust ... 38
2.3.6 Dominant Attributes for Trust Contexts .. 39

2.4 TRUST FORMALISMS... 41
2.4.1 Logic-based Formalisms ... 42
2.4.2 Computational Models .. 45
2.4.3 Human Computer Interaction (HCI) Based Models ... 46

2.5 VIEWS OF TRUST MANAGEMENT.. 48
2.6 CONTEMPORARY TRUST MANAGEMENT SOLUTIONS... 50

2.6.1 Public Key Certificates.. 50
2.6.2 PICS .. 51

Table of Contents

vii

2.6.3 PolicyMaker and KeyNote .. 55
2.6.4 REFEREE.. 58
2.6.5 SD3.. 60
2.6.6 Fidelis.. 61
2.6.7 IBM Trust Establishment Framework ... 62
2.6.8 Trustbuilder Framework ... 64
2.6.9 TCPA ... 66
2.6.10 Poblano Distributed Trust Model.. 68
2.6.11 Emerging Trust Management Solutions .. 68

2.7 SUMMARY... 70

CHAPTER 3 SPECIFYING TRUST .. 72

3.1 REQUIREMENTS FOR A TRUST NOTATION .. 72
3.2 THE SULTAN SPECIFICATION NOTATION ... 73

3.2.1 The trust construct... 73
3.2.2 The recommend construct ... 74
3.2.3 Specifying Policy Names ... 76
3.2.4 Specifying Entity Names.. 76
3.2.5 Specifying Levels ... 76
3.2.6 Specifying Action Sets ... 77
3.2.7 Specifying Constraints... 78
3.2.8 The Trust-Recommendation Interaction.. 82

3.3 MODELLING OTHER NOTATIONS.. 83
3.3.1 Public Key Certificates.. 83
3.3.2 PICS .. 84
3.3.3 PolicyMaker .. 85
3.3.4 KeyNote ... 86
3.3.5 REFEREE.. 87

3.4 THE SPECIFICATION PROCESS... 88
3.4.1 Organizational Diagram Construction ... 89
3.4.2 SULTAN Rule Specification .. 91

3.5 SUMMARY... 92

CHAPTER 4 ANALYSING TRUST... 93

4.1 REQUIREMENTS FOR ANALYSIS.. 93
4.2 HOW TO ANALYSE IN THE SULTAN TMF ... 94

4.2.1 Analysis on the specification source ... 95
4.2.2 Analysis about a scenario ... 97
4.2.3 Detecting cycles... 99
4.2.4 Identifying constraints to be satisfied.. 100

4.3 GENERIC ANALYSIS QUERIES... 101
4.3.1 Trust-Recommend Conflict.. 101

Table of Contents

viii

4.3.2 Recommend Redundancy... 102
4.4 SUMMARY... 103

CHAPTER 5 RISK IN TRUST MANAGEMENT .. 105

5.1 RISK MODELS ... 106
5.1.1 Quantitative Model.. 106
5.1.2 Qualitative Model.. 107
5.1.3 Software Development Risk Model.. 108

5.2 THE PROBLEMS WITH THE RISK MODELS... 110
5.3 SULTAN RISK MODEL .. 111

5.3.1 Determining Risks and their Probability of Occurrences 112
5.3.2 Determining Potential Losses ... 113
5.3.3 Handling Dependencies .. 114
5.3.4 Determining Risk Profiles ... 115
5.3.5 Calculating Risk .. 116
5.3.6 Retrieving Risk Information .. 117

5.4 SUMMARY... 118

CHAPTER 6 EXPERIENCE, MONITORING AND RE-EVALUATION....................... 120

6.1 EXPERIENCE.. 121
6.1.1 Experience Representation.. 121
6.1.2 Usage Strategies.. 121

6.2 MONITORING .. 123
6.2.1 Active Design Architecture.. 123
6.2.2 Passive Design Architecture ... 124
6.2.3 The SULTAN Monitor Architecture .. 124
6.2.4 Updating entity connections.. 126
6.2.5 Updating risk, experience and state information .. 126
6.2.6 Updating action dependency information ... 127
6.2.7 Updating risk profiles.. 128

6.3 RE-EVALUATION... 128
6.4 SUMMARY... 129

CHAPTER 7 SULTAN TRUST MANAGEMENT ... 131

7.1 TRUST MANAGEMENT LIFE CYCLE .. 132
7.2 BASIC DATA STRUCTURES.. 133

7.2.1 Specification Server... 134
7.2.2 Entity-Connections Server... 134
7.2.3 State Information Server ... 135
7.2.4 Risk Likelihood Server .. 136
7.2.5 The Other Risk Calculation Oriented Structures .. 137
7.2.6 The Other Analysis Oriented Structures ... 137
7.2.7 Basic Data Structure Overview... 137

Table of Contents

ix

7.3 SPECIFICATION EDITOR .. 139
7.3.1 Standard Editor ... 139
7.3.2 Compiler.. 141
7.3.3 AST Walker.. 142
7.3.4 SULTAN to Prolog Translator .. 143
7.3.5 External Translators ... 144
7.3.6 Software Hooks ... 145

7.4 ANALYSIS TOOL.. 145
7.4.1 The Console... 147
7.4.2 The Loader .. 148
7.4.3 The Viewer .. 148
7.4.4 Query Statement Builder ... 150
7.4.5 State Manager ... 150

7.5 TRUST MONITOR... 151
7.6 RISK SERVICE ... 153
7.7 TRUST CONSULTANT .. 155
7.8 SUMMARY... 157

CHAPTER 8 USES OF THE SULTAN TMF .. 158

8.1 SIMULATION ANALYSIS .. 158
8.2 USING SULTAN WITH PONDER ... 159

8.2.1 Using SULTAN in Ponder policies.. 159
8.2.2 Refinement of SULTAN rules to Ponder policies .. 161

8.3 NEGOTIATION ... 164
8.4 CONTRACT EVALUATION... 164
8.5 RECOMMENDATION FORMATION.. 164
8.6 INFRASTRUCTURAL SECURITY.. 165
8.7 ACCESS CONTROL DECISIONS .. 165
8.8 RESOURCE ALLOCATION .. 166
8.9 SUMMARY... 166

CHAPTER 9 CASE STUDY.. 167

9.1 OVERVIEW .. 167
9.2 THE PLAYERS.. 167
9.3 PROCESSES AND INFRASTRUCTURE .. 168
9.4 INITIALISATION TASKS ... 168

9.4.1 Organizational Chart Diagram... 169
9.4.2 Asset Repository Construction .. 170
9.4.3 Risk Profile Data... 170

9.5 SPECIFICATION.. 172
9.6 ANALYSIS ... 175
9.7 INFORMATION COLLECTION ... 179

Table of Contents

x

9.8 APPLICATION USE... 181
9.9 SUMMARY... 183

CHAPTER 10 CRITICAL EVALUATION ... 184

10.1 RELATIONSHIP TO RELATED WORK ... 184
10.2 EVALUATION OF THE FRAMEWORK.. 187

10.2.1 Specification Language Design... 187
10.2.2 Analysis Model Design.. 189
10.2.3 Architecture Design... 189

10.3 EVALUATION OF THE IMPLEMENTATION .. 191
10.4 SUMMARY... 193

CHAPTER 11 CONCLUSIONS.. 194

11.1 REVIEW AND DISCUSSION... 194
11.2 FUTURE WORK.. 198

11.2.1 Specification Language ... 198
11.2.2 Analysis Model .. 198
11.2.3 Architecture... 199
11.2.4 Implementation.. 199
11.2.5 General.. 199

11.3 CLOSING REMARKS .. 200

BIBLIOGRAPHY... 201

APPENDIX A SYNTAX SPECIFICATION.. 212

APPENDIX B MISSING DEFINITIONS... 217

APPENDIX C REFINING SULTAN TO TRUST RULES... 219

APPENDIX D SULTAN ANALYSIS MODEL.. 226

APPENDIX E TEMPLATE OF CONFLICTS AND AMBIGUITIES.............................. 244

APPENDIX F SULTAN SPECIFICATIONS MODELLING CONTEXTS 248

 xi

List of Figures

Figure 1.1: Trust Relationship .. 17

Figure 2.1: Service Provision Trust with Competence ... 39

Figure 2.2: Service Provision Trust with Honesty Factor Dominant.. 40

Figure 2.3: Access to Trustor Resources Trust with Competence Factor Dominant 40

Figure 2.4: Access to Trustor Resources Trust with Dependability and Timeliness Factors

Dominant... 40

Figure 2.5: Trustbuilder Negotiation Process ... 65

Figure 3.1: Trust-based Recommendation Scenario ... 83

Figure 3.2: Bob’s Music Warehouse (BMW)... 89

Figure 3.3: Organization Diagram for BMW.. 89

Figure 4.1: The link between Specification and Analysis in the SAM....................................... 94

Figure 4.2: Analysis Types ... 95

Figure 5.1: A typical risky transaction.. 107

Figure 5.2: Interaction of the Components of a Quantitative Risk Model................................ 108

Figure 5.3: The ‘Risk Assessment in Trust Management’ Issues ... 112

Figure 5.4: Stereotypical Example of Resource Value Calculation.. 113

Figure 5.5: Risk Calculation in the SRS ... 117

Figure 5.6: SRS RISK Information Retrieval ... 118

Figure 6.1: Experience, monitoring and re-evaluation.. 120

Figure 6.2: A Generalised Trust Monitor.. 123

Figure 6.3: Overview of SULTAN Monitoring .. 125

Figure 6.4: Computer Id Generation ... 125

Figure 6.5: Monitoring and Analysis .. 128

Figure 7.1: SULTAN Tools and their interactions to the external system................................ 132

Figure 7.2: SULTAN Trust Management Life Cycle ... 133

Figure 7.3: Specification Server.. 134

Figure 7.4: Entity-Connections Server.. 135

Figure 7.5: State Information Server... 136

Figure 7.6: Risk-Likelihood Server .. 136

Figure 7.7: Data Structures, Tools and their connections ... 138

Figure 7.8: Components of the Specification Editor... 139

Figure 7.9: Snapshot of the Specification Editor .. 140

Figure 7.10: Mini-Editor used to update Entity-Connections Database 140

List of Figures

xii

Figure 7.11: SULTAN Compiler Processes.. 141

Figure 7.12: Compiled Specifications for BMW .. 142

Figure 7.13: AST Walker run on BMW specifications... 143

Figure 7.14: Using the SULTAN to Prolog translator on the BMW specifications 144

Figure 7.15: Adding an External Translator ... 145

Figure 7.16: Software Hook to the Risk-Profile Mini-Editor ... 146

Figure 7.17: Analysis Tool – Analysis Engine Connection.. 147

Figure 7.18: Snapshot of the Analysis Tool.. 148

Figure 7.19: Loading a file.. 149

Figure 7.20: Using the Viewer on the Template ... 149

Figure 7.21: SULTAN Query Statement Builder (First Level) .. 150

Figure 7.22: Source Analysis using the SULTAN Query Statement Builder........................... 151

Figure 7.23: More detailed SULTAN Monitor Architecture .. 152

Figure 7.24: SM Client Socket Server Interactions .. 152

Figure 7.25: Architecture of the Risk Service... 154

Figure 7.26: Snapshot of Admin’s interface to Risk Service.. 154

Figure 7.27: Architecture of the Sultan Trust Consultant (STC) .. 155

Figure 8.1: Source Trust Conflict for BMW... 159

Figure 8.2: Deletion then Source Trust Conflict for BMW .. 159

Figure 9.1: Organizational Chart for ResWorld.. 169

Figure 9.2: Compilation Results for ResWorld .. 175

Figure 9.3: Analysis Result for Source Trust Conflict Query... 176

Figure 9.4: Analysis Result for Source Conflict of Interest Query... 177

Figure 9.5: Analysis Result for Source Separation of Duties Query .. 178

Figure 9.6: Re-evaluation Results... 180

Figure 9.7: Translated Trust Consultation Query ... 181

Figure 9.8: Translated Experience Consultation Query.. 182

Figure 10.1: General Conceptual Structure of Contemporary Trust Management Solutions ... 186

Figure 10.2: Basic Architecture of the SULTAN TMF .. 190

Figure F1: Access to Trustor Resources Trust.………………………………………………. 248

Figure F2: Provision of Service by the Trustee Trust ... 249

Figure F3: Another example of Provision of Service by the Trustee Trust 249

Figure F4: Certification Trust (Phase One)... 250

Figure F5: Certification Trust (Phase Two) ... 250

 List of Figures

xiii

Figure F6: Delegation Trust.. 251

Figure F7: Infrastructure Trust.. 252

 xiv

List of Tables

Table 3.1: Key for BMW Organization Chart .. 90

Table 3.2: Action Abstractions for BMW... 91

Table 5.1: Risk Metrics for Jane & Mike.. 107

Table 7.1: Abbreviations for Data Structure Chart ... 138

Table 9.1: Key for ResWorld’s Organization Chart ... 169

Table 9.2: Initial set of actions for ResWorld... 171

Table 9.3: Additional actions for ResWorld ... 172

 xv

List of Abbreviations

ALE Annual Loss Expectancy

ASL Authorization Specification Language

ASP Application Service Provider

AST Abstract Syntax Tree

BAN Burrows, Abadi and Needham

BIOS Basic Input Output System

BMA British Medical Association

BMW Bob’s Music Warehouse

codat Code and Data

CMC Computer Mediated Communication

EAC Estimated Annual Cost

ECTR Electronic Commerce Trust Relationship

EG Expected Gain

EL Expected Loss

GO Guard Object

HCI Human Computer Interaction

IT Interface Thread

LALR Look Ahead Left-to-right parse, Rightmost-derivation

MAL Maximum Allowable Loss

MAS Multi Agent Systems

OS Operating System

 PAL Property-based Authentication Language

PD Prisoner’s Dilemna

pdf Probability Distribution Function

PGP Pretty Good Privacy

List of Figures

xvi

PICS Platform for Internet Content Selection

PKI Public Key Infrastructure

RAID Redundant Arrays of Independent Disks

RAL Role-based Authorization Language

REFEREE Rule-controlled Environment For Evaluation of Rules and

Everything Else

RMI Remote Method Invocation

RT Risk Threshold

SAM SULTAN Analysis Model

SD3 Secure Dynamically Distributed Datalog

SM SULTAN Monitor

SRS SULTAN Risk Service

STC SULTAN Trust Consultant

SULTAN Simple Uniform Logic-oriented Trust Analysis Notation

TCB Trusted Computing Base

TCPA Trusted Computing Platform Alliance

TEF Trust Establishment Framework

TMF Trust Management Framework

TPM Trusted Platform Module

TPL Trust Policy Language

UCI Unique Computer Id

URL Uniform Resource Locator

XML Extensible Markup Language

 17

Chapter 1 Introduction

“Without trust we cannot stand.”
– Confucius [1]

The concept of trust has been widely studied in many other fields, namely: psychology,

sociology, business, political science, law and economics. There is a wealth of information on

trust as it pertains to the human experience. Trust permeates every activity that is performed

and is a key facilitator for current commercial transactions. Encapsulating trust in Internet

applications is also a key enabler for Internet Commerce. A trust relationship is usually

specified between a trustor, the subject that trusts a target entity, which is known as the trustee

i.e. the entity that is trusted (see Figure 1.1). In this thesis, and for the context of Internet

applications, trust is defined as:

“the quantified belief by a trustor with respect to the competence, honesty,

security and dependability of a trustee within a specified context.” [2-5]

Figure 1.1: Trust Relationship

Quantification reflects that a trustor can have various degrees of trust (distrust), which could be

expressed as a numerical range or as a simple classification such as low, medium or high. A

competent entity is capable of performing the functions expected of it or the services it is meant

to provide correctly and within reasonable timescales. An honest entity is truthful and does not

deceive or commit fraud. Truthfulness refers to the state where one consistently utters what one

believes to be true. In this setting, to deceive means to mislead or to cause to err (whether

accidentally or not), while fraud refers to criminal deception done with intent to gain an

advantage. A secure entity ensures the confidentiality of its valuable assets and prevents

unauthorised access to them. Dependability is the measure in which reliance can justifiably be

placed on the service delivered by a system [6]. Thus by definition, we see that a dependable

entity is also a reliable one. Timeliness is an implicit component of dependability, particularly

with respect to real-time systems. Figure 1.1 illustrates a typical real-world trust scenario. A

Trustor Trustee

Trust rel ationship

(for speci fic context)

Chapter 1. Introduction

18

patient trusts a doctor to perform a specific task, say read and interpret X-ray results. This

example not only embodies the definition presented, but also illustrates a few hidden points,

such as the dominant role played by an atribute or set of attributes in a trust relationship. For

example, a particular relationship may have an emphasis on honesty and security, while another

may have an emphasis on dependability. In Figure 1.1, the dominant attribute in the trust

relationship is the doctor’s competence. This issue of the dominance of trust attributes will be

further dealt with in Chapter 2. This completes the introduction to the notion of trust.

However, the related concept of distrust must also be addressed.

Distrust diminishes the spectrum of possible present and future interactions, while trust does the

opposite. Distrust is a useful concept to specify as a means of revoking previously agreed trust

or for environments when entities are trusted, by default, and it is necessary to identify some

entities which are not trusted. In this context, distrust is defined as:

“the quantified belief by a trustor that a trustee is incompetent, dishonest, not

secure or not dependable within a specified context.” [2-5]

The major problem that arises from integrating trust/distrust into the computing world is how to

transform a complex social concept into an easy-to-use technical product that embodies the

basic principles of trust/distrust.

Though trust modelling and interaction in a computer system is a complicated issue, extra

complexity is introduced in the context of the Internet. For a transaction to occur over the

Internet, trust must exist between the consumer and: 1) the technology 2) the transaction

process, and 3) the producer, proxies, third parties and intermediate software agents. This

scenario not only requires a technical solution, but it also requires regulatory and legislative

protections on the transactions themselves. This is a plausible requirement, since it is the

standard for off-line commercial transactions. Traditional commerce uses legal (dis-) incentives

as one of the tools to discourage trust being betrayed. In off-line scenarios, trust can be

generated by legislation and regulation, company policy, personal experiences and or pre-

existing relationships. Building trust into a system requires the inclusion of many factors (e.g.

legislature, insurance, service level agreements, trusting attitudes/propensities, etc.).

Risk and experience are two factors that contribute significantly to the trust decision. Risk

refers to the probability of failure of a transaction with respect to a specific context. Experience

refers to the cumulative view of the interactions (or rather the outcomes of interactions) with

respect to a party within a context. Both concepts are subjective and can be used in the

 Chapter 1. Introduction

19

determination of a trust decision. A very risky venture has a higher chance of being designated

a decision not to trust, while a not so risky transaction will normally lead to a positive trust

decision. Entities with a positive experience stand a higher chance of being trusted for future

interactions, while entities that you have a negative experience with will normally lead to a

distrust decision. There is the additional concept of reputation, which is sometimes confusingly

used in place of experience and/or anonymous recommendation. Reputation refers to

recommendations based on a third parties’ perspective that the subject is willing to accept and

use. These recommendations may be: 1) directed or undirected, and 2) anonymous or signed.

The dominant view taken by current recommendation systems, such as Ebay’s and Amazon’s, is

that a recommendation is by default undirected and anonymous. This view is normally

translated to be the dominant view of reputation. However, reputation is a superset of this

perspective. Thus, there is a difference between reputation, anonymous recommendation and

experience. Having presented the concepts of trust and distrust and highlighted the fact that risk

and experience are important contributors to the trust/distrust phenomena, the concept of trust

management is now defined.

The trust management problem is defined in the following context. There is a large domain of

heterogeneous systems, each with (possibly) different trust requirements and mechanisms.

These systems need to interact securely and seamlessly with each other. They should be able to

interoperate irrespective of prior knowledge of another system and should interact intelligently

with other systems. Simply put, trust management is the management of trust relationships.

Formally, this thesis purports that trust management is:

“the activity of collecting, encoding, analysing and presenting evidence relating

to competence, honesty, security or dependability with the purpose of making

assessments and decisions regarding trust relationships for Internet

applications.” [2, 4, 5].

Evidence may include credentials such as certificates for proof of identity or qualifications, risk

assessments, usage. Thus, trust management involves the acts of specifying trust relationships,

analysing them to uncover new (and/or unwanted) relationships or side-effects and presenting

evidence that can be used to make trust decisions. This evidence should be collected from the

source of the interactions and should be used to allow the subject to adapt his trust requirements

based on this (new information). Thus, trust management also involves the monitoring and (re)-

evaluation of the subject’s trust information. This perspective is the view taken by the Trust

Management Framework (TMF) that will be described in this thesis.

Chapter 1. Introduction

20

1.1 Motivation

Trust is a vital component in every business transaction. Customers must trust that sellers will

provide the services they advertise, and will not disclose private customer information (name,

address, credit card details, purchases etc.). Trust in the supplier’s competence and honesty will

influence the customer’s decision as to which supplier to choose. Sellers must trust that the

buyer is able to pay for goods or services, is authorised to make purchases on behalf of an

organisation or is not underage for accessing services or purchasing certain goods. Thus, for

Internet commerce to achieve the same levels of acceptance as traditional commerce, trust has

to be an integral element of Internet applications. Internet services are increasingly being used

in daily life for electronic commerce, web-based access to information and inter-personal

interactions via electronic mail rather than voice or face-to-face, but there is still major concern

about the trustworthiness of these services. There is a need for a high-level means of specifying

and managing trust, which can be easily integrated into applications and used on any platform.

Typical applications requiring a formal trust specification include content selection for web

documents [7], medical systems [8], telecommuting [9], mobile code and mobile computing

[10-12], as well as electronic commerce [13-20]. The main motivation in studying trust

management is to help the consumer to make more informed decisions.

The migration from centralised information systems to Internet-based applications will mean

that transactions have to span a range of domains and organisations [21], not all of which may

be trusted to the same degree. There is also the added complication that a domain may need to

support a range of different trust relationships and hence be capable of supporting different

types of security policy [22]. For example, IBM Research Labs may support two different trust

systems, say A and B. A uses a declarative programming language to verify that the public keys

of target entities can be trusted and B uses a logic-based language that produces a proof or

disproof of the target’s trustworthiness for the specified context. A and B employ two very

different trust architectures or topologies. Trust relationships specified in the language used by

A may have problems (or may lead to problems) when used by B’s trust topology. Suppose

target X, which has its trust information encoded in a functional trust framework MX6, wishes

to interact with IBM Research Labs. Which trust architecture should or can be used? Is there a

hierarchy of trust with respect to A and B from X’s perspective? Inconsistencies such as these,

both within a domain and across domains, highlight the need for a flexible, general-purpose

trust management system that can navigate these (possibly) complex trust domains.

 Chapter 1. Introduction

21

Currently, trust decisions are hard-coded into an application. This adds to the complexity of the

application, increases its inability to adapt to changes in trust and augments its inflexibility

when trying to set up new relationships. A separation of the application’s purpose and its Trust

Management Framework (TMF) will offer a more scalable and flexible solution for the

distributed environment. This separation leaves the application to focus on its core

functionality. This scenario should lead to a smaller application code base and fewer

application bugs. Thus, this thesis posits that the management of trust at an abstract level,

distinct from the application implementation, will lead to less buggy application source.

Trust forms the basis for allowing a trustee to use or manipulate resources owned by a trustor or

may influence a trustor’s decision to use a service provided by a trustee. Thus, trust can form

an important factor in decision-making [23-25]. Trust can be used by the consumer to help in

making decisions or it can be used to automate the decision-making relating to system

resources, for example, trust information may be used to determine the amount of CPU time

given to different entities, who are trusted at different levels to perform activitites of varying

importance to the trustor. Thus, a useful side-effect of trust management is that it can be used

as the starting point for subsequent refinement into security policies related to authorisation and

management of security [26].

1.2 Requirements for Trust Management

When developing a Trust Management Framework, there are a number of issues that must be

addressed. A TMF should possess the following facilities:

• A clear and semantically well-defined means of specifying trust relationships, i.e. a trust

specification language. This language should also be expressive enough to allow the

specification of relationships that require a diverse combination of trust conditions. These

conditions help to determine if the relationships should be established or not.

• A platform that facilitates the examination of the trust relationships to discover (and

remove) unwanted assumptions.

• A design that integrates the notion of trust non-monotonicity, i.e. the addition of new trust

relationships means that the current set of relationships must be updated. Formally, the

Encyclopedia of Cognitive Science [27] states that:

Chapter 1. Introduction

22

“a logic is called non-monotonic if, given a theory in the logic, adding new

information to the theory may cause one to retract some conclusions which

were previously made.” [27]

• An architecture that is scalable and that facilitates trust decision-making with respect to

Internet applications.

1.3 Objectives

The Trust Management Framework that will be described in this thesis is called the SULTAN

TMF. This TMF is to be used by a system administrator with a global view of the system

resources and needs. The system allows the administrator to encode the trust requirements for

her domain in a trust notation and then to analyse her requirements to ascertain the presence of

latent (and possibly harmful) relationships and to uncover unnecessary (and or unwanted)

assumptions that she has made in her specification. In order to achieve these objectives, the

specification notation should be sufficiently high-level to specify relationships between

computer hardware, public keys, user proxies, etc. The notation should also be flexible enough

to handle positive and negative trust relationships and the specification of the fact that the

trustee may be trusted not to perform some actions. The analysis of trust relationships requires

a framework that is expressive enough to allow the administrator to ask both general queries and

queries that are particular to her organization. The analysis framework should have facilities for

assisting in the query creation process and for handling common problems relating to

established assertions such as cycle detection. Thus, the primary objectives of the SULTAN

TMF is to provide the adminstrator with a useful specification and analysis tool.

Although specifically a tool for the administrator, the SULTAN TMF should be useable by a

domain user who wishes to make a more informed decision relating to engaging in a

transaction. In this scenario, the system helps the user by answering a question posed by the

user. Generally, the answer will provide the domain user with information, based on the

experience of all the domain users, the trust information entered by the administrator and data

gathered by the SULTAN TMF, that may help him in making a decision. Thus, an added

objective of the SULTAN TMF is to provide the domain user with a decision making tool. In

order for such decision-making facilities to be provided, the TMF should contain facilities for

the collection of experience information. This information will also help in determining if trust

relationships should be established, terminated or re-established. In order to model the dynamic

 Chapter 1. Introduction

23

nature of a trust relationship (i.e. it changes over time), information applicable to trust

relationships need to be continuously re-evaluated to ascertain if relationships are still valid. It

becomes obvious that in order for a TMF to function as an effective decision-making tool, it

should contain a facility for monitoring and evaluating information pertinent to the trust

relationships. Due to the fact that risk plays a significant role in trust decision-making, risk

management has to be an important part of a TMF. The level of trust could be inversely related

to the level of risk, ie. high risk, low trust. In order to include facilities for addressing risk, the

TMF must be able to store and retrieve risk information and be able to calculate risk. Thus, a

further requirement of a TMF that is used as a decision-making tool is that it should include a

risk mangement component.

The SULTAN TMF is neither a complete mapping of the social concept of trust nor a

computational model of trust for the computing environment. The SULTAN Framework

addresses the issue of specifying trust relationships, analysing those relationships and using all

the information related to these relationships to enable decision making.

1.4 Contribution

The SULTAN Trust Management Framework is a framework that is designed to facilitate the

management of trust relationships. It is a collection of specification, analysis and management

tools. The primary specification tool is the Specification Editor, which integrates a specification

notation, compiler for the notation, an example translator from SULTAN to Prolog and standard

storage and retrieval facilities. The example translator illustrates that the SULTAN

specification notation can be easily translated to a diversity of languages. Chapter 3

demonstrates that the SULTAN notation can be mapped into current trust policy languages,

which will be discussed further in Chapter 2. This implies that the SULTAN specification

notation can be used as a cross-domain specification platform. For analysis, the key tool is

called the Analysis Tool, which incorporates an analysis notation, a query statement builder that

makes it easier to formulate queries and a template of queries common to most situations, e.g.

conflict of interest, separation of duties, implicit (and possibly dangerous) relationships, etc.

The TMF includes a risk service, a trust monitor and a trust consultant. The risk service

encapsulates the TMF’s risk management strategy. The risk service collects risk information

and performs risk calculations. The trust monitor keeps the information in the SULTAN TMF

up to date, by gathering information on the outcome of transactions that involve domain users.

Chapter 1. Introduction

24

The trust consultant is the component that the domain user interacts with. The user may ask

questions that may help in the determination of a trust decision.

The novel aspects of the SULTAN TMF are that 1) the specification notation is high-level and

refinable to many lower level languages 2) the analysis notation is highly expressive, i.e. a wide

range of queries may be constructed 3) the TMF includes a component that handles risk 4)

information is (re-)evaluated to ascertain if relationships should remain unchanged, i.e. trust

relationships are monitored in order to re-evaluate trust relationships 5) experience (and other

information) is used to enable better decision making.

1.5 Thesis Structure

In Chapter 2, background information on trust and trust management is presented. Current

definitions of trust and their implications are discussed. A review of the properties of trust

relationships will be given and a trust classification scheme introduced. A survey of the

contemporary approaches to trust management, recent trust management solutions and their

problems will be provided.

Chapter 3 presents the SULTAN specification notation. It starts by providing a definition and a

discussion of trust as it applies to Internet applications. Then the requirements for E-Commerce

are highlighted and a detailed overview of the SULTAN Trust Model and Specification

language are given.

In Chapter 4, the issue of how to perform analysis using the SULTAN TMF is presented. A

discussion on how to specify analysis queries is provided and then a template of generic queries

is presented and examples are given to illustrate the use of the analysis notation.

Chapter 5 highlights how the SULTAN TMF incorporates the concept of risk. Particular

emphasis is placed on the SULTAN risk service: its functions and basic operation.

Chapter 6 describes the use of experience, monitoring and (re-)evaluation in the TMF. A brief

discussion on experience and its use is provided. The basics of the monitoring system are also

provided and the topic of the (re)-evaluation of trust specifications is presented.

 Chapter 1. Introduction

25

Chapter 7 is devoted to the SULTAN toolkit. The basic data structures, and the architecture of

the prototype developed to illustrate the ideas presented in this thesis. The components of the

tools used in this prototype will also be discussed.

Chapter 8 presents a description of the ways in which the framework can be used on the

Internet. A general discussion on the possible uses is presented, with examples for added

clarity.

Chapter 9 provides a case study, which incorporates the SULTAN TMF. A critical evaluation

of the framework is done in Chapter 10 and then we conclude and suggest directions for future

work in Chapter 11.

 26

Chapter 2 Background and Related Work

“A complete absence of trust would prevent even getting up in the morning.”
– Niklas Luhman [28]

The theoretical underpinnings of a Trust Management Framework should be explicitly stated in

order to make the issues that it is addressing unequivocally clear. The work on the SULTAN

TMF incorporates and builds on work done in the myriad of research areas. In this chapter, the

basic concepts will be discussed. The various perspectives of trust are highlighted and their

point of convergence identified. The attributes of a typical trust relationship are explicitly

stated. A taxonomy of trust use, which was identified by a literature survey [3], is presented.

Various approaches to solving the trust problem are described. Contemporary viewpoints of

trust management are discussed and current trust management solutions are presented.

2.1 Trust Definitions

Currently, there is no consensus on the meaning of trust in the field of trust management. Due

to the fact that trust is an integral part of human nature, it is normally treated as an intuitive and

universally understood concept. However, intuition is determined by people’s experiences.

Thus, their view of trust will be different based on their experiences. Many researchers have

proposed definitions of trust because they realize that it is unwise to assume an intuitive,

universal and well-understood definition of trust. However, definitions vary depending on the

researcher’s background, outlook on life and the application domain of the problem being

solved.

The Webster dictionary states that trust is:

“An assumed reliance on some person or thing. A confident dependence on the

character, ability, strength or truth of someone or something.”, or “A charge or

duty imposed in faith or confidence or as a condition of a relationship.” or “To

place confidence (in an entity).”

These definitions demonstrate the common interpretations of social context. The Oxford

Dictionary says that trust is:

“the firm belief in the reliability or truth or strength of an entity.”

Chapter 2. Background and Related Work

27

This is a more general view of trust, but it would be difficult to interpret strength generally for

computer science.

Kini and Choobineh [29] in their considerations on the theoretical framework of trust, use the

Webster dictionary’s definition of trust and examine trust from the perspectives of personality

theorists, sociologists, economists and social psychologists. They highlight the implications of

these definitions and combine their results with the social psychological perspective of trust to

create their definition of trust in a system –

“a belief that is influenced by the individual’s opinion about certain critical

system features.”

This definition only expresses system trust, and excludes dimensions, such as trust in a

transaction process and trust in the trustee’s competence, honesty, dependability, etc., which are

critical for Internet applications. The European Commission Joint Research Centre defines

trust as:

“the property of a business relationship, such that reliance can be placed on the

business partners and the business transactions developed with them.” [30]

This view of trust is from a business management perspective and neglects to highlight the

reliance that will need to be placed in the hardware and software infrastructure required to

enable Internet transactions.

According to Lewis and Weigert [31], trust is expressed as:

“observations that indicate that members of a system act according to and are

secure in the expected futures constituted by the presence of each other for their

symbolic representations.”

Their view entails the notion of system members having expectations. However, the definition

seems to assume that expectations are positive. This is not always the case in Internet

Commerce. Mayer and Davis [32] introduce an extra dimension in their definition. They view

trust as:

“the willingness of a party to be vulnerable to the actions of another party based

on the expectation that the other will perform a particular action important to the

trustor, irrespective of the ability to monitor or control that other.”

Chapter 2. Background and Related Work

28

This definition implies an element of being able to monitor trust and re-evaluate a decision.

Zand [33] define trust as:

“the willingness to be vulnerable based on positive expectations about the

actions of others.”

However, this is not always the case in real commerce. I may be willing to be vulnerable when

there is a low value product or service.

In [34], Curral and Judge define trust as:

“an individual’s reliance on another party under conditions of dependence and

risk.”

Dependence implies a strong degree of reliance by all parties involved. This implies that there

is a mutual relationship between the trustor and trustee. This is not a suitable assumption to

make for Internet applications. Mui et al. [35] define trust as

“a subjective expectation an agent has about another’s future behaviour based

on the history of their encounters.”

This illustrates the subjective nature of trust. It also demonstrates the need to learn from past

experiences.

All the above definitions can be easily justified. They highlight the fact that trust is multi-

faceted. However, there is a central theme that can be found in these definitions. This theme is

that trust is a measurable, subjective belief about some action (or set of actions), that this belief

expresses an expectation [36] and that this belief has implications on the features, properties

and or attributes of a system. However, the above definitions do not take into account the

particular needs of a networked environment. Each definition is specific to its area of

application, namely: business, logic, philosophy, social behaviour, etc. This limits their general

use and applicability. This thesis purports that the definition of trust given in Chapter 1 merges

the important aspects of the definitions discussed above and also highlights the principles that

are most appropriate for Internet application. Not only is trust defined as:

“the quantified belief by a trustor with respect to the competence, honesty,

security and dependability of a trustee within a specified context”,

but distrust is also defined as:

Chapter 2. Background and Related Work

29

“the quantified belief by a trustor that a trustee is incompetent, dishonest, not

secure or not dependable within a specified context.”

The definitions make no assumptions about the nature of the entities involved (whether they are

humans, software, hardware, etc.), emphasize the facts that trust is subjective and a belief,

highlight that trust is context-specific, is related to a property (or group of properties) and

illustrate that trust can be either positive or negative.

Current trust management literature [7, 8, 11, 37-59] uses the terms trust, access control,

authorization and authentication interchangeably. This is a mistake. The four terms are distinct.

To demonstrate the difference between trust and access control, a stereotypical example can be

used. Tony trusts Darren to perform network security testing. This does not necessarily imply

that Tony will allow Darren access to the network to perform the tests. The principle is simple:

trust does not necessarily imply access control rights and vice versa. For some situations, it

may be true that trust may lead to access rights being granted, but being trusted does not

automatically mean that access will be given. Authorisation can be viewed as a policy decision

assigning access control rights for a subject to perform specific actions on a specific target with

defined constraints. Thus, authorisation is the outcome of the refinement of a (more abstract)

trust relationship. For example, if I develop a trust relationship with a particular student, I may

authorise him to install software on my computer and hence set up the necessary access control

rights to permit access. Again, a trust relationship may lead to a positive authorisation decision,

but it is not a guarantee. Authentication is the verification of an identity of an entity, which may

be performed by means of a password, a trusted authentication service or using certificates.

Obviously, trust and authentication should not be used interchangeably.

The discussion of definitions of trust here is an abridged one. However, it is sufficient for us to

present a representative sample of the definitions in current literature. McKnight et al. [60],

Lamsal [61], Gerck [62] and Corritore et al. [63] provide a more detailed discourse on trust

definitions in philosophy, sociology, psychology, business management, marketing, ergonomics

and human-computer interaction (HCI).

Chapter 2. Background and Related Work

30

2.2 Trust Properties

Every trust relationship has basic properties to which it adheres. In this section, the

characteristics that were identified and subsequently included in the construction of the

SULTAN TMF are presented.

2.2.1 Context of Trust Relationship

In general, a trust relationship is not absolute – A will never trust B to do any possible action it

may choose. A trustor trusts a trustee with respect to its ability to perform a specific action or

provide a specific service within a context. For example, a person is only trusted to deal with

financial transactions less than $2000 in value.

A trust relationship is always defined with respect to a scenario, situation or context [64]. Even

trust in oneself is not usually absolute and there is a need to protect resources you own from

mistakes or accidents you may cause. Examples include protecting files from accidental

deletion or mechanisms to prevent a person driving a car when under the influence of alcohol.

2.2.2 Arity of a Trust Relationship

A trust relationship can be one-to-one between two entities. It may be a one-to-many

relationship in that it can apply to a group of entities such as the set of students in a particular

year. It can also be many-to-many such as the mutual trust between members of a group or a

committee, or many-to-one such as several departments trusting a corporate head branch. In

general, the entities involved in a trust relationship will be distributed and may have no direct

knowledge of each other so there is a need for mechanisms to support the establishment of trust

relationships between distributed entities. If trustees and trustors are considered to be taken

from the same set (the set of all entities in a domain), then the trust relation can be thought of as

mathematically-defined binary relation. This is a sensible assumption given that the trust

relation is defined on sets (which are collection of one or more entities).

2.2.3 Measurability of a Trust Relationship

There is often a level of trust associated with a relationship [65]. The trust level is a measure of

belief in another entity and thus by our definition, it is a measure of belief in the honesty,

Chapter 2. Background and Related Work

31

competence, security and dependability of this entity (not a measure of the actual competence,

honesty, security or dependability of a trustee).

Some entities may be trusted more than others with respect to performing an action. It is not

clear whether this level should be discrete or continuous. If discrete values are used, then a

qualitative label such as high, medium or low may be sufficient. Some systems support

arithmetic operations on recommendations so numeric quantification is more appropriate. It is

also possible to provide a mapping from qualitative to numeric labels. However, there is still a

problem relating to representation of ignorance (or the unknown) with respect to trust.

2.2.4 Applying Mathematical Properties To Trust Relationships

As a trust relationship is a mathematically-defined binary relation, it is a useful exercise to

determine if the trust relation satisfies any of the common properties of binary relations, which

are reflexivity, irreflexivity, nonreflexivity, symmetry, nonsymmetry, anti-symmetry,

asymmetry, transitivity, nontransivity and intransitivity. This exercise helps to determine which

properties can be used in the analysis of trust relationships. Note that for this discussion, it will

be assumed that the trust relation is defined for a particular context and with a particular trust

level attached. In the rest of this section, the trust relation is referred to as T and xTy represents

the fact that x trusts y for a particular context and with a particular trust level. The set of all

entities is defined as W. Analysis of the properties merges reasoning about the explicit

semantics of their definition and reasoning about their applicability to real-world scenarios.

Reflexivity

T is defined as reflexive if •∀ Wa : aTa. This means that T is reflexive if for all entities in the

domain of interest, every entity trusts itself. An entity may not always trust itself, as it may not

have the necessary competence to perform an action.

Irreflexivity

T is said to be irreflexive if •¬∃ Wa : aTa. This states that there is no entity in our domain

such that the entity trusts itself. PriceWaterHorse may trust itself to carry out in-house software

production. This counterexample shows that trust is, in general, not an irreflexive relationship.

Thus, though irreflexivity may be true for an overly paranoid domain (i.e. a domain that

distrusts everything by default), it cannot be claimed to be true for all domains.

Chapter 2. Background and Related Work

32

Symmetry

T is defined as symmetric if •∀ Wba :, aTb ⇒ bTa. This states that for all entities in W, if

the trustor trusts the trustee, then the trustee will also trust the trustor. If T were symmetric,

then this would imply that trust relationships are always mutual. Jean’s trust in the Norton Anti-

virus Suite to provide her with a virus list update service does not (and should not)

automatically imply that Norton trusts Jean to provide a virus list update service. Thus, trust

relationships are not symmetric; however there may be scenarios where symmetric (mutual)

relationships need to be specified.

Asymmetry

T is said to be asymmetric if •∀ Wba :, aTb ⇒ ¬ bTa. This assertion states that the trust

relation is asymmetric if a trusts b then b does not trust a. The truth of this statement is

dependent on organizational-specific factors. Angie and Brenda may both trust each other to

test the implementation for a collaborative project. In this case, Angie’s trust in Brenda does

not automatically imply that Brenda does not trust Angie. In fact, the converse is true for the

above example. Thus, T cannot be assumed to be asymmetric.

Anti-symmetry

T is defined as anti-symmetric if •∀ Wba :, aTb ∧ bTa ⇒ a = b. This states that if a trusts b

and b trusts a, then a and b are the same entity. Using the example stated in the explanation of

T not being asymmetric, it is clear that the fact that Angie and Brenda have a mutual trust

relationship does not imply that Angie and Brenda are the same person. This property is not

well suited to real-life trust relationships. Therefore, T is not anti-symmetric.

Transitivity

T is defined as transitive if •∀ Wcba :,, aTb ∧ bTc ⇒ aTc. This means that T is transitive

if for all entities a, b and c, if a trusts b and b trusts c then a trusts c. For an entire system, this

is not normally true. Thus, T is not transitive. However, it may be true that •∃ Wcba :,, aTb

∧ bTc ∧ aTc (or even •∃ Wcba :,, aTb ∧ bTc ⇒ aTc). This property may be useful to

computer scientists, whether it be as a form of explanation or as a means to model an interesting

concept.

Christianson and Harbison [66] argue that the concept of transitivity should be avoided at all

costs. They state that a situation may arise where entity b simply adds trust assertions and in so

Chapter 2. Background and Related Work

33

doing creates assertions for entity a, without a’s explicit consent. Such a scenario highlights the

problem of unintentional transitivity. This thesis agrees that transitivity can be dangerous and

may lead to a scenario where attackers simply state that they trust external entities and in so

doing create assertions for a firm. This has potentially disastrous security ramifications for a

firm. However, the concept of transitivity can be useful in modelling notions such as

delegation.

Intransitivity

T is said to be intransitive if •∀ Wcba :,, aTb ∧ bTc ⇒ ¬ aTc. This states that given any

three entities a, b and c, if a trusts b and b trusts c then a does not trust c. Again this is not true

for all trust relationships as contradictions can be found, however, there may be a case where

•∃ Wcba :,, aTb ∧ bTc ∧ ¬ aTc or •∃ Wcba :,, aTb ∧ bTc ⇒ ¬ aTc.

Summary of Results

The trust relation cannot be said to possess any of the common mathematical properties that

binary relations exhibit. This is supported by Gerck’s investigation into real-world models of

trust [62]. It should also be noted that because this relation is not reflexive, symmetric or

transitive, this does not mean that it is nonreflexive, nonsymmetric or nontransitive. By

reviewing the definitions of these properties and changing the world of interest, it can be shown

that T is also not nonreflexive, not nonsymmetric and not nontransitive. Thus, none of the

properties can be applied to trust and thus, none of them can be used as axioms for the trust

relationship. This is due to the nature of the definition of these mathematical properties, the

nature and diversity of distributed systems and or the nature of the trust relation. There are

often cases where the conditions of a particular property may apply to a particular network.

This highlights the need for a TMF to be flexible enough to allow properties to be randomly

included and or excluded.

2.2.5 Relationship Indicators

Trusting behaviour is determined based on a myriad of indicators. Consumers may be willing

to (repeatedly) trust a business, despite the fact that their goals and the goals of the producers

are diametrically different. For example, I know that DKNY is focused on profit maximization

and I know that my personal philosophy is to buy the cheapest goods. However, I still decide to

trust DKNY, repeatedly, for extraneous factors, such as their excellent return policy or their

AMEX-funded reward scheme. Thus, a trust relationship is influenced by market forces, social

Chapter 2. Background and Related Work

34

and interaction cues, legislative mechanisms, assurance systems, insurance and the lack of

choice or effective alternatives. Sometimes my trust propensity may dictate that I stick to

companies, products and services that I know about, irrespective of all the other factors. Some

of these social devices are hard (and possibly unrealistic) to represent in a technological solution

to the trust management problem. However, the factors that can be easily incorporated are

experience and risk.

Experience with an entity determines the level of trust/distrust that will exist in a relationship.

The better the experience that you have had with a business, the more likely you are to trust

them. This implies that 1) experience influences our trust decision 2) there is a direct

relationship between experience and trust. In traditional commerce, the more experience that

can be gained, over a longer period of time, will be a dominant factor in determining trusting

behaviour. Suppose that I have been a customer of PhonyMicroSof for ten years and have had a

majority of bad experiences with them (failures to deliver goods, defective products, etc.).

When faced with an option to trust them or trust another more reliable (or even new) company,

experience would lead to not doing business with PhonyMicroSof. However, there may be

exceptions to this rule. For example, if there is a monopoly on a product or service that is

routinely used, then the product may normally be accepted, in spite of experience information.

Another factor that influences a trust decision is the risk involved in the venture. Risk is an

integral part of our everyday lives. A risk is taken when you cross the street, when you buy a

product from a catalogue or when you give your credit card to a waiter. Risk is normally

expressed in terms of a monetary loss. For transactions, the risk is dependent on a number of

factors, such as the cost of the transaction and the capital loss or gain that could be incurred. A

trust relationship is normally established between trustor and trustee when both can ascertain

that the risk involved in performing the transaction is low. Thus, it becomes apparent that the

basic relationship (or rule) between trust and risk is that the lower the risk, the more trust one is

willing to place. However, there are aberrations from this rule. Danraj may trust a high-risk

venture of low value, but not a medium risk transaction of high value. Gamblers may trust

highly valued, highly risky transactions.

2.3 Trust Classification

Different forms of trust have been identified in the literature relating to whether access is being

provided to the trustor’s resources, the trustee is providing a service, trust concerns

Chapter 2. Background and Related Work

35

authentication or it is being delegated. This is not meant to be an exhaustive taxonomy, but

merely a useful way of classifying the literature relating to trust in Internet services.

2.3.1 Access to a Trustor’s Resources

A trustor trusts a trustee to use resources that he owns or controls, which could be a software

execution environment or an application service [67-69]. Abrams and Joyce [67] highlight the

fact that resource access trust has been the focus for security specialists for many decades,

although the emphasis has mostly been on mechanisms supporting access control.

There is an obvious distinction between trusting an entity to read or write a file on your server

and trusting an entity to execute code within your workstation. Simple file access requires that

the trustee will follow the correct protocol, will not divulge information read, and will write

only correct data etc. Allowing an entity to execute code on your workstation implies a much

higher initial level of trust. The code is expected not to damage the trustor’s resources, to

terminate within a reasonable finite time and not to exceed some defined resource limits with

respect to memory, processor time, local file space etc.

In [67, 68], the authors implicitly map trust decisions to access control decisions. Generally,

resource access trust can form the basis for specifying authorisation policy, which then is

implemented using operating system or database access control mechanisms, firewall rules etc.

The trust relationship can be refined into authorisation policies that specify actions the trustee

can perform on the trustor’s resources and constraints that apply, such as time periods for when

the access is permitted.

Examples of Resource Access Trust:

• Fred is trusted to do Linux installations and Joe is trusted to do NT installations on our

section workstations.

• Third year and above students are trusted to use the parallel processing service.

• I trust XY Cleaners to send someone to clean my house even when I am not there.

• I distrust AB Garage so I will not take my car to be repaired there.

These rather abstract specifications of trust and distrust would need to be refined into specific

authorisations policies that define permitted operations to specific resources.

Chapter 2. Background and Related Work

36

2.3.2 Provision of Service by the Trustee

The trustor trusts the trustee to provide a service that does not involve access to the trustor’s

resources. Note this may not be true of many services such as web services that download

applets and cookies, and so do require access to resources owned by the trustor.

Service bureaux and application service providers (ASPs) [70-72] are prime examples of entities

that would require service provision trust to be established. Currently, in these domains, trust is

often an unstated implication of establishing a relationship, which is difficult to enforce or

monitor. Mobile code and mobile agent based applications obviously must trust the execution

environment provided by the remote system (provision of service trust) but the execution

environment should not be damaged by the mobile code (access to resources trust).

Examples of Service Provision Trust :

• I trust a film recommendation service to only recommend films that are not pornographic.

• I trust website xyz to provide information that is non-offensive.

• I distrust sexy-Susan website.

The above examples are a form of confidence trust in that the trustor has confidence in (or

specifically distrusts) the standard of service provided by the service provider. This type of

trust maps into a form of access control, which is subject-based, in that the subject is only

permitted to access trusted services. This type of access control can be implemented by some

web browser as a means of screening sites visited by children [7, 48, 49, 55, 59, 73].

Some forms of service trust relate to competence of the trustee:

• I only trust fourth year students who have an aggregate A grade to do this project.

• I will only purchase PCs from Company ABC.

A trustor’s trust in the competence of the trustee’s ability to provide a service differs from

confidence trust in that, confidence applies to entities the trustor will use and competence

applies to entities that perform some action on behalf of the trustor.

Another form of service trust relates to reliability or integrity of the trustee. In E-Commerce

and E-Banking, the customer trusts the vendor or bank to support mechanisms that will ensure

that passwords are not divulged and to prevent transactions from being monitored. The vendor

or bank is also trusted to maintain the privacy of any information such as name, address and

Chapter 2. Background and Related Work

37

credit card details, which it holds about the customer. There have been some high-profile

incidents in the UK recently where this trust has been broken. Examples of this form of service

trust are:

• I will store these critical files on Groucho (as it has a RAID file system and it is archived

every 2 hours). Note that in this case the trustee does have access to the trustor’s resources.

• I trust the newsagent to email me an electronic newspaper every morning before 8am.

• I trust my Internet bank not to divulge my name and address to companies for electronic

marketing.

2.3.3 Certification of Trustees

This type of trust is based on certification of the trustworthiness of the trustee by a third party,

so trust would be based on a criteria relating to the set of certificates presented by the trustee to

the trustor. Certificates are commonly used to authenticate identity or membership of a group in

Internet applications [38, 74-79]. This may imply competence if the identity is a well-known

organisation. However, professional certification is a common technique used to indicate

competence in the medical world, commerce and engineering so could be applied to Internet

services [80].

Trustee Certification Examples:

• I trust Dr. Tom’s medical advice site as he is registered with the BMA.

• I will only use downloaded software updates, which have Microsoft certificates.

• I trust only VeriSign to certify programs that can run on my machine.

• I trust anyone with a PGP certificates signed by two people I trust (each must have an

average level of trust in my view).

• I trust the identity of anyone authenticated by the Kerberos server in my domain.

Note that the certification authority is in fact providing a trust certification service so this is a

special form of service provision trust but involves a third party in establishing the trust. There

are many papers discussing this specific form of trust service, which is the reason a separate

classification is included.

Chapter 2. Background and Related Work

38

2.3.4 Delegation

A trustor trusts a trustee to make decisions on its behalf, with respect to a resource or service

that the trustor owns or controls [81]. This is also a special form of service provision – a trust

decision-making service.

Ding and Peterson [81] illustrate a novel way of implementing delegation, with hierarchical

delegation tokens. Their work relies heavily on cryptography. They propose a classification of

delegation schemes, with appropriate protocols, which they analyse, based on efficiency, and

compare with related work. The ideas they express represent lower-level mappings from the

concept of delegation purported in this thesis, in that they concentrate on access control.

Delegation Trust Examples:

• I trust my database manager to decide who has access to my database.

• I delegate all decisions concerning my investments to my financial advisor.

• I accept anonymous authorisation certificates for access to my resources issued by the

WXYZ authorisation service.

2.3.5 Infrastructure Trust

This refers to the base infrastructure that the trustor must trust [67-69]. He must trust himself

(implicit trust). He should be able to trust his workstation, local network and local servers,

which may implement security or other services in order to protect his infrastructure.

It was recognised in early computing that in order to incorporate security (actually resource

access trust) into applications, there was a need not only to implicitly trust the reference

monitor, but also the administrative procedures that kept the monitor working. The culmination

of this work was the U.S. Department of Defense specification for a set of resources, known as

the Trusted Computing Base (TCB) [82] that had to be trusted by all applications executing on a

machine to support the required security policy. The TCB can be viewed as the set of hardware,

firmware and software elements, which are used to implement the reference validation

mechanism i.e. the “validation of each reference to data or programs by any user (or program)

against a list of authorized types of reference for that user” [82]. The TCB was seen as the

primary component of a trusted computer containing all of the system elements supporting the

isolation of objects (code and data) on which the protection is based. It was aimed more at

Chapter 2. Background and Related Work

39

centralised systems implementing information labelling and preventing information flow to

unauthorised users, rather than commercial or networked systems.

Over the years, the TCB has increased in terms of number of components, and therefore size,

leading to a higher probability of it being compromised. To make the PC platform more

trustworthy, an initiative was launched to develop and formalize a trusted PC framework [51].

This initiative is being led by the Trusted Computing Platform Alliance, an amalgamation of

several leading technology companies and research centres.

Infrastructure Trust Examples:

• I trust hardware that has been certified by the Trusted PC Computer Base Certification

Board.

• The PC’s application software trusts the operating system.

2.3.6 Dominant Attributes for Trust Contexts

The importance of competence, honesty, security and dependability depends on the context in

which they are used. However, it is impossible to state that there is a particular combination of

attributes that uniquely define a particular context. This is due to the fact that the example

scenarios for each of these contexts are so varied that a different importance hierarchy may be

found for examples within the same context. In Figure 2.1 it can be seen that the competence of

the Doctor is the most important concern for the patient

Figure 2.1: Service Provision Trust with Competence

This is an example of service provision trust: Doctor is providing a service to Patient. Figure

2.2 is also an example of service provision trust, but here the primary concern of Chris is with

the honesty of CarSalesman.

Chapter 2. Background and Related Work

40

Figure 2.2: Service Provision Trust with Honesty Factor Dominant

These two examples highlight the point that it is impossible to find a particular mix of attributes

that can be used to characterize a particular context. To further emphasize this fact, let’s look at

two examples of Access to Trustor Resources trust.

Figure 2.3: Access to Trustor Resources Trust with Competence Factor Dominant

Figure 2.3 shows that CSG trusts ThirdYearStudents to use DeptPC. From CSG’s perspective,

the important factor is that ThirdYearStudents can use DeptPC competently.

Figure 2.4: Access to Trustor Resources Trust with Dependability and Timeliness Factors

Dominant

In Figure 2.4, Phil’s primary concern is in the dependability and timeliness of ABCCleaners.

Figures 2.3 and 2.4 illustrate further that it is impossible to find a set of attributes that

characterize each trust context. All the examples may be viewed as applicable to Internet

applications by realizing that the trustees in each example can easily be software agents acting

on behalf of real individuals.

Chapter 2. Background and Related Work

41

Figures 2.1 to 2.4 illustrate that it is not very practical to use trust attributes to characterize trust

relationships. From the above discussion, it can be seen that there is very little correlation

between trust attributes and specific types of trust relationships or contexts. Thus, we came to

the conclusion that explicitly modelling the attributes of competence, honesty, security and

dependability in the trust relation and trying to assign values for each attribute would add

considerable complexity with little additional benefit. The trust level represents a belief

measure for these combined attributes, and implicitly gives most weight to those that are most

relevant to the explicitly stated context.

The complexity of estimating levels for individual attributes such as dependability has been

discussed in the literature. Helvik [83] discusses the attributes of dependability (namely:

reliability, availability and safety) and highlights the fact that developing and evaluating

dependability models (even simple ones) is a complex and time-consuming process. Galin [84],

Kan [85] and Littewood and Strigini [86] state that the process of applying software quality

metrics (which include dependability models) to realistic situations is a difficult task that still

requires considerable further research. Thus, formulating, developing and applying a model for

individual measures of honesty, competence, security and dependability would be very difficult

to do for real-time scenarios involving Internet applications.

In this work, we assume that a human administrator would assign an initial value to a trust level,

which combines trust attributes relevant to the context of the trust relationship. Although the

framework allows for a range of integer values, we anticipate the administrator to only make use

of a few discrete values, representing, for example, low medium and high levels of trust.

However, strategies to automatically update the trust levels based on experience can be included

in the framework.

2.4 Trust Formalisms

In this section, the attempts by computer scientists to create formal models of trust are

discussed. These formalisms are based on formal logic representations of the social process of

trust, on computational models that try to convey the core of a trust relationship and on the

application of human cues and economic models in engendering trust in software.

Chapter 2. Background and Related Work

42

2.4.1 Logic-based Formalisms

Trust involves specifying and reasoning about beliefs. Forms of first order predicate logic [46,

64, 87, 88] or (modified) modal logic [89-92] have been used to represent trust and its

associated concepts. A logic used to formalise trust must represent actions and interactions to

cater for distributed agents [93, 94].

Simple relational formalisms are used to model trust with statements of the form Ta b, which

means ‘a trusts b’ [46, 64, 87, 88]. Each formalism extends this primitive construct with

features such as temporal constraints and predicate arguments. Given these primitives,

traditional conjunction, implication, negation and disjunction operators, these logical

frameworks express trust rules (such as trust is not transitive) in their language and reason about

these properties. These simple formalisms are not capable of modelling the trust relationships

found in the Internet. This is discussed in more detailed below.

Burrows, Abadi and Needham [46] propose a language to specify the steps followed in the

authentication process between two entities (resource access protocol analysis). The language is

founded on cryptographic reasoning with logical operators defined to deal with notions of

shared keys, public keys, encrypted statements, secrets, nonce freshness and statement

jurisdiction (for authentication servers and certificate authorities). It should be possible to

answer the following questions about a protocol specified in this language: What does this

protocol achieve? Does this protocol need more assumptions than another one? Does this

protocol do anything unnecessary that could be left out without weakening it? Does this

protocol encrypt something that could be sent in clear without weakening it? The language can

be used to specify protocol assumptions and interactions and appears to be suitable for

modelling trust establishment protocols. In designing the language many simplifying

assumptions were made. As stated in [46]:

“Since we operate at an abstract level, we do not consider errors introduced by

concrete implementations of a protocol, such as deadlocks, or even inappropriate

use of cryptosystems. Furthermore, while we allow for the possibility of hostile

intruders, there is no attempt to deal with the authentication of an untrustworthy

principal, nor detect weaknesses of encryption schemes or unauthorised release

of secrets. Rather, our study concentrates on the beliefs of trustworthy parties

involved in the protocols and on the evolution of these beliefs as a consequence

of communication.”

Chapter 2. Background and Related Work

43

Also, analysis using this language requires a language expert to read through the logical

statements, look at the implications and reason about them.

The Authorization Specification Language (ASL) by Jajodia, Samarati and Subrahmanian [88]

is used to specify authorization rules and makes explicit the need for the separation of policies

and mechanisms. ASL supports the specification of the closed policy model (all allowable

accesses must be specified) and the open policy model (all denied accesses must be explicitly

specified) using a common architectural framework. It also supports role-based access control.

The separation of the concepts of policy and mechanism allows the specification and

implementation of more flexible systems, as the access control model need not be hard coded

into the system. This language is an excellent tool for the specification and analysis of resource

access trust.

Modal logics can be used to express possibility, necessity, belief, knowledge, temporal

progression and other modalities [89-92]. It is an extension of traditional logics (propositional

and predicate). The □ (necessity) operator and the ◊ (possibility) operator are added to the

traditional syntax. The notion of possible worlds (or multiple worlds) is fundamental to the

interpretation of modal logics and simply states that a statement will have a different meaning

depending on the world it is in. Kripke structures are used to represent possible worlds, where a

Kripke structure consists of the set of all possible worlds and an accessibility relation (which

may be referred to as a possibility relation depending on the modal logic). The accessibility

relation states the conditions for which an agent can access a world.

In [91], Jones and Firozabadi address the issue of the reliability of an agent’s transmission.

They use a modal logic of action developed by Kanger, Porn and Lindahl to model agent’s

actions. For example, Ei p means ‘agent i brings it about that p’. They use a variant of a normal

modal logic of type KD45 as the foundation for their belief system. For example, Bi A means

‘agent i believes that A’. The topic of institutional power is incorporated through the use of a

counts as operator. Institutional power refers to the fact that a person performing an act in a

particular institution will lead to the formation of an institutional fact. In a different institution,

this fact cannot be established. For example, a minister performing a marriage ceremony at a

church leads to the fact that two people are married; yet in a different church this fact will not

exist. They adopt the relevant axiomatic schemas into their formalism and use their composite

language to model various trust scenarios. For example, b’s belief that a sees to it that m is

Chapter 2. Background and Related Work

44

expressed as: Bb Ea m . They also use their language to model the concepts of deception and an

entity’s trust in another entity. In their own words:

“We do not investigate the formal representations of procedures by means of

which trust-relations between agents can be established. Assuming the existence

of a trust-relation, we try to make explicit the reasoning patterns characteristic

of a trusting agent.”

This formalism can be easily modified to express and reason about establishing trust, within any

particular context.

Rangan [92] views a distributed system as a collection of agents communicating with each other

through message passing in which the state of an agent is its message history (all sent and

received messages). The state of the system is the state of all the agents in the system. He then

devises conditions that function as his accessibility relation (in this context, possibility relation

is a more accurate term). His model consists of simple trust statements (for example Bi p, which

means ‘agent i believes proposition p’) and properties such as transitivity, Euclidean property,

etc. are defined. These constructs are then used to specify systems and analyse them with

respect to the property (or properties) of interest. Rangan’s model more fluently follows the

traditional lines of modal logics of beliefs than does Jones and Firozabadi’s, but the model is

simpler in the sense of the non-treatment of actions and their effects.

Subjective Logic [19, 23, 95-100] is a logic that operates on subjective beliefs about well-

defined, uncertain propositions. The basic component of this logic is an opinion, which is the 4-

tuple consisting of b – belief in the proposition, d – the disbelief in the proposition, u – the

uncertainty in the proposition and a – the relative atomicity of the proposition. The four

elements are related by the facts that b + d + u = 1 and the probability expectation value is b + a

* u. The relative atomicity expresses the relative weighting of the proposition with respect to

the other propositions defined. The probability expectation value represents the value obtained

when an opinion is translated to a standard probability value. The logic builds on both a

Shaferian belief model and probability calculus. In order to reason about uncertainty, six

operators are defined: conjunction, disjunction, negation, consensus, discounting and

conditional inference. In situations characterized by high uncertainty and quick response times

(‘hard real time systems’), subjective logic produces better results than the classical Dempster-

Shafer model [100, 101]. This model’s strength lies in the ability to reason about the opinions

on a mathematically sound basis by using its operators, which are based on probability density

Chapter 2. Background and Related Work

45

functions and standard logic. However, its major weakness is that it cannot be guaranteed that

users will accurately assign values appropriately. This problem is experienced by most

formalisms, even the computational ones, which will now be presented.

2.4.2 Computational Models

These formalisms take a natural science approach to the trust problem, i.e. a phenomenon can

always be examined by various methods. Computational models provide a mathematical

framework with which trust can be examined. There are two categories of these models:

numerical models and fuzzy logic based models. Both types function in the same manner. Both

model a typical scenario with a typical context and try to explain the trust each agent should

have in each other. Thus, they try to evaluate whether trust should be established and, if it

should be, then what is the appropriate initial trust value.

Numerical models view the trust value as an arbitrary real number that can be used in further

computation, while fuzzy logic models view the trust value as a linguistic label that represents a

(range of) value(s). Fuzzy logic models also define a mathematical framework that allows the

manipulation of these labels. Let’s look at two numerical models and a fuzzy-logic based

models.

Marsh [64] introduced his computational model of trust to the distributed artificial intelligence

community in 1994. Trust is represented in his model by a subjective real number between -1

and +1. He assumes that trust is separated into three aspects: basic, general and situational trust.

He devises a notation for basic and general trust and outlines a formula for determining

situational trust taking into consideration agent dispositions, cooperation, risk, competence,

memory and reciprocation. The problems with his model are:

• the model exhibits anomalous behaviour when the trust value is –1, 1 and 0,

• the representations of agent dispositions etc are simplified versions of reality,

• the model has problems dealing with negative trust and its propagation, and

• the operators for manipulating trust values are limited.

In ‘Computational Model of Trust and Reputation for E-businesses’, Mui et al. [35] describe

their numerical model of trust. Their model is based on the concepts of trust, reputation and

reciprocity. Reputation (c.f. experience) is defined as the perception that an agent creates

through past actions about its intentions and norms. Reciprocity is defined as the mutual

exchange of deeds (such as revenge or favour). Their model is based on a cyclic, re-enforcing

Chapter 2. Background and Related Work

46

relationship between the three concepts. A notation is defined that allows for the simple actions

of cooperate or defect and the assignment of real values for reciprocity and reputation. A

cooperate action signifies that both parties will engage in a relationship, while a defect action

signifies otherwise. A mathematical model for determining trust given simple representations

for an encounter and history and for propagating reputation information is formulated. The

problems with this model are that:

• it is hard to accurately initialise values for reciprocity and reputation,

• it assumes that trust is inferred only from reputation, and

• its reputation propagation mechanism only works for simple networks.

In [25], Manchala proposes a model for the measurement of trust variables and the fuzzy

verification of E-Commerce transactions. He highlights the fact that trust can be determined by

evaluating the factors that influence it, namely risk. He defines cost of transaction, transaction

history, customer loyalty, indemnity and spending patterns as trust variables. Each variable is

measured using semantic labels. His notation is focused on defining when two trust variables

are related by an Electronic Commerce Trust Relationship (ECTR). Using this ECTR, a trust

matrix is constructed between the two variables and a Trust Zone is established. He also

describes a method for trust propagation and the construction of a single trust matrix between

vendor and customer that governs the transaction. The problem with Manchala’s model is that

1) it is unclear which variables should be used by default for the best results, 2) it is unclear if it

is actually possible for a computer to automatically establish that two variables are related by an

ECTR. In his definition, he mentions a semantic relationship between the variables, but

neglects to mention how this fact will be specified to the computer so that evaluation can be

automated and 3) it is unclear if ECTR merging will scale in the face of large trust matrices.

These concerns are all related to the viability of implementing his model.

Let us now discuss models that focus on the HCI community’s efforts to model trust.

2.4.3 Human Computer Interaction (HCI) Based Models

People trust other individuals by using a set of social clues, such as a gaze, facial expression,

and subtle details of their conversational style. The absence of similar cues online led the HCI

community to investigate how such trust could be engendered using technology. HCI-based

models [102-106] are concerned with how trust is developed between two interacting

individuals using computer-mediated communication (CMC) technology (chat, audio, email,

Chapter 2. Background and Related Work

47

video). These formalisms seek to answer the questions: To what extent do users evaluate and

establish trust with each other via CMC technology? What are the conditions necessary to

establish trust for a collaborative project using CMC technology? When trust is established,

what is the initial level of trust? Which CMC technology is best for producing trust levels

comparable to levels produced by standard face-to-face interactions? And how can the

trustworthiness of CMC technology be increased? There are two dominant types of HCI-based

models of trust, namely: social models or economics-based models.

The social models [107-110] incorporate the use of CMC technology and human interaction

cues to either assess the trustworthiness of entities [107, 108, 110] or to help in the design of

trustworthy interfaces [109]. These models take into account the notions of the user’s

psychology (propensity to trust, trust in IT and the Internet, utility, usefulness, risk), reputation

information (reputation of the industry, of the company and information from trusted third

parties), interface properties (branding, usability), information quality and pre-transaction and

post-transaction relationship management [111]. The major problem with these models is that

they are essentially design methodologies with little or no tool support and with too many

complex social notions. For interacting Internet applications, it would be hard to incorporate

these types of models.

Economics-based models assume that individuals make trust choices based on rationally derived

costs and benefits [112]. They are based on game theory and firmly rooted in experiments and

surveys to identify the action that should be taken by individuals embarking upon an interaction.

Most economics-based models [29, 113, 114] are founded on the Prisoner’s Dilemna (PD) game

[115, 116]. The game is defined as follows: There are two men, A and B who are charged with

a joint law violation, being held separately by the police and given three options. The first

option is that someone confesses, say A, and B does not, then A will be rewarded and B fined.

The second option is that if they both confess, each will be fined. The final option is that if

neither confesses, both will go clear. So, should each man cooperate (keep quiet) or defect

(confess)? Ideally, if all the parties are rational, then the best independent choice to make is

defection. This may not lead to the optimal utility for each player, but a player will not find

himself at a relative disadvantage. Researchers of economic-based HCI trust models use PD

games to design experiments to evaluate the actions of participants engaging in cooperative task

using various CMC technologies. The trust level is determined by the rate of cooperation,

which is measured by the collective payoff. The problems with these models are that PD games

Chapter 2. Background and Related Work

48

are 1) synchronous and thus cannot be applied to all trust scenarios and 2) too simple to model

an E-Commerce application that includes many other factors such as experience, etc.

There are models that combine both the social and economics perspectives [117, 118]. These

models tend to be based on more rigid game theory, which allows for better modelling in a

wider range of situations. They also include specific social concepts that they consider pertinent

to the trust problem and thus avoid the complexity of trying to model complex social ideas.

HCI-based models address the problem of trying to model the social trust building process and

apply it to the user’s trust in an interface, which is a representation of another person or firm.

This approach bridges the gap between human and computer and offers an important starting

point for developing trustworthy system. However, it does not discuss the issues involved when

multiple software agents, acting on behalf of real persons, must interact in a computer network

environment. HCI-based models assume that the use of human-like interfaces

(anthropomorphism) will allow interfaces to be viewed as more trustworthy. However,

anthropomorphism can diminish trust when interfaces do not meet expectations [119]. HCI-

based models address part of the trust problem. They tackle the issue of how

anthropomorphism can be used to engender trust in technology. Stated more generally, HCI

trust models try to show how to engender trust in technology by using technology.

2.5 Views of Trust Management

The paper by Blaze et al. [39] was one of the first to introduce the term trust management,

although prior security solutions for networked applications had an implicit notion of trust

management based on PGP [75] or X.509 public-key certificates [38, 74]. Blaze et al. defined

trust management as:

“a unified approach to specifying and interpreting security policies, credentials,

relationships which allow direct authorisation of security-critical actions.” [39]

Although, this was the dominant view of trust management until the turn of the century, it is

flawed. The reason for this flaw is embedded in the dilemma faced by the security community

at the time. The dilemma is defined in the following context. The Internet was not designed

with security in mind. Cryptography was used as a solution to the network’s security problems,

but the problem with cryptography was that it required a complex key management

infrastructure. The solution to this problem was to create public key infrastructures (PKIs). The

Chapter 2. Background and Related Work

49

trust in the certificate authority and the keys in a PKI led to a trust problem, which is the trust

management problem that Blaze refers to. Thus, [39] does not focus on the problem of

managing trust, but on the problem of managing public key authorisation. Blaze’s problem can

be succinctly stated as that of allowing public keys to be authorised and linked directly to their

allowable actions.

In [120], Josang and Tran define trust management as:

“the activity of collecting, codifying, analysing and presenting security relevant

evidence with the purpose of making assessments and decisions regarding E-

Commerce transactions.”

This definition offers a broader, more abstract and more intuitive interpretation of the trust

management problem than presented in [39]. Josang and Tran stress the need for trust

assessment to be based on evidence that can be practically collected and then used for decision-

making. This emphasis is made because systematic and reliable ways of obtaining evidence in

the e-commerce environment are non-existent. However, [120] neglects to expound on the

issues surrounding the encoding, analysis and presentation of this evidence.

In this thesis, trust management is defined as:

“the activity of collecting, encoding, analysing and presenting evidence relating

to competence, honesty, security or dependability with the purpose of making

assessments and decisions regarding trust relationships for Internet

applications.” [4, 5]

Evidence could include credentials such as certificates for proof of identity or qualifications,

risk assessments, usage experience or recommendations. Analysis includes identification of

possible conflicts with other trust requirements. Thus, trust management is concerned with

collecting the information required to make a trust relationship decision, evaluating the criteria

related to the trust relationship as well as monitoring and re-evaluating existing trust

relationships. A more comprehensive discussion on trust management, as it pertains to this

thesis, is given in Chapter 7, but now let’s discuss some of the current trust management

solutions.

Chapter 2. Background and Related Work

50

2.6 Contemporary Trust Management Solutions

Most trust management systems focus on protocols for establishing trust in a particular context.

Some make use of a trust policy language to allow the trustor to specify the criteria for a trustee

to be considered trustworthy. In this section, a few of these solutions, namely: Public Key

Certificates, PICS, PolicyMaker, KeyNote, REFEREE, SD3, Fidelis, IBM TEF, TrustBuilder,

TCPA, Poblano and a few other emerging trust management solutions, will be discussed.

2.6.1 Public Key Certificates

A digital certificate is issued by a certification authority and verifies that a public key is owned

by a particular entity [75]. The certification authority does not vouch for the trustworthiness of

the key owner, but simply authenticates the owner’s identity. This is necessary to establish a

resource access or service provision trust relationship and may implicitly reduce the trustor’s

risk in dealing with the trustee [80]. However, the policy governing what resources or services

the trustee is permitted to access is not handled by the certificate infrastructure, but is left up to

the application. Two of the main certificate systems dealing with authentication, PGP and

X.509, are described below.

The PGP trust model [75] is used for authentication relating to electronic mail type of

applications between human users. It supports a Web Of Trust model in that there is no

centralised or hierarchical relationship between certification authorities as with X.509. The

underlying assumptions of the model are that a trustor may trust other entities, may validate

certificates from other entities or may trust third parties to validate certificates. An introducer is

an entity that signs someone else’s public key (and thus vouches for a name-public key

binding). A meta-introducer can sign keys as well as specify who is a (trusted) introducer.

Thus, any entity can function as a certification authority. Every key that a user trusts or signs

has to have a degree of trust associated with it, namely: unknown, untrusted, marginally trusted

or completely trusted. It is also assumed that a user has an implicit trust (the highest form of

trust in this model) in her own key. It is possible to use these labels to specify complex criteria

about the trustworthiness of keys. For example, a user can specify that she only completely

trusts a key if it is marginally trusted by a meta-introducer and completely trusted by a (trusted)

introducer. Once keys are registered (along with their degree of trust) with the PGP system,

then it computes a validity score (this measures how sure we are that this key belongs to this

Chapter 2. Background and Related Work

51

person). It is now the responsibility of each entity to query the system and to acquire keys as

they are needed.

The X.509 trust model [38, 74] is a strictly hierarchical trust model for authentication. Each

entity must have a certificate that is signed by the central certification authority or another

authority, which has been directly or indirectly certified by it. This model assumes that

certification authorities are organised into a universal ‘certification authority tree’ and that all

certificates within a local community will be signed by a certification authority that can be

linked into this tree [39].

It is important to note that neither of these models can be used to model trust in all domains.

Due to PGP’s lack of official mechanisms for the creation, acquisition and distribution of

certificates it is considered unreliable for E-Commerce, but appropriate for personal

communication. X.509’s rigid hierarchical structure may lead to unnatural business alliances

between competing companies that violate the natural order of trust. Some applications, such as

the reference information distribution systems need certificates to have a lifespan longer than is

currently allowed by either scheme. Additionally, current PKI implementations contain no

systematic and reliable method of obtaining evidence about entities involved in an Internet

transaction [120].

2.6.2 PICS

PICS (Platform for Internet Content Selection) was developed by the World Wide Web

Consortium (W3C) as a solution to the problem of protecting children from pornography on the

Internet. The basic idea behind PICS is that there needs to be a filter between the potential

viewer and web documents. It is a result of the ‘Censorship of the Internet’ debate that took

place in the US legislature. PICS defines standards for the format and distribution of labels,

which are meta-documents describing web documents. It does not specify a vocabulary that a

label must use, nor does it state which labels are important for a particular circumstance. It is

similar to stating “where on a package a label should appear, and in what font it should be

printed, without specifying what it should say” [7] or what part of the label is important. A

PICS-compliant application should be able to read PICS labels and use the user-defined filtering

rules to decide whether to accept or reject the document. PICS makes no assumptions about the

number of labels that can be attached to a document. In concept, a document may have several

labels that may be issued by different organisations. A user has the right to choose any PICS

filtering software and any label source (this entity is called a rating service).

Chapter 2. Background and Related Work

52

A rating system defines the label attributes and their corresponding range of values used by the

rating service. The following example is adapted from the W3C Recommendation on rating

services and rating systems [59].

((PICS-version1.1)
(rating-system “http://www.doc.worldwide.com/ratings/”)
(rating-service “http://www.doc.worldwide.com/descrip.html”)
(icon “icons/good.gif”)
(name “The Computing Department Rating System”)
(description “All about the rating of the pages offered by computing departments all over the world”)
(category

(transmit-as tc)
(name “Teaching Material Content”)
(min 0.0)
(max 5.0)

)
(category

(transmit-as rc)
(name “Research Content”)
(label (name “very little”) (value 0) (icon “icons/little.gif”))
(label (name “a lot”) (value 1) (icon “icons/lots.gif”))

)
(category

(transmit-as subject)
(name “Document Subject”)
(multivalue true)
(unordered true)
(label (name “SE”) (value 0))
(label (name “AI”) (value 1))
(label (name “PC”) (value 2))
(label-only)

)
(category

(transmit-as ref)
(name “Number of references to other computing sites”)
(integer)

)
(category

(transmit-as importance)
(min 0)
(max 100)

)
)

The first section identifies the version of PICS being used, the rating system and the rating

service. The URL in the rating-system clause specifies the location of the document that has the

human-readable description of the rating system. The URL in the rating-service clause

identifies the document with the human-readable description of the rating service. This URL

will also be included in all labels created by this service. The icon, name and description

clauses are self-explanatory. The rest of the example specifies five label attributes; each

identified by the keyword category. Each category has a transmission name and may be

followed by clauses that define the attribute’s allowable values. The BNF for the syntax of a

Chapter 2. Background and Related Work

53

rating system can be found in [59] and a sample PICS label that uses the above rating system is

shown below.

((PICS-version1.1)
“http://www.doc.worldwide.com/descrip.html”
labels on “1998.11.05T08:15-0500”
until “1999.09.32T23:34-0000”
for “http://www-dse.doc.ic.ac.uk/~per/index.html”
by “Joe Green”
ratings (tc 1.0 rc “a lot” subject “SE” ref 19 importance 90)

)

The above example identifies the rating service that created the label, sets the lifespan of the

label, identifies the page being labelled, the person labelling the page and the actual values of

the label’s attributes. More complex labels can be constructed using the PICS label syntax

described in [59]. There are three ways that labels can be distributed, namely: they can be

embedded in web documents (through the use of a META tag); they can be requested by a user

(the HTTP GET is used to request both the label and the web document) and they may be

requested separately from label bureaux.

The W3C has also published the PICSRules recommendation, which describes a rule-based,

filtering policy language. Some policies expressed in PICSRules (version 1.1) are now given,

adapted from [55].

(PicsRule-1.1
(

Policy (RejectByURL (“http://*@www.doc.ic.ac.uk*/*”
 “http://*@www.yahoo.com*/*”)
)
Policy (AcceptIf “otherwise”)
)

)

The above example states that access to any Yahoo web page or any site at the department of

computing at Imperial College is forbidden, but access to any other page is permitted. It does

not use PICS labels.

(PicsRule-1.1
(

ServiceInfo (
name “http://www.raters.org/ratings/v1.html”
shortname “serv”
bureauURL “http://labelbureau.raters.org/Ratings”

)
Policy (RejectUnless “(serv.pics)”)
Policy (AcceptIf “((serv.pics > 3) and (serv.nudity = 0))”)
Policy (RejectIf “otherwise”)

)
)

Chapter 2. Background and Related Work

54

The above example sets the rating service in the ServiceInfo and uses the labels from the service

to select pages. It states that all pages with labels must have the pics attribute in order for them

to be viewed. Additionally, the pages must have a pics attribute with value of three or more and

also the nudity attribute should be equal to zero in order to be allowed. All other pages will be

rejected.

(PicsRule-1.1

(
name (

rulename “More Complex”
description “Highlight more features of PICSRules”

)
source (

sourceURL
“http://www.complex.com/complex.html”)

)
ServiceInfo (

name “http://www.doc.ic.ac.uk/ratings/v1.html”
shortname “DOC”

)
ServiceInfo (

name “http://www.raters.org/ratings/v1.html”
shortname “serv”
bureauURL “http://labelbureau.raters.org/Ratings”

)
Policy (RejectByURL (“http://*@www.badnews.com:*/*”

“http:// *@www.baddernews.com:*/*”)
)

Policy (AcceptByURL “http://*good-entertainment.org/plays*”)

Policy (AcceptIf “(DOC.educational = 1)”

Explanation “Always allow educational content”
)

Policy (RejectIf “(DOC.violence >= 4)”
Explanation “This is too scary”

)
Policy (RejectUnless “(serv.graphics < 4)”)
Policy (AcceptIf “otherwise”)

)
)

In the above example, the name clause defines a human readable name for the rule and a

description. The source clause specifies where the rule came from. The source URL may

contain a document that has information about the rule. The first ServiceInfo clause specifies a

rating service that the user wishes to use, giving it an alias. The absence of the bureauURL tag

means that only embedded labels will be used. The other clauses reject pages from two sites,

accept good plays, allow educational documents, reject documents with too much violence

(unless they are educational), block any page with too many graphics (with the exceptional of

educational documents) and allow all other pages. The BNF of the PICSRules syntax is

outlined in [55]. PICSRules is a powerful tag-based language that allows resource-access trust

Chapter 2. Background and Related Work

55

on the Internet. The effectiveness of the PICS framework lies in the expressiveness of the

filtering languages and the quality of the rating services.

2.6.3 PolicyMaker and KeyNote

PolicyMaker [40, 42, 43, 56] is a trust management application, developed at AT&T Research

Laboratories that specifies what a public key is authorised to do [39]. Traditional certificate

frameworks such as PGP and X.509 do not bind access rights to the owner of the public key

within the certificate framework. Schemes such as these require a two-step process: a) the

binding of a public key to its owner, which occurs within the certificate framework, and b) the

binding of access rights to the identified key owner, which occurs outside the certificate

framework. In PolicyMaker, both occur in a single step that binds access rights to a public key.

The PolicyMaker system is essentially a query engine which can either be built into applications

(through a linked library) or run as a ‘daemon’ service. It evaluates whether a proposed action

is consistent with local policy [7]. The inputs to the PolicyMaker interpreter are the local

policy, the received credentials and an action string (which specifies the actions that the public

key wants to perform). The interpreter’s response to the application can either be yes or no or a

list of restrictions that would make the action acceptable. A policy is a trust assertion that is

made by the local system and is unconditionally trusted by the system. A credential is a signed

trust assertion made by other entities and the signatures must be verified before the credentials

can be used. Policies and credentials are written in an assertion language. The syntax of an

assertion is:

Source ASSERTS AuthorityStruct WHERE Filter

Source represents the source of the assertion, AuthorityStruct represents the public key(s) to

whom the assertion is applicable and Filter is the predicate that action strings must satisfy for

the assertion to hold. Filters are interpreted programs that can accept or reject action strings.

Note that Policymaker does not stipulate that a particular filter language (or assertion language)

has to be used. Any safe interpreted language can be used to implement either of these

languages. Filter programs take as input, the current action string and the environment, which

contains information about the current context (e.g. date, time, application name, etc.). This

environment can be used by the filter to enforce contextual constraints such as expiration times.

A filter also has access to information about the rest of the chain in which it is being evaluated,

which makes it possible to design certificates that limit the degree to which their authority can

be deferred. Although the filter language interpreter is external to PolicyMaker, the name of the

Chapter 2. Background and Related Work

56

language is given in assertions and must be known by anyone who needs to use the assertion.

Any unknown or unsupported filter languages are ignored by PolicyMaker.

The prototype for PolicyMaker had three associated assertion languages: AWKWARD (a safe

version of AWK), Java and Safe-TCL. It was hoped that leaving the assertion language an open

issue would mean flexibility and greater programmability for PolicyMaker. However, it was

realised that the choice of an assertion language can affect the decision processing in

PolicyMaker. For a local policy, the source is always policy. The following policy specifies

that any doctor who is not a plastic surgeon should be trusted to give a check-up.

policy
ASSERTS doctor_key
WHERE filter that allows check-up if the field is not plastic surgery

For Policymaker to make a decision there must be at least one policy in the input supplied to it

from the trust database. The following credential states that the BMA asserts that the person

with key “0x12345abcd” is not a plastic surgeon.

BMA_key
ASSERTS “0x12345abcd”
WHERE filter that returns “not a plastic surgeon”, if the field is not plastic surgery

An assertion (whether policy or credential) states that the source trusts the public keys in the

authority structure to be associated with action strings that satisfy the filter. It is important to

note that assertions can modify the action strings that they accept, through the use of

Annotations. Annotations are essentially a mechanism for communication between assertions

(inter-assertion communication), as well as communication between the application and the

credentials. This allows PolicyMaker to append conditions to the action strings, if necessary. A

query to the PolicyMaker interpreter has the following format:

key1, key2, key3, ……… REQUESTS ActionString

To check if “0x12345abcd” is allowed to give me a check-up, the interpreter is asked:

“0x12345abcd” REQUESTS “do check-up”

The semantics of the action string is not known to PolicyMaker. The processing of the action

strings, as well as signature verification, is left entirely up to the calling application. Action

strings are generated and interpreted by the calling applications. The filters however should

have knowledge of the action strings. The fact that signature verification is done by the calling

application means that any signature scheme can be used, once the application provides the

appropriate programs to perform the verification. This allows Policymaker to exploit existing

signature schemes. PolicyMaker uses the credentials given to it to prove that the requested

Chapter 2. Background and Related Work

57

action complies with the policy (this process is referred to as compliance checking [40]). In

summary, an application gives the PolicyMaker engine, a (set of) requested action(s), a set of

credentials and a policy and the engine tries to prove that the credentials contain a proof that the

requested action(s) complies with the policy.

KeyNote [41, 44, 45], the successor to PolicyMaker, was developed to improve on the

weaknesses of PolicyMaker by AT&T Research Laboratories. It has the same design principles

of assertions and queries [42, 44, 45] but includes two additional design goals, namely:

standardisation and ease of integration [45]. In KeyNote, more is done in the trust management

engine, rather than in the calling application (as was the case in PolicyMaker). Signature

verification is done in the KeyNote engine and a specific assertion language is used.

PolicyMaker allowed any choice of assertion language, which made its compliance checker

difficult to integrate with applications. KeyNote’s predefined assertion language allows simpler

integration with its compliance checker. The KeyNote engine is passed a list of credentials,

policies, the public keys of the requester and an ‘Action Environment’ (which is essentially a

list of attribute-value pairs) by the calling application. The action environment is generated by

the application and contains all the information relevant to the request, and so accurately reflects

the application’s security requirements. Identifying the attributes of this environment is the

essential task in integrating KeyNote into any application. The result of the KeyNote evaluation

process is an application-defined string, the simplest response being ‘authorized’. The KeyNote

assertion format is similar to email headers and is outlined in [45]. An example of a KeyNote

assertion, taken from [42], is:

KeyNote-Version: 1
Authorizer: rsa-pkcs-hex:”1023abcd”
Licensees: dsa-hex “986512a1” || rsa-pkcs1-hex:”19abcd02”
Comment: Authorizer delegates read access to either of the Licensees
Conditions: ($file == “etc/passwd” && $access == “read”) -> {return “ok2}
Signature: rsa-md5-pkcs1-hex:”f00f5673”

As in PolicyMaker, assertions can either be policies or credentials. POLICY in the Authorizer

field identifies policies which are locally trusted and so do not need a signature. The Licensees

field specifies the principal(s) to which authority is given. A simple, lightweight assertion

language with no loops or recursion is used in order to enforce resource usage restrictions, to

allow the assertions to be easily understood by humans and easily refined from high-level

languages, etc. [42]. Compliance checking in PolicyMaker required repeated evaluation of

assertions, along with an arbitrated ‘blackboard’ for storage of intermediate results and

communication between assertions, while compliance checking in KeyNote involves a depth-

Chapter 2. Background and Related Work

58

first search that tries (using recursion) to satisfy at least one policy. KeyNote has no inter-

assertion communication mechanisms. Satisfying an assertion entails satisfying both the

Conditions and Licensees fields. The current implementation of the KeyNote Toolkit is written

in C. Neither system addresses the problem of how to discover that credentials are missing, and

neither system supports negative assertions. The authors claimed that both these systems are a

more general solution to the trust management problem than public-key certificates. However,

they address only authorisation based on public keys, which still does not comprehensively

cover the entire trust management problem. They focus on establishing resource access trust,

and possibly service provision trust.

2.6.4 REFEREE

REFEREE [48, 49] (Rule-controlled Environment For Evaluation of Rules and Everything Else)

is a trust management system for making access decisions relating to Web documents developed

by Yang-Hua Chu based on PolicyMaker. It considers a PICS label as the stereotypical web

credential and uses the same theoretical framework as PolicyMaker to interpret trust policies

and administer trust protocols, which are represented as software modules. Like PolicyMaker

and KeyNote, REFEREE is a recommendation-based, query engine so it needs to be integrated

into a host application. It evaluates requests and returns a tri-value and a statement-list, which

is the justification for the answer. A tri-value is either true, false or unknown. True means ‘yes,

the action may be taken because sufficient credentials exist for the action to be approved’, false

means ‘no, the action must not be taken because sufficient credentials exist to deny the action’

and unknown means ‘the trust management system was unable to find sufficient credentials

either to approve or deny the requested action’. Boolean operators were modified to allow

reasoning about tri-values and special operators were added to create a complete logical

framework for tri-values. For example, true-if-unknown and false-if-unknown operators were

defined to simulate negation of the unknown value. An ordered statement-list specifies

information acquired during the execution of modules. They are the means by which inter-

module communication takes place. All statements are ‘two element s-expressions’, similar to

attribute value pairs. The first item specifies the context of the statement and the second stating

the statement’s content. For example, the statement that John is untrustworthy in a certification

REFEREE module would be:

((“certification module”) (“John” (untrustworthy yes)))

Chapter 2. Background and Related Work

59

The REFEREE system is essentially a collection of modules as basic building blocks, each

dealing with a particular policy decision. A module can delegate subtasks to other modules and

make decisions based on the returned assertions. All modules have the same interface as

REFEREE – they accept inputs and return a tri-value and a statement-list. The inputs are an

action name and other arguments that provide information about the action and form the

module’s trust database. For example, a content selection module may have either a URL or the

keys of the raters that make assertions about the URL as its input and its output is a tri-value

with a statement-list. At the implementation level, a module consists of a policy and zero or

more interpreters. A policy is a code segment written in a trust policy language and the

interpreters are programs for interpreting the policy or other interpreters. The set of interpreters

in a module is hierarchical; the module policy is interpreted by the highest-level interpreter;

which in turn is interpreted by a lower-level interpreter and so on.

REFEREE goes through two phases in its lifetime. In the bootstrap phase, the host application

gives it the unconditionally trusted assertions and a module database. A module database is a

repository of action names, similar to a DNS server in that it allows a module to be referred to

by an action name. In the query phase, the host application provides the action and other

arguments such as credentials, which are passed onto the appropriate module from the module

database. REFEREE runs the module’s interpreter with the policy and list of arguments, which

may result in other modules being invoked, then returns an answer to the host application.

Profiles-0.92 is a rule-based trust policy language, designed to work with REFEREE, in which

each rule is an s-expression with an operator as the first element followed by operands. Rules

are evaluated top down and the returned value of the last rule is the policy’s returned value.

Rules return tri-values and statement-lists. The BNF for the syntax can be found in [49]. The

following policies highlight some features of this language.

(threshold-and
2

(not (url-match URL (“http://www.cam.ac.uk” “http://www.bath.ac.uk”)))
(url-match URL (“http://www.ic.ac.uk”))
unknown

)

The above policy states that all material from Cambridge University and the University of Bath

will be blocked, and only material from Imperial College will be automatically downloaded.

The user will be prompted about all other material.

(invoke “load-label” STATEMENT-LIST URL

“http://web.mit.edu/ratings/CodeSafety.html”

Chapter 2. Background and Related Work

60

(“http://bureau.mit.edu” “http://bureau.cmu.edu”)
)
(match

((“load-label”)
(((version “PICS-1.1”) *

(service “http://web.mit.edu/ratings/CodeSafety.html”) *
(ratings (RESTRICT > virus 8))

)))
 STATEMENT-LIST
)

This policy states that labels from the MIT and CMU bureaus should be used and only pages

with labels that state that the document has been thoroughly checked for viruses can be

downloaded. For this example, the invoke clause runs the load label module, which loads the

labels from the bureaux. The match clause searches all the labels for the pattern described.

2.6.5 SD3

SD3 (Secure Dynamically Distributed Datalog) [58] is a trust management system that uses

logic to represent security policies. It consists of a high-level policy language, a local policy

evaluator and a certificate retrieval system. The policy language is an extension of datalog,

which is a database programming language. SD3 is an extension of work done by Gunter and

Jim on QCM [121-123], which is a system for automatic certificate management. Like

PolicyMaker, KeyNote and REFEREE, SD3 is a recommendation-based query system. Unlike

these other systems, SD3 uses a logic-based language as its default notation.

SD3 defines a scenario using a set of rules of the form:

T(x,y) :- K$E(x,y) ………(1)

T(x,y) :- (K@A)$E(x,y) ………(2)

Rule 1 states that T(x,y) holds provided that K$E(x,y) holds, where K$E(x,y) is the name for

relations E(x,y) under the control of the keyholder of public key K. Rule 2 stipulates that T(x,y)

holds if E(x,y), which is defined under the control of the keyholder of public key K at IP

address A, holds.

After the scenario is coded into a program, evaluation is started by passing this program, a

query and the input certificates to the SD3 optimiser. An optimised set of rules is then passed to

the SD3 core evaluator. The evaluator produces an answer to the query and a proof that the

answer follows from the security policy (specified in the program). Before the answer is

returned, the proof is checked and incorrect proofs are reported as errors. Thus, SD3 is

conceptually very similar to KeyNote. The difference between the two systems lies in the

Chapter 2. Background and Related Work

61

nature of their specification languages and their verification mechanism. In both cases, SD3

tends to be more explicitly logic-based. SD3 suffers from the same problems as KeyNote does.

However, though the treatment of negative credentials is not mentioned in current literature on

SD3, it may be theoretically able to handle some negative credentials due to its use of datalog.

2.6.6 Fidelis

Fidelis [124] is a policy-driven trust management framework which originates from the work on

OASIS (Open Architecture for Secure, Internetworking Services) [125-127], which is a role-

based architecture for distributed authorization management. In [124], Yao states that the

Fidelis policy framework is an abstract, conceptual foundation, which is used as a starting

reference point for the implementation of a policy language.

Conceptually, the Fidelis framework assumes the same view of trust management as

PolicyMaker-based systems. However, Fidelis defines policies and credentials differently from

PolicyMaker-based systems and includes the notions of a trust network and trust conveyance.

Credentials are assertions that have no processing semantics and policies interpret credentials

with locally-defined semantics. Policies are specified independently and separately from the

principal which specifies and issues credentials. Principals represent uniquely identifiable

individuals or processes. Fidelis, which is public-key oriented, facilitates three types of

principals: simple, group and threshold principals. A simple principal is a single public key,

while group and threshold principals (i.e. composite principals) are one or more simple

principals grouped into a logical unit.

The basic construct of the Fidelis framework is the trust statement, which is “a template of an

assertion, which may be instantiated to create trust instances” [124], where a trust instance

represents “specific trust that a principal has with respect to another principal” [124]. A trust

instance has the form:

A.t(v1, v2, ……, vn) : B → C

A.t(v1, v2, ……, vn) is a concrete assertion, A is a principal, t is a trust statement identifier defined

by A, vi is a value of the type of the i-th attribute of A.t, B (the trustor) is the principal who issues

the trust instance and C (the subject) is the principal with whom the trust instance is related.

The trustor and subject cannot be threshold principals and every trust instance has an associated

validity condition.

Chapter 2. Background and Related Work

62

A trust network is a collection of trust instances. Trust conveyance refers to the act of passing a

trust instance from one principal to another. Fidelis also models actions as “operations that are

subject to trust computation” [124]. It is assumed that actions represent application behaviour

and that their representation allows interfacing with the trust computation.

In Fidelis, a policy is a set of rules. Trust policies determine the issuance of trust instances and

action policies determine the invocation of actions. There is no standard for policy specification

in the framework. Policies are local and expressed in the language or mechanism used by a

principal. The Fidelis policy evaluation model checks that a policy, P, is true for a trust

network T.

T ├ P

The Fidelis Policy Language (FPL) is the concrete instantiation of ideas in the Fidelis

framework. The FPL, which is described in [124], is a language that allows the representation

of principals, trust statements, actions, trust policies, action policies and validity conditions.

The syntax and semantics of FPL has a strong association with first-order predicate logic. The

primary issues with Fidelis are that: 1) there seems to be no differentiation between the various

degrees of trust that may be possible, 2) though a policy is checked against the trust network,

there seems to be no means of arbitrarily analysing the policy with respect to the trust network,

3) it is not clear how the Fidelis system would handle policy specifications from principals

using different local languages in order to perform policy evaluation, and 3) the assumption of

the abstract nature of the framework is weakened by the key-centric perspective taken in

defining its basic elements.

2.6.7 IBM Trust Establishment Framework

IBM views trust establishment as the enabling component of E-Commerce [57, 128]. They

state that the underlying trust implications involved in an e-business transaction can be solved

using certificates. Certificates can be issued by various bodies, vouching for an entity in a

particular role, for example vouching for someone’s status as a buyer or seller or both. IBM has

developed a role-based access control model that uses certificates, a Java-based Trust

Establishment module and a Trust Policy Language (TPL). Their system is similar to

PolicyMaker, but permits negative rules preventing access. The default certificate scheme used

is X.509 v3, though other certificate formats are supported. The Trust Establishment module

validates the client’s certificate and then maps the certificate owner to a role. The certificate

need not bind to a user’s identity, but could just state that the user is an employee of Company

Chapter 2. Background and Related Work

63

XYZ or a public key can be used to map onto an anonymous role. Local policy specified in

their TPL defines what a role is permitted to do. The syntax for TPL is written in XML and is

described in [57, 128]. The primitive structure in TPL is a group. For each group, there are

rules governing group membership. These rules essentially specify which certificates to check.

The following example is taken from [57].

<POLICY>

<GROUP NAME=”self”>
</GROUP>

<GROUP NAME=”partners”>

<RULE>
<INCLUSION ID=”partner” TYPE=”partner” FROM “self”>
</INCLUSION>

</RULE>
</GROUP>

<GROUP NAME=”departments”>

<RULE>
<INCLUSION ID=”partner” TYPE=”partner” FROM=”partners”
</INCLUSION>

</RULE>
</GROUP>

<GROUP NAME=”customers”>

<RULE>
<INCLUSION ID=”customer” TYPE=”employee” FROM=”departments”>
</INCLUSION>
<FUNCTION>

<GT>
<FIELD ID=”customer” NAME=”rank”></FIELD>
<CONST>3</CONST>

</GT>
</FUNCTION>

</RULE>
</GROUP>

</POLICY>

The first group defined is the originating retailer. Then, it is stated that entities that have

partner certificates, signed by the original retailer, are placed in the group partners. The group

department is defined as any user having a partner certificate signed by the partners group.

Finally, the customer group consists of anyone that has an employee certificate signed by a

member of the departments group who has a rank greater than 3. In summary, the policy states

that a customer is an employee of a department of a partner company. After the Trust

Establishment module has determined that an entity can be assigned to a particular role, it then

sends this information to another module, which stipulates the access rights that are bound to

the particular role. The main problem with this framework is that it assumes that all the

information in the user’s certificates is accessible. This has severe privacy implications.

Chapter 2. Background and Related Work

64

2.6.8 Trustbuilder Framework

Trustbuilder [129-134] is a trust negotiation framework that extends the work on IBM Trust

Establishment Framework. Trustbuilder seeks to address the problem of establishing trust

between strangers through credential exchange. In this context, a credential is defined as a

digitally signed assertion by a credential issuer about a credential owner. Assertions are

essentially a set of attribute-value pairs. A sensitive credential is one that contains private

information. The Trustbuilder negotiation model works under the assumption that a negotiation

is a sequence of credential disclosures, which alternates between a client and a server. Both

client and server own a set of credentials and each has a policy governing access to its

credentials and services. Each participant in the negotiation is represented by a security agent

(SA), which manages the disclosure of local credentials, enforces service-governing credentials

and credential access policies, stores and processes accumulated credentials and incoming and

outgoing requests.

Figure 2.5 shows the protocol used in a TrustBuilder negotiation and thus highlights the role of

the security agent. Local Site can represent either a client or server. When it is a client,

processes 21 and 102 are not manifested. When it represents a server, process 26 is not

manifested. When it represents a stateless server, processes 26, 105 and 106 are not manifested.

The arrows in Figure 2.5 show the direction of the interaction. A typical negotiation would

proceed as follows. Initially, the client makes a service request, through its SA, to the server

(21). Upon receipt of the request, the SA for the server makes an authorization decision based

on the service-governing policy (102). If the service cannot be authorized immediately, then the

client and server engage in a negotiation strategy to determine if authorization is possible.

When the client SA has attached the appropriate credentials to the service request so that the

service will be authorized, the server SA passes the request to the server and the negotiation is

successful. The exchange/disclosure of credentials is governed by a negotiation strategy, which

will be presented later. Not all negotiations are successful. The information required by each

party may be set at a value that prohibits a successful negotiation.

The negotiation strategy employed may either be an eager strategy, a parsimonious strategy or a

hybrid of both strategies. In the eager strategy, each entity takes turn sending each other every

unlocked credential that they possess. The negotiation is successful when each party has

received enough credentials to be confident in engaging in the transaction. The process is

unsuccessful when the client receives a set of credentials that it has already received and or does

Chapter 2. Background and Related Work

65

not add any value to his current knowledge base. In the parsimonious strategy, the parties start

exchanging credential requests (not actual credentials) and try to find a possible sequence of

credential disclosures that can lead to a successful negotiation. The parsimonious strategy

allows limited, controlled release of credentials.

101
Security
Agent

102
Service-
Governing
Policies

103
Local-Site
Credentials

26
Service
Request

25
Outgoing Local-
Site
Credentials

106
Prior Incoming and
Outgoing Requests

104
Credential
Access
Policies

105
Accumulated
Opposing-
Site
Credentials

10 Local Site

101
Opposing
Site

23
Incoming
Request for
Credentials

22
Incoming
Opposing-Site
Credentials

21
Service
Request

24
Outgoing
Request for
Credentials

Figure 2.5: Trustbuilder Negotiation Process

Credential Access Policy (called credential expressions) is expressed using a credential

expression language that is separated into two parts, a Property-based Authentication Language

(PAL) and a Role-based Authorization Language (RAL). Conceptually, this distinction mirrors

the work on IBM TEF. However, in IBM TEF the Trust Establishment Service that would

handle the mapping from roles to access rights was viewed as a black box. A PAL policy

defines one or more roles, where a role is a property of subjects defined in terms if the

Chapter 2. Background and Related Work

66

credentials they possess and the attribute values of those credentials. A PAL policy has the

following form:

role1(Attribute1, …., Attributen)
← CredentialVariable : CredentialType, …….,

rolem(CredentialVariable.issuer, Atrribut1,…., Attributn), …..,
credentialConstraint1, ….., credentialConstraintn .

The above states that any entity that provides a credential of type CredentialType that satisfies

rolem and that satisfies the credential constraints should be assigned to role1 with the specified

attributes. Credential variables and role attributes must start with Capital letters. Roles,

credential types and credential attributes must start with lowercase letters. A RAL authorization

policy consists of a role-constraint expression, together with a PAL policy defining each role

used in the expression. A role-constraint expression is a formula consisting of role applications

and attribute constraints combined by logical AND and logical OR. An example of a RAL

policy that would govern a request for a service that schedules shipping is (adapted from [131]):

HasCredit(Client, Amount) AND

Amount > Tons × costPerTon(PickupLocation, Destination)

The TrustBuilder framework is focused on trust establishment, but does not include facilities for

handling credentials regarding negative assertions and assumes nothing about the consistency

of the credential expressions.

2.6.9 TCPA

TCPA [52-54] (Trusted Computing Platform Alliance) is a consortium of companies to make

the computer platform trustworthy. It was formed by Compaq, HP, IBM, Intel and Microsoft.

The motivation behind the decision to create an alliance was the realization by these companies

that customers viewed their products as not worthy of their trust. In their own words:

“…. came to an important conclusion: the level, or amount, of trust they were

able to deliver to their customers, and upon which a great deal of the information

revolution depended, needed to be increased and security solutions for PC's

needed to be easy to deploy, use and manage.”

The five founding companies invited a group of hardware, software, communications and

technology vendors to help in the definition and implementation of a hardware and operating

system-based platform that would implement trust into client, server, networking and

communication systems.

Chapter 2. Background and Related Work

67

In the TCPA main specification document [53] and the TCPA PC specific implementation

document [52], a complex web of data structures and processes is defined. From the document,

it becomes apparent that TCPA is heavily rooted in using cryptography to verify each and every

component being used on a system. From boot-up, encryption keys and certificates in the

hardware are validated and integrity checks are performed to validate operating system elements

as well as any software that may be run on the system. The specification documents propose a

X.509-like infrastructure, with the TCPA Subsystem as its root. The TCPA Subsystem consists

of two basic building blocks, namely: a Trusted Platform Module (TPM), which is a hardware

instantiation of the TCPA specification, and software to perform integrity metrics, in

conjunction with the TPM. A TCPA-compliant computer would behave in the following

manner:

• The PC is turned on.

• The TCPA-compliant ‘BIOS Boot Block’ and TPM have a conversation, which attests to

the fact that the BIOS can be trusted.

• The BIOS queries to ensure that the user is authorised to use the platform.

• The BIOS has a conversation with the operating system (OS) loader and the TPM, which

attests to the fact that the OS loader can be trusted.

• The OS loader has a conversation with the OS kernel. When the OS kernel loads, it knows

what software has had access to the system ahead of it. This should establish that whatever

happens within the system from that point is 100 percent controlled by the OS kernel.

The above steps are taken from [51]. When an application wishes to be executed on a TCPA-

compliant PC, it must first be deemed trustworthy by:

• providing the PC with integrity metrics that verify it as trustworthy,

• having integrity metrics provided on its behalf by a trusted third party, or

• having metrics about its trustworthiness stored on the PC itself.

From the information available in the public domain, it seems that there is very little conceptual

difference between the TCPA framework and a PKI. The TCPA’s notion and use of integrity

metrics seem to be equivalent to that of public keys. The TCPA Framework will not only suffer

from the same problems faced by PKIs, but may lead to more dangerous scenarios. The

framework may inadvertently infringe on end user privacy and give consortium members an

unfair business advantage (the ability to effectively shut out any rival software by labelling

them from an untrustworthy source). It is not clear from the literature whether the actions of

trusted applications are constrained or even if proof of trustworthiness is done with respect to a

Chapter 2. Background and Related Work

68

particular (set of) task(s) that the application wants to perform. Some other problems with the

TCPA framework are outlined in [37]. A detailed description of the TCPA initiative can be

found in their Design Philosophies and Concepts paper [50].

2.6.10 Poblano Distributed Trust Model

Poblano [47] is an attempt by Chen and Yeager of Sun MicroSystems to build a decentralized

trust model based on the JXTA platform. The JXTA project is concerned with designing and

implementing free software that would enable the easy creation, use and maintenance of peer-

to-peer networks. Poblano is based on the assumption that each individual has his or her

opinion on the trustworthiness of another. It is believed that these opinions can be collected,

exchanged and evaluated. The initial application areas for this distributed trust model were 1) a

reputation guided searching system, and 2) a recommendation system for security purposes.

The broader objective of this project is to allow this model to be adapted to work in any

scenario where distributed trust relationships are used. The model describes trust relationships

between peers and also between peers and codat (code and data), a protocol that allows the

dissemination of trust and algorithms for the updating of trust. Each peer has information

available to it on either the group’s or its confidence in the codat and peer and about the risk

involved. Using this information, the model describes the formulas and mechanisms used to

calculate trust values and propagate trust information. The first problem with the Poblano trust

model is that the equations for calculating/updating trust are simple and arbitrary. Thus, the

accuracy and general applicability of this formula is questionable. The second problem with the

model is that it seems specifically designed for solving the problem of searching distributed

networks and the validation of the search results and sources. Finally, the Poblano framework

appears to have no facilities for the specification of constraints. This severely limits its

usability. Thus, Poblano may not be easily adapted to work in applications domains that are

dissimilar to this one. The third problem is that it may suffer from the same key problems faced

by public key certificates.

2.6.11 Emerging Trust Management Solutions

In this section, emerging trust management systems will be presented. These systems are still in

development.

RT [135, 136], which stands for Role-based Trust Management Framework is a successor to

TrustBuilder. It also builds upon work done by Ninghui Li on Trust Management and

Chapter 2. Background and Related Work

69

Delegation Logic, while he was at New York University. RT introduces the notion of attribute

acknowledgement policies, which protects information about the possession of credentials. It

also adds notions of a trust target graph protocol and the distributed storage of credentials.

In [137], an Active Trust Management System for Autonomous Adaptive Survivable Systems is

proposed. Survivable systems tend to assume absolute trust. This assumption is not feasible

given the non-existence of an impenetrable and incorruptible TCB. Shrobe et al. propose the

development of a survivable system that could function in an imperfect environment. The

system should constantly collect and analyse security-related data from a broad variety of

sources, including the application systems, intrusion detection systems, system logs, network

traffic analysers, etc. The nature and scope of the collected data are determined by the user of

this system and his particular needs. The result of these analyses forms their trust model, which

is a probabilistic representation of the trustworthiness of each computational resource in the

system. The applications use this trust model to help decide which resources should be used to

perform each major computational step by maximizing the ratio of expected benefit to risk.

Kagal et al. [138] describe a trust management framework that uses a system of rights and

delegations, as well as digital certificates, to facilitate trust management. Their architecture

assumes that each group of agents is protected by security agents, which are responsible for

authorizing access to services/resources within the group. The idea is that a client can request

access to a resource or service by providing its identity information along with any delegations

it may have to the security agent for the domain. The security agent uses its policies to verify

the identity and delegations of the client, granting access only if everything is valid. This

system uses a specification language that seems to be derived from work done by Jajodia et al.

[88] and combines it with work done by Blaze et al. [39].

A Hybrid Trust Management Model For MAS (Multi Agent Systems) Based Trading Society is

proposed in [139]. The theoretical underpinnings are based on [3, 4], while the trust

management model is based on Witkowski et al.’s work [140] and Abdul-Rahman et al.’s work

[87]. This work is in its infancy. It proposed that its model will combine the notions of

reputation, subjective trust and objective trust and will focus on managing trust-based trading

relationships.

Chapter 2. Background and Related Work

70

2.7 Summary

In this chapter, the various views of trust were discussed and their common traits identified. For

Internet applications, trust is defined as:

“the quantified belief by a trustor with respect to the competence, honesty,

security and dependability of a trustee within a specified context.”

A definition of distrust was also given, because it is useful in some scenarios.

It was stated that a trust relationship always has an associated context, always occurs between

two entities (or sets of entities), has an associated measure/level of trust associated to it and that

it is a mathematically-defined binary relation that adheres to none of the standard properties of

binary relations. The factors that influence trust (risk, experience, trust propensity, market

forces, etc.) were briefly discussed.

A classification scheme of the various contexts in which trust is used was presented. The fact

that a definite combination of attributes cannot be assigned to a particular context, because

different circumstances require different attributes to be dominant, was highlighted.

Attempts to create logic-based, computational and HCI-based models of trust were reviewed

The contemporary view of trust management was discussed and trust management for Internet

applications defined as:

“the activity of collecting, encoding, analysing and presenting evidence relating

to competence, honesty, security or dependability with the purpose of making

assessments and decisions regarding trust relationships for Internet

applications.”

Finally, a few current trust management solutions were presented, namely: public key

certificates, PICS, PolicyMaker, KeyNote, REFEREE, SD3, Fidelis, IBM TEF, Trustbuilder,

TCPA, Poblano and a few others. A common flaw with all these solutions is that they are used

to identify a static form of trust, usually at the discretion of the application coder (that is, the

programmer inserts code to evaluate trust, often at the start of a session). However, trust can

change over time. Typically, a customer uses an unknown service provider with some

trepidation but if the service provided is high quality over a period of time, the customer’s trust

in the service provider increases. In order to handle this dynamic property of trust, solutions

should design a framework that assumes non-monotonicity. They should be able to adapt to the

Chapter 2. Background and Related Work

71

changing conditions of the environment in which the trust decision was made. Systems should

be able to incorporate their own experiences (or that of others) in their decision-making process.

Systems change and evolve so there is a need to monitor trust relationships to determine

whether the criteria on which they are based still apply. This could also involve the process of

keeping track of the activities of the trustee and of determining the necessary action needed

when the trustee violates the trustor’s trust.

 72

Chapter 3 Specifying Trust

“The notion of having to specify trust relationships – central as it is to the analysis of protocols
– is an unfamiliar one.”

– Simmons [141]

This chapter introduces the SULTAN specification notation and the tasks involved in specifying

trust relationships. Examples will be used to demonstrate use of the constructs of the notation.

The following convention will be used in presenting language syntax in this and the remaining

chapters. Reserved words will be in bold. Definitions will use * to represent zero or more

repetitions, ? to represent an optional element (present or not) and | to represent a choice

between components. The complete syntax of the language, written in SableCC, is presented in

Appendix A.

3.1 Requirements for a Trust Notation

A trust notation that is to be used by Internet applications should have facilities for the

following:

• The specification of trust and distrust statements

• The specification of positive and negative recommendations

• The specification of conditions on trust and recommendation relationships

• Access to risk and experience facilities

• Easy inclusion in an analysis framework

Additionally, a trust notation should satisfy the following:

• Be expressive

• Possess a clear, unambiguous and well-defined semantics

Expressiveness refers not only to the notation’s ability to represent a range of trust relationships,

but also refers to its ability to allow the encoding of validity constraints, credentials, credential

chains, arbitrary constraint and credential combinations and system or organisation-specific

properties with a trust specification. As Internet applications are expected to cross network

boundaries, it is crucial that the meaning of a trust relationship is clear. Specifications written

in such a semantically well-defined, clear and unambiguous notation will be harder to

misinterpret (and thus misuse) on foreign networks.

Chapter 3. Specifying Trust

73

3.2 The SULTAN Specification Notation

The SULTAN specification notation allows for the definition of trust requirements and

recommendations. There are two primitive constructs: the trust construct and the

recommendation construct. Trust and distrust statements are specified using the trust construct,

while positive and negative recommendations are specified using the recommend construct.

3.2.1 The trust construct

The trust construct has the following syntactic form:

PolicyName : trust (Tr, Te, As, L) ← Cs;

The semantic interpretation of a statement in the form above is that: Tr trusts/distrusts Te to

perform As at trust/distrust level L if constraint(s) Cs is true.

PolicyName is the unique name for the assertion. Tr, the trustor, is the entity that is trusting.

Te, the trustee, is the entity to be trusted. As, the action set, is a colon-delimited list of actions

(function names which effectively specify the context) or action prohibitions (discussed further

in section 3.2.6). The first parameter in an action name specifies the entity the action is

performed on (whether on the trustor, or the trustee, or some other entity that is a component of

either the trustor or trustee). L is the level of trust/distrust. L can be an integer or a label.

Labels are converted to integers for analysis and management. For integer values of L, –100 ≤

L < 0 represents distrust assertions and 0 < L ≤ 100 represents trust assertions. Cs, the

constraint set, is a set of delimited constraints that must be satisfied for the trust relationship to

be established. The delimiters are the logical and (&) and logical or (|). Cs must evaluate to

true or false. Each of the elements of this construct is discussed later in this chapter. Now, a

few examples of SULTAN trust statements are given.

CustomerVer: trust(Supplier, Customers, view_pages(Supplier), 100)
← GoodCredit(Customers) &
 risk(Supplier, Customers, _) <= 2;

Supplier trusts Customers to perform view_pages(Supplier) at trust level 100 if

GoodCredit(Customers) is true and if the risk that the Supplier will undertake in interacting with

Customers is less than or equal to 2. It is important to note view_pages(Supplier) represents the

function defined on the Supplier entity. This example illustrates the use of two features of the

notation: the anonymous variable and auxiliary functions. A variable in the notation is a series

Chapter 3. Specifying Trust

74

of characters with the underscore prefixed. _Var is an example of a named SULTAN variable.

The anonymous variable is represented by the underscore and it signifies a value that is of no

interest, but which has to be included due to the definition of a function. There is an

anonymous variable in the risk auxiliary function used in the constraints section. The risk

auxiliary function will be explained in more detailed later in this chapter.

Realtor: trust (Jenny, Realtor, send_deals(Realtor, Jenny), HighTrust)
← trust (Jenny, Tom, ProvideInfo(Jenny), MediumTrust) |
 trust (Tom, Realtor, send_deals(Realtor, Tom), MediumTrust);

Jenny trusts Realtor to perform send_deals(Realtor, Jenny) at trust level HighTrust if Jenny

trusts Tom to perform ProvideInfo(Jenny) at trust level MediumTrust or if Tom trusts Realtor to

perform send_deals(Realtor, Tom) at trust level MediumTrust.

PDA: trust (Morris, Symantec, do_definition_update(Morris, Computer), HighTrust)
← DefinitionState(Symantec) = “old”;

Morris trusts Symantec to perform do_definition_update(Morris, Computer) at trust level

HighTrust if DefinitionState(Symantec) = “old”.

Store: trust (Naranker , TicketMachine, SupplyTicket(TicketMachine, Amount, Destination), 50)
← Amount <= 5;

Naranker trusts TicketMachine to perform SupplyTicket(TicketMachine, Amount, Destination)

at trust level 50 if Amount is less than or equal to 5.

WebUserCheck: trust(WebServer, _User, access_se(WebServer):view_pages(WebServer), 10)
← RealEstatePassport(_User);

WebServer trusts any entity, _User, to perform access_se(WebServer) and

view_pages(WebServer) at trust level 10 if RealEstatePassport(_User) is true.

3.2.2 The recommend construct

A recommendation has the following form:

PolicyName : recommend (Rr, Re, As, L) ← Cs;

Semantically, the above statement means that Rr recommends/does not recommend Re at

recommendation level L to perform As if constraint(s) Cs is true.

PolicyName is the unique name of the rule being defined. Rr, the recommendor, is the name of

the entity making the recommendation. Re, the recommendee, is the name of the entity that the

Chapter 3. Specifying Trust

75

recommendation is about. L, the recommendation level, is the level of confidence in the

recommendation being issued by Rr. L can either be a label or an integer. All labels are

translated to integers for analysis and management. L is ≥ –100 and < 0 for negative

recommendations and L is > 0 and ≤ 100 for positive recommendations. It is important to point

out that the recommendation level and trust level are assumed to be independent of each other,

unless otherwise specified. As, the recommended action set, is a colon delimited set of actions

or action prohibitions that Rr recommends Re be trusted/distrusted to perform. Each action

name stipulates the entity on which the action is performed. Cs, the constraint set, is a delimited

set of constraints that must be satisfied for the recommendation to be valid. Delimiters include

the logical and (&) and logical or (|).

A recommendation may result in a trust specification (i.e. a recommendation may be the basis

for a trust specification) and vice versa. However, the trust level need not correspond to the

recommendation level. The interaction between trust constructs and recommend constructs will

be discussed in more detail in sections to follow. The following example illustrates a typical

recommend statement.

TomTCPA: recommend (TomTPM, _App, provideUpdate(_App, _TomMachine), 70)
← isOn(TomTPM, _TomMachine) & verified(TomTPM, _App);

TomTPM recommends any entity, _App, at recommendation level 70 to perform

provideUpdate(_App,_TomMachine) if isOn(TomTPM, _TomMachine) is true and

verified(TomTPM, _App) is true.

ABM: recommend (NatWest, _Client, getCredit(_Client, _SwitchCard), 100)
← isClient(NatWest, _Client) & isValidCard(Natwest, _SwitchCard) ;
NatWest recommends any entity, _Client, at recommendation level 100 to perform

getCredit(_Client, _SwitchCard) if isClient(NatWest, _Client) and isValidCard(Natwest,

_SwitchCard) are both true.

Veri: recommend (Verisign, _KeyHolder, loadScript(_X), -50)
← isCustomer(VeriSign, _KeyHolder) & isUsedBy(VerisSign, _X) &
 outStandingBalance(VeriSign, _KeyHolder) > 40;

VeriSign does not recommend, any entity, _KeyHolder, at recommendation level -50 to perform

loadScript(_X) if isCustomer(VeriSign, _KeyHolder) is true, isUsedBy(VeriSign, _X) is true

and outStandingBalance(VeriSign, _KeyHolder) is greater than 40.

The examples above give an overview of the primary constructs of the SULTAN specification

notation. However, the details involved in specifying the elementary components of a construct

Chapter 3. Specifying Trust

76

need to be addressed. There will be a few basic definitions that will be assumed. They are

covered in Appendix B.

3.2.3 Specifying Policy Names

Policy names are identification tags for SULTAN specification statements. They uniquely

identify policies and provide the administrator a means of grouping related statements. This is a

precursor to the task of grouping the specifications into namespaces. Policy names are used

when performing analysis. They are normally the answers to SULTAN analysis questions.

In defining the syntax for a policy name, an abstract type called reference that will be used in

the definitions of other elements must be introduced. A reference is a sequence of characters,

starting with a letter with the remaining characters being either an underscore, letter or digit. A

policy name is simply defined as a reference.
reference = letter (underscore | letter | digit)*;
policyname = reference;

3.2.4 Specifying Entity Names

An entity name is a symbolic name for an object that will be used in a specification. Entity

names can represent domains (group of entities) or individual entities. The reserved word

everyone can be used as an entity name for a trustee to refer to all the entities in the user’s

domain space. Note that everyone cannot be used as a trustor name. Specifying that everyone

trusts would not make sense. The reserved word foreign may be used as a trustee name to refer

to external entities that are not under the control of the administrator. It helps in the definition

of default policies for unknown entities. Syntactically, an entity name is either a reference (as

defined above) or a variable, which is an underscore followed by a reference.
variable = underscore reference?;
word = (reference | variable);

3.2.5 Specifying Levels

The level is a measure of either trust (in the case of trust statements) or of confidence in a

recommendation (for a recommend statement). It is crucial because both trust requirements and

recommendation are concepts that require a degree of quantification. Levels can be expressed

either as an integer in the range –100 to 100 (inclusive, 0 excluded) or a label (where a label is

defined as a reference) that represents such an integer. It must be explicitly stated that labels

can be SULTAN variables or a mnemonic tag.

Chapter 3. Specifying Trust

77

number = ‘-‘? ‘1’..’9’+ digit*;
level = (number | reference | variable);

An anonymous variable can never be used as a trust level. When a named variable is used as a

trust level, the named variable must be present in the specification’s constraints as a part of a

comparison. Recommendation levels may be used as the criteria upon which a decision is

made. Recommendation levels also have the same restriction as trust levels, in that a

recommendation level cannot be an anonymous variable and when used as a named variable it

must be present in the constraints. It should be noted that trust and recommendation levels are

not the same and there is no assumed connection between them. If a connection is required, then

it can be specified.

3.2.6 Specifying Action Sets

Action sets define the context, in terms of a set of trusted or recommended actions (depending

on the type of statement being specified). Action sets are collections of actions and or action

restrictions. An action is similar to a function or object method and an action restriction

specifies that the trustee is trusted not to perform an action. An action restriction is specified by

using an action name as the parameter to the not function. The not function can be used for

either a single action or an action set (without action restrictions). Examples of action

restrictions are: not(view_certificate(Client)) and not(executeScript(MyComp,_ScriptName) :

disableNAV(MyComp)). Currently, action restrictions should only be used with positive values

for the level component of the specification. This is due to the fact that ‘X distrusts Y not to

perform actions A’ is meaningless.

The action name indicates the entity on which the action is defined (the first parameter of an

action name). An action set is a colon-delimited list of actions or action prohibitions. For

added expressiveness, an action set may also be a variable. The syntax rules for an action set

are:
action = function ;
actions = action (colon action)*;
nactions = ‘not(‘ actions ‘)’;;
actionset = variable | ((action | nactions) (colon (action | nactions))*) ;

Note that the first parameter of an action can never be an anonymous variable. However, it may

be a named variable if that variable is used somewhere else in the head or in the constraints of

the specification.

Chapter 3. Specifying Trust

78

3.2.7 Specifying Constraints

Constraints are conditions that must be satisfied before a trust relationship can be established.

They can be viewed as pre-requisites to trust establishment, guidelines for evidential

acquisition, or necessary assertions for contract establishment. In the specification language,

constraints are broadly viewed as conditions necessary for the initial establishment and the re-

initiation of a trust relationship.

It is assumed that constraints for a SULTAN specification statement must evaluate to a Boolean

value. Constraints are either function calls (which return true or false) or references (which

evaluate to true or false) or logical expressions involving variables, functions or references.

Logical expressions have a left hand side, an operator and a value, which is either a number or a

reference or a string. The syntax rules for a constraint are:

expression = (variable | function | reference) op value;
op = ‘>' | '<' | '=' | '!=' | '<=' '>=';
value = number | reference | string;
constraint = function | reference | expression;

It should be mentioned that the = operator has two functions. The first function is an

assignment operator. When the left hand side is a variable, the = operator performs an

assignment (instantiation). The variable is given the value of the right hand side and the entire

expression is assumed true. The second function is comparison. If the left-hand side is not a

variable, then an evaluation of both sides take place to see if they are identical.

A constraint set is a collection of constraints delimited by the operators (& and |). The syntax

rules for a constraint set are:

log_op = ‘&’ | ‘|’;
constraints = constraint (log_op constraint)*;

Though, the construction of the entire set of SULTAN constraints has been discussed, there is a

need to take a look at constraints from a more abstract perspective. Conceptually, there are two

classes of constraints, namely: SULTAN-defined constraints and user-defined constraints.

SULTAN-defined constraints can be either trust constraints or recommend constraints or

functions from the auxiliary specification library.

Trust Constraints

Trust statements can be based on trust in others. Thus, trust can be used as constraint. For

example:

Chapter 3. Specifying Trust

79

AccFin: trust(Accounts, Finance, run_payroll(Accounts), 50)
← trust(CEO, Finance, run_payroll(Accounts), _X) & _X > 0;

Accounts’ trust in Finance is dependent on CEO’s trust in Finance. As shorthand, the functions

trust+ and trust- are provided. The trust+ function represents a trust statement with an assumed

positive trust level, while the trust- function represents a trust statement with an assumed

negative trust level. AccFin could be redefined using the trust+ function in the constraint

section. This modification would produce:

AccFin2: trust(Accounts, Finance, run_payroll(Accounts), 50)
← trust+(CEO, Finance, run_payroll(Accounts));

Note that the trust+ and trust- functions can only be used as constraints.

Recommend Constraints

Security solutions often establish trust relationships based on a recommendation from trusted

third parties. For example, CIG may trust anyone that is recommended by Microsoft.

Arbitrary: trust(CIG, _X, _A, HighTrust) ← recommend(Microsoft, _X, _A, MediumTrust);

For ease of specification, recommend+ and recommend- functions (which can only be used a

constraints) are defined. The recommend+ function is shorthand for a recommend statement

with an assumed positive recommendation level, while the recommend- function represents a

recommend statement with a negative recommendation level. Both have three parameters, the

recommendor, the recommendee and the recommended action set. An example of a trust

statement that uses the recommend+ function is:

Arbitrary2: trust(Internal, _X, _, HighTrust) ← recommend+(Microsoft, _X, _);

Arbitrary2 is equivalent to the following statement:

Arbitrary3: trust(Internal, _X, _, HighTrust) ← recommend(Microsoft, _X, _, _L) & _L > 0;

Auxiliary Specification Library Functions

The auxiliary specification library contains useful functions that can be used in SULTAN

specifications. Currently, there are two functions in this library: the risk function and the

experience function.

The risk function is defined to allow trust relationships to utilize risk information. This is

discussed further in Chapter 5. The format of the risk function is:

Chapter 3. Specifying Trust

80

risk(B, C, A)

The semantic interpretation of the above is: the risk entity B undertakes when entity C performs

A. The risk value is the probability (expressed as an integer percentage) for the failure of an

activity A. The risk value is an integer between 0 and 100 (inclusive), where 0 represents no

risk and 100 is the highest risk possible. The SULTAN system contains a facility that performs

risk calculation. This will be discussed further in later chapters. As SULTAN constraints must

always return a Boolean value, the risk function must be used as a part of a comparison (i.e.

SULTAN expression). The next two examples show the risk function in use.

Contract: recommend(ICLondon, Sun, viewDoc(ICLondon, _UserID, _DocName), -100)
← isvalid(ICLondon, _UserID) & isInternalFinancialDoc(ICLondon, _Docname) &
 risk(ICLondon, Sun, viewDoc(ICLondon, _UserID, _DocName)) >= 50;

ICLondon does not recommend Sun at recommendation level –100 to perform

viewDoc(ICLondon, _UserID, _DocName) if isvalid(ICLondon, _UserID) is true and

isInternalFinancialDoc(ICLondon, _DocName) is true and the ICLondon’s risk in allowing Sun

to perform viewDoc(ICLondon, _UserID, _DocName) is greater than or equal to 50.

Amaz: trust(Amazon, _AnyOne, buy_product(Amazon, _ProductID), -50)
← risk(Amazon, _Anyone, buy_product(Amazon, _ProductID)) > 20;

Amazon distrusts any entity, _AnyOne, at trust level -50 to perform buy_product(Amazon,

_ProductID) if Amazon’s risk in allowing _Anyone to perform buy_product(Amazon,

_ProductID) is greater than 20.

The other function in the auxiliary library is the experience function. The experience function

allows the definition of constraints based on the experience of entities. The experience function

has the following format:

experience(B, C, A)

The above is interpreted as ‘B’s estimate of the experience it had with C with respect to action

set A.’ As with the risk function, the experience function must be used in a comparison. The

experience value is an integer between -100 and 100 (inclusive, 0 excluded). Negative integers

(< 0) represent a negative (or bad) experience and positive integers (> 0) a positive (or good)

experience.
Info: trust(EGovernment, _AnyCountry, provide_leg_info(_AnyCountry), 35)

 ← experience(EGovernment, _AnyCountry, verify_leg_info(EGovernment, _AnyCountry))
>= 10;

Chapter 3. Specifying Trust

81

EGovernment trusts any entity, _AnyCountry, to perform provoide_leg_info(_AnyCountry) at

trust level 35, if the EGovernment’s estimate of the experience it has had with _AnyCountry

with respect to verify_leg_info(EGovernment, _AnyCountry) is greater than or equal to 10.

Supply: recommend(EDistributor, EReseller, market(EReseller, _Products), 100)
← experience(EDistributor, EReseller, _) > 0;

EDistributor recommends EReseller at recommendation level 100 to perform market(EReseller,

_Products) if the EDistributor’s estimate of the experience it has had with EReseller is greater

than zero.

PDtrust: trust(NYPDHQ, GSM, provide_info(GSM, NYPDHQ), 100)
 ← experience(NYPDHQ, GSM, provide_info(GSM, NYPDHQ)) > 0;

NYPDHQ trusts GSM to perform provide_info(GSM, NYPDHQ) at trust level 100, if

NYPDHQ’s estimate of the experience it has had with GSM with respect to provide_info(GSM,

NYPDHQ) is positive.

User-Defined Constraints

User-defined constraints are constraints that the user includes to tailor the specification to

his/her application domain. The constraints can either be application-specific function calls or

comparisons. It is assumed that all these return Boolean values. Let us look at a few examples

of statements that make use of user-defined functions.

Law: trust(Client, ELawyers, advice(Client), 100)
← Accredited(ELawyers, USBar);

Client trusts ELawyers to perform advice(Client) at trust level 100, if Accredited(ELawyers,

USBar) is true.

Doc: recommend(BMA, EDoctor, sell_drugs_online(EDoctor), 100)
← certified(EDoctor, BMA);

BMA recommends EDoctor at recommendation level 100 to perform

sell_drugs_online(EDoctor), if certified(EDoctor, BMA) is true.

Site: trust(I, WebSites, load(I), -100)
← SiteSecurityLevel(WebSites) < 3;

I distrust WebSites to perform load(I) at distrust level 100, if SiteSecurityLevel(WebSites) is

less than 3.

Chapter 3. Specifying Trust

82

Constraint information, i.e. data about risk, experience and the constraints of the relationships,

are stored in the State Information Database. For example, the State Information Database may

record the fact that SitSecurityLevel(_X) is 5 or that certified(EDoctor, BMA) is false or that

experience(NYPDHQ, GSM, provide_info(GSM, NYPDHQ)) is 100. The State Information

Database will be presented in more detail in Chapter 7.

3.2.8 The Trust-Recommendation Interaction

As mentioned previously, interactions between trust specifications and recommendations are

possible. Shand, Dimmock and Bacon demonstrate in [142] that collaboration in ubiquitous

systems may be enabled through the utilization of the trust-recommendation connection. In this

section, example scenarios are used to demonstrate these interactions in more detail.

A recommendation-based trust specification

Many decisions to trust unknown (or even known) entities are based on the recommendations of

individuals. Security solutions often establish trust relationships based on a recommendation

from third parties. Digital certificates, which were created to vouch for the key-name binding of

an entity, have been frequently used as trust decision-making tools. The possession of a digital

certificate is assumed to mean that the software that contains it is from a trustworthy source.

This may often be an erroneous assumption. However, it is a prime example of the influence of

a third party’s recommendation on trust decisions. For example, a web user trusts a program

only if it has been recommended by VeriSign. Specified in the SULTAN language, this is:

RecBasedTrust: trust(WebUser, _X, _, HighTrust)
← recommend(VeriSign, _X, _, GOOD);

A trust-based recommendation

It is not common practice to base recommendations on trust specifications, in the computer

security world. However, in traditional commercial scenarios a businessman, say Gary, may

recommend an informal acquaintance, say Fran, based on his trust in Fran’s competence,

honesty or dependability. His trust in Fran is often based on his assessment of his experiences

with Fran. Just focusing on the higher-level relationship, Gary will recommend Fran based on

his trust in her ability. This shows that a trust assertion can conceptually be viewed in the same

light as any other constraint in a recommend statement. Figure 3.1 shows an example of a trust-

based recommendation.

Chapter 3. Specifying Trust

83

Figure 3.1: Trust-based Recommendation Scenario

In Figure 3.1, Jorge’s recommendation is based on TeacherBrown’s trust specification

(probably because Jorge trusts TeacherBrown’s judgement). Written in the SULTAN

specification notation, this is:

TBR: recommend(Jorge, GoodSoft, computerize(Jorge), CONFIDENT)
← trust(TeacherBrown, GoodSoft, computerize(_X), HighTrust);

3.3 Modelling Other Notations

This section presents a brief discussion on the mapping of the SULTAN specification language

to a few of the trust management systems presented in Chapter 2. The demonstration of the fact

that these systems can be mapped using the SULTAN specification language illustrates that the

SULTAN specifications can be refined into each of these systems. In this discussion, examples

from Chapter 2 are used.

3.3.1 Public Key Certificates

The public key certificate framework has no known or standard trust policy language. The tools

that implement this framework allow the making of decisions relating to which certificates

and/or certificate authorities to trust. As mentioned in Chapter 2, the certification authority does

not vouch for the trustworthiness of the key owner, but simply authenticates the owner’s

identity. This is not normally the perception of the end user. The end user normally views the

holder of a digital certificate from a known or trusted source as validation of the security of the

holder’s software. As this is the state of affairs, the status quo will be assumed and a few

Chapter 3. Specifying Trust

84

example situations, which a user may want to state, will be modelled. The examples will be

based on the PGP system. Thus, it will be assumed that trust levels are labels, with one of the

following values: Unknown, Untrusted, MarginallyTrusted or CompletelyTrusted. It will

also be assumed that the following functions exist: Key(Entity) – returns true if Entity is a key,

MetaIntroducer(Key) – returns true if Key is a meta introducer and Introducer(Key)- returns

true if Key is an introducer.

Examples:

Emil marginally trusts a key if it is marginally trusted by a meta-introducer and completely

trusted by an introducer.
PK1: trust(Emil, _Key, _, MarginallyTrusted) ←

Key(_Key) &
trust (_Meta, _Key, _, MarginallyTrusted) & MetaIntroducer(_Meta) &
trust (_Intro, _Key, _, CompletelyTrusted) & Introducer(_Intro) & _Meta != _Intro;

Jane completely trusts a key if it is completely trusted by Harry and marginally trusted by two

people.
PK2: trust(Jane, _Key, _, CompletelyTrusted) ←

trust(Harry, _Key, _, CompletelyTrusted) &
trust(_X, _Key, _, MarginallyTrusted) &
trust(_Y, _Key, _, MarginallyTrusted) & _X != _Y;

Marie marginally trusts a key if it is completely trusted by three introducers.
PK3: trust(Marie, _Key, _, MarginallyTrusted) ←

trust(_X, _Key, _, CompletelyTrusted) &
trust(_Y, _Key, _, CompletelyTrusted) &
trust(_Z, _Key, _, CompletelyTrusted) &
_X != _Y & _X != _Z & _Y != _Z;

3.3.2 PICS

Due to the purpose and application domain of the PICS solution, the following will be defined:

• load(X, P) – an action that signifies the loading of a web page.
• source(labelBureau) – represents the label bureau to be used.

The first example to be modelled states that I do not trust any Yahoo web page or any site at the

department of computing at Imperial College to access my computer, but any other page is

trusted to load.

(PicsRule-1.1
(
 Policy (RejectByURL (“http://*@www.doc.ic.ac.uk*/*”
 “http://*@www.yahoo.com*/*”)
)
 Policy (AcceptIf “otherwise”)
))

Chapter 3. Specifying Trust

85

To model this example, default trust is assumed (i.e. trust(_X,_Y, load(_X, _Y),100)). The

example can now be expressed as:

PICS1: trust(MyComputer, DisallowedPages, load(MyComputer, DisallowedPages), -100).;

It is assumed that DisallowedPages maps to http://*@www.doc.ic.ac.uk*/* and

http://*www.yahoo.com*/*. The second example to be presented illustrates the use of a label

bureau (a source of labels).

(PicsRule-1.1
(
 ServiceInfo (name “http://www.raters.org/ratings/v1.html”
 shortname “serv”
 bureauURL “http://labelbureau.raters.org/Ratings”
)
 Policy (RejectUnless “(serv.pics)”)
 Policy (AcceptIf “((serv.pics > 3) and (serv.nudity = 0))”)
 Policy (RejectIf “otherwise”)
))

For this example, default distrust is assumed (i.e. trust (_X, _Y, load(_X, _Y), -100)).

PICS2: trust (MyComputer, WebPages, load(MyComputer, WebPages), 100) ←
_R = source(Ratings) & present(WebPages, _R, pics) &
pictures(WebPages, _R, _X) & (_X > 3) & nudity(WebPages, _R, 0);

In policy PICS2, we see that source(Ratings) is assigned to a variable _R. This allows for the

inclusion of several label bureaux, as is possible in the PICSRules language.

3.3.3 PolicyMaker

Before stating the basic assumptions that need to be made for modelling to take place, a brief

summary of PolicyMaker is given. The PolicyMaker system is a query engine, which evaluates

whether a proposed action is consistent with local policy. The inputs to the PolicyMaker

interpreter are the local policy, the received credentials and an action string (which specifies the

actions that the public key wants to perform). The interpreter’s response to the application can

either be yes or no or a list of restrictions that would make the action acceptable. A policy is a

trust assertion that is made by the local system and is unconditionally trusted by the system. A

credential is a signed trust assertion made by other entities and the signatures must be verified

before the credentials can be used. Policies and credentials are written in an assertion language.

The syntax of an assertion is:

Source ASSERTS AuthorityStruct WHERE Filter

Source represents the source of the assertion, AuthorityStruct represents the public key(s) to whom

the assertion is applicable and Filter is the predicate that action strings must satisfy for the

Chapter 3. Specifying Trust

86

assertion to hold. Given this background information, the process of modelling KeyNote

assertions in SULTAN may proceed.

In order to facilitate a natural model of the PolicyMaker environment, a distinction must be

made between modelling policies and credentials (as defined in the Policymaker system). A

PolicyMaker source that is policy will be represented as PolicyMakerSystem in this discussion. A

VerifySignature(Key) function for credentials is also included. Generally, a PolicyMaker assertion

can be modelled as:

PolicyName: trust(Source, AuthorityStruct, ArbAction, ArbLevel) ← Filter;

ArbAction represents an action that is normally linked to Filter. ArbLevel is an arbitrary level and

will be lost in the translation to PolicyMaker; as the Policymaker and KeyNote systems have no

notion of trust levels. For credentials, the constraint that VerifySignature(AuthorityStruct) is added

to the constraint of the policy.

Examples:

PolicyMaker:

policy
ASSERTS doctor_key
WHERE check_up() <- field(doctor_key) <> “plastic surgery”;

SULTAN:
F1: trust (PolicyMakerSystem, doctor_key, check_up(PolicyMakerSystem, doctor_key), _Arb)

← field(doctor_key) <> “plastic surgery” & _Arb > 0;

PolicyMaker:

BMA_key
ASSERTS “0x12345abcd”
WHERE field(“0x12345abcd”) <> “plastic surgery”

SULTAN:
BMA: trust (BMA_key, KEY, _, _Arb)

← VerifySignature(KEY) & (field(KEY) != “plastic surgery”) & _Arb > 0;

// it is assumed that KEY is a domain with ‘0x122345abcd’ as a member

3.3.4 KeyNote

The KeyNote assertion format has the following basic format:
KeyNote-Version: VersionNo
Authorizer: Sources
Licensees: Targets
Comment: Comments
Conditions: conds
Signature: sign

Chapter 3. Specifying Trust

87

This assertion can be modelled as the following SULTAN rule:

pol: trust (Sources, Targets, _, _) ←
VerifySignature(sign) & conds; //Comments

As with PolicyMaker, the distinction between policies and credentials is maintained.

Example:

KeyNote:

KeyNote-Version: 1
Authorizer: rsa-pkcs-hex:”1023abcd”
Licensees: dsa-hex “986512a1” || rsa-pkcs1-hex:”19abcd02”
Comment: Authorizer delegates read access to either of the Licensees
Conditions: ($file == “etc/passwd” && $access == “read”) -> {return “ok”}
Signature: rsa-md5-pkcs1-hex:”f00f5673”

SULTAN:
KModel: trust (abcd, KEYS, _, _Arb)

← VerifySignature(Sig) & _F = file(“etc/passwd”) & access(_F, “read”) & _Arb > 0;

It is assumed that abcd represents rsa-pkcs-hex:”1023abcd” and that KEYS represents dsa-hex

“986512a1” and rsa-pkcs1-hex:”19abcd02”.

3.3.5 REFEREE

Profiles-0.92 is the rule-based trust policy language designed to work with REFEREE. The

following policy (specified in profiles-0.92) states that all material from Cambridge University

and the University of Bath will be blocked, and only material from Imperial College will be

automatically downloaded.

(threshold-and 2
 (not (url-match URL (“http://www.cam.ac.uk” “http://www.bath.ac.uk”)))
 (url-match URL (“http://www.ic.ac.uk”))
 unknown
)

In the SULTAN notation, this may be modelled as:

REF1: trust (MyComputer, DisAllowedSites, load(MyComputer, WebPages), -100) ;
REF2: trust (MyComputer, AllowedSites, load(MyComputer, WebPages), 100);

It is assumed that DisAllowedSites will be mapped to http://www.cam.ac.uk and http://www.bath.ac.uk
and that AllowedSites will be mapped to http://www.ic.ac.uk. It is also assumed that strong distrust

(-100) will be mapped into a negative authorisation implementation policy. The next example

states that labels from the MIT and CMU bureaus should be used and only pages with labels

that state that the document has been thoroughly checked for viruses can be downloaded.

Chapter 3. Specifying Trust

88

(invoke “load-label” STATEMENT-LIST URL

 “http://web.mit.edu/ratings/CodeSafety.html”
 (“http://bureau.mit.edu” “http://bureau.cmu.edu”)
)
(match
 ((“load-label”)
 (((version “PICS-1.1”) *
 (service “http://web.mit.edu/ratings/CodeSafety.html”) *
 (ratings (RESTRICT > virus 8))
)))
STATEMENT-LIST
)

In the SULTAN notation, this is modelled as:

REF3: trust (MyComputer, WebPages, load(WebPages), 100)
← _CS = source(CodeSafety) & virus(WebPages, _CS, _X) & _X > 8 ;

3.4 The Specification Process

The process of trust specification is the sole responsibility of the systems administrator. This is

because he has a view of the global organizational picture. The first task that must be done by

the administrator is the construction of an organizational diagram. This diagram is used to help

in the specification of trust and recommend rules. In this section, an example will be used to

illustrate a typical specification process. The example used is Bob’s Music Warehouse (adapted

from [143]).

Bob is an innovative entrepreneur, who uses the Internet to sell music. His set-up consists of

the following elements: a web browser, a client application, a front-end server, a content

database and a credit card server. The web browser and client application are run from the

users’ computer, while the other components are run and maintained by Bob.

Figure 3.2 illustrates the architecture of Bob’s Music Warehouse. A user uses the web browser

to access the front-end server and buy music. The browser communicates with the front-end

server using cryptography. The client application is used to play the user’s purchased titles.

The content database contains all the titles that can be bought at Bob’s site, and this database

can be linked with third-party databases if Bob desires.

To prevent the illegal manufacture of copies of purchased music, the purchased titles remain

encrypted on the users’ computers and only the client application can decrypt and play the

Chapter 3. Specifying Trust

89

purchased titles. Also, in order to prevent a user from giving encrypted titles to a friend with a

copy of the client application, the purchased titles are cryptographically bound to the user.

Figure 3.2: Bob’s Music Warehouse (BMW)

Bob has established strategic business alliances with Pete’s Music Warehouse (PMW) and with

ProvE, a provider of music titles. The client applications from BMW and PMW are designed to

interact, and Bob uses the content database from ProvE to augment his product base.

3.4.1 Organizational Diagram Construction

From the initial description of BMW, the administrator gets an idea of the entities involved the

business and their relationships. This allows him to draw the following organizational diagram

for BMW.

ClientApp WebBrowser

Client

Front CD CCS

Server

PCA

PMW

PCD

ProvE

ThirdParty

BMW

Figure 3.3: Organization Diagram for BMW

Chapter 3. Specifying Trust

90

The symbols and their representations used in Figure 3.3 are presented in Table 3.1.
Symbol Meaning
BMW Bob’s Music Warehouse
ClientApp BMW’s client application
Front BMW’s front-end server
WebBrowser The client’s web browser
PCA PMW’s client application
CCS BMW’s Credit Card Server
CD BMW’s content database
ProvE ProvE
PCD ProvE’s content database

Table 3.1: Key for BMW Organization Chart

The organizational diagram for BMW would be represented by the following statements in the

TMF:

isPartOf(ClientApp, Client). isPartOf(WebBroswer, Client). isPartOf(Front, Server).

isPartOf(CD, Server). isPartOf(CCS, Server). isPartOf(PCA, PMW). isPartOf(PCD, ProvE).

isPartOf(PMW, ThirdParty). isPartOf(ProvE, ThirdParty). isPartOf(Client, BMW).

isPartOf(Server, BMW). isPartOf(ThirdParty, BMW).

isPartOf(X,Y) means that X is a part of Y. This composition is strictly done for reasons of

functionality and sometimes may not be a realistic view of the scenario. For example, Client is

not strictly speaking a part of BMW, but in order to allow for analysis it is useful to make the

association. To ensure that entities that are external and not under the control of the

administrator are identifiable, the administrator should mark these entities with the foreign tag.

Thus, the following facts should also be included:

isPartOf(Client, foreign). isPartOf(ThirdParty, foreign).

Use of this tag may not always be necessary, but the capability to specify default policies for

external entities may be useful. All the entity information is stored in the SULTAN Entity-

Connections server (explained further in section 7.2.2). Note that it is assumed that names are

unique throughout the Entity-Connections Server. As stated above, this server is initially set up

by the administrator and thereafter updated by the monitoring system (discussed in Chapter 6).

The administrator only needs to update the entity server when re-organization is necessary. The

entity information adds to the applicability of the system. Trust statements and

recommendations can be specified concerning groups of abstract entities, which themselves may

be abstract group representations. Applications using the decision-making facilities of the TMF

can be automatically mapped to an abstract group (if so desired). Unknown entities or artefacts

can be automatically mapped to default groups. In subsequent chapters, the importance of entity

Chapter 3. Specifying Trust

91

information is further explained. It should be noted that organizational diagram construction is

a one-time task that is performed only when the SULTAN TMF is first being used. Thereafter

this task only needs to be performed when re-organization necessitates that it should be re-done.

3.4.2 SULTAN Rule Specification

From the description of BMW given above, the following trust assumptions can be extracted:

• BMW only trusts the client application to decrypt songs.

• The front-end server trusts the client application to play purchased titles.

• The front-end server trusts the web browser to access the music database and to buy music.

• BMW trusts PMW’s client application to access its music database.

• The front-end server trusts the credit card server to verify and store credit card information.

• The front-end server trusts the content database to encrypt and to provide titles.

• The front-end server trusts the ProvE content database to provide titles.

For convenience, the following abstractions are made:
Symbol Meaning
decrypt(Entity, Title, Decrypted) Decrypts Title to produce Decrypted
encrypt(Entity, Title, Encrypted) Encrypts Title resulting in Encrypted
play(Entity, Title) Plays Title
AccessMusic(Entity) Accesses music database on Entity
BuyMusic(Entity, Title) Allows Entity to purchase Title
VerifyCreditInfo(Entity, CreditDetails) Verifies CreditDetails
StoreCreditInfo(Entity, CreditDetails) Stores CreditDetails in secure form
ProvideMusic(Entity, Titles) Retrieves music titles.

Table 3.2: Action Abstractions for BMW

Now that the administrator has constructed an organizational chart, has extracted the trust

requirements that need to be specified and identified the set of trusted actions, the task before

him is to use all this information to define the rules for BMW’s domain. These rules may look

like the following:

i1 : trust(BMW, ClientApp, decrypt(ClientApp, TitleName, Decrypted), 100);

i2 : trust(BMW, _Y, decrypt(_Y, TitleName, Decrypted), -100);

ii : trust(Front, ClientApp, play(ClientApp, TitleName), 100)
← decrypt(ClientApp, TitleName, DecryptedFile);

iii : trust(Front, WebBrowser, AccessMusic(CD): BuyMusic(Front, Title), 100);

iv : trust(BMW, PCA, AccessMusic(CD), 100);

v : trust(Front, CCS, VerifyCreditInfo(CCS, CreditDetails):
StoreCreditInfo(CCS, CreditDetails), 100);

vi : trust(Front, CD, encrypt(CD, Title, EncryptedFile): ProvideMusic(CD, Title), 100);

vii : trust(Front, ProvE, ProvideMusic(CD, NewTitles), 100);

Chapter 3. Specifying Trust

92

All specification information is stored in the Specification Server, which will be presented in

Chapter 7.

3.5 Summary

This chapter started by introducing the requirements of a trust notation, which are: 1) the ability

to specify trust and distrust statements, positive and negative recommendations and conditions

on trust and recommendation relationships, 2) access to risk and experience facilities, 3) easy

inclusion in an analysis framework, 4) expressiveness, and 5) clear and well-defined semantics.

In the discussion of the SULTAN specification notation, it was shown that it fulfills these

requirements, with the exception of easy inclusion in an analysis framework. This will be

shown in the next chapter. The notation facilitates the encoding of high-level trust

requirements. Trust statements, distrust statements, positive recommendations and negative

recommendations can all be specified. The SULTAN notation shares a syntactic appearance

with logic programming languages, e.g. Prolog. However, no model-theoretic semantics have

been defined. Thus, the notation is not claimed to be logic-based, merely logic-oriented. It is

essentially a starting point for a range of activities, such as analysis and refinement. After

presenting the rules for specifying requirements in the SULTAN notation, a brief discussion on

the interactions between trust statements and recommendations was presented. Finally, a small

example that highlights the specification process was given.

 93

Chapter 4 Analysing Trust

“Familiar things happen, and mankind does not bother about them. It requires a very
unusual mind to undertake the analysis of the obvious.”

- Alfred North Whitehead (1861 - 1947) [144]

Trust specifications contain information that is not always obvious from their specification,

which implies that there may be latent implications and associations. It may be possible to have

embedded actions being trusted for stakeholders who should not be trusted. Analysis helps to

uncover this hidden information and provides people with insight (useful knowledge) that will

help them more effectively perform the tasks assigned to them. System administrators,

irrespective of their associated activities, normally have a standard set of duties that they must

perform. However, these duties must be tailored for the domain they are working in, whether it

is banking, manufacturing, retail, law, etc. For the analysis of trust requirements, it is necessary

to define the knowledge that would be useful to the administrator. In this chapter, the

formulation of analysis questions using the SULTAN Analysis Model (SAM) is discussed. A

template of generic analysis queries is also presented.

4.1 Requirements for Analysis

Trust analysis requires the following:

• A notation that allows the construction of analysis questions.

• The ability to specify standard analysis questions, such as an implied dependency, conflict

of interest, separation of duties conflict, etc.

• The ability to specify application-specific analysis questions.

• An associated set of specifications, written in a notation that can be transformed into an

information database that can be analysed.

• The ability to perform program reasoning on the associated set of specifications.

• The ability to reason about the current state of the relationships in the associated set of

specifications.

Chapter 4. Analysing Trust

94

4.2 How to analyse in the SULTAN TMF

The SULTAN specification notation (discussed in Chapter 3) is the associated specification

language. In order to facilitate analysis, the specification notation is translated to Prolog (the

translation algorithm is presented in Appendix C). Prolog is chosen because it offers a

powerful, logic-based framework, with clear semantics, that can be easily adapted to the field of

trust analysis. Thus, the analysis notation is written in and utilizes Prolog.

In general, trust analysis is the process of reasoning about the source and or the state of a set of

trust relationships, which are specified in a suitable notation (Figure 4.1).

 Analysis

Specification Source Code Analysis

Scenario Analysis

Figure 4.1: The link between Specification and Analysis in the SAM

The SULTAN Analysis Model (SAM) facilitates both simulation and property analysis. In this

chapter, the focus will be on how property analysis is performed in the SAM. Chapter 8 will

discuss how simulation analysis is performed using the SAM. Property analysis involves

checking whether specified properties hold on trust and recommendation rules and is concerned

with the discovery of conflicts and redundancies. The properties can be with respect to the

specification source, which is essentially program reasoning. Source analysis ignores the

constraints, i.e. assumes they are true. The properties can also be with respect to examining

trust relationships to identify scenarios of interest, which involves reasoning about the state of

the system, and the current state of constraints. When reasoning about scenarios, the issue of

detecting cycles and the issue of the constraints that are still to be satisfied for a trust

relationship to be valid need to be addressed. All these topics are dealt with in more detail later

in this chapter.

A conflict arises as a result of two assertions (trust or recommend) of different polarities

(positive and negative), on the same actions and referring to the same subject and target. A

redundancy (or ambiguity) is defined as the state where two assertions, of the same type (trust

Chapter 4. Analysing Trust

95

or recommend), have the same subject, target, actions and levels and where the assertions are of

the same polarity, but possess different values.

The model is intentionally general, in order to allow different organizations the diversity and

flexibility that they require in defining their analysis requirements. As stated earlier, the

implementation of the prototype for the model in Prolog facilitates the formulation of both

application-specific queries and general queries.

Source Code Scenarios Cycles Constraint Satisfaction

Analysis

Figure 4.2: Analysis Types

Figure 4.2 illustrates the four components of analysis in the SAM. The fourth facility provided

by the SAM is the constraint satisfaction facility. This allows the administrator to identify the

constraints that must be true in order for a particular rule to be true. This topic will be presented

later in this chapter. The SAM contains a pre-defined set of predicates that allows the types of

queries identified in Figure 4.2 to be constructed. The primary predicate used is the query

predicate, which is polymorphic and each form represents a different type of analysis question.

Appendix D contains the complete definition of the SAM.

4.2.1 Analysis on the specification source

Source analysis involves reasoning about a specification (i.e. program reasoning) and ignores

the constraints, i.e. assumes they are true. For this reasoning, only the head of the

specifications is considered; the constraints are incidental. Essentially this is used to search the

trust specification database to determine if specific trust or recommend rules exist (or not) or to

see what rules apply to specific entities. Given the following SULTAN rule:

TCPA: trust (TPM, _App, provideUpdate(_App, _Machine), 70)
← isOn(TPM, _Machine) & verified(TPM, _App);

Analysis of the source would not try to determine the values of isOn(TPM,_Machine) and

verified(TPM, _App). These conditions would automatically be assumed true. To specify a

source-based analysis query, a query predicate of the following form is used:

query(V, D, R).

Chapter 4. Analysing Trust

96

The semantic interpretation of the predicate in the form above is: ‘What R (which is a collection

of V) satisfies the situation described by D?’ V is the set of variables that should be in the

answer to the query, i.e. the variables of interest. D is the description of the situation of interest.

R is the result set. The following are the rules for constructing V, D and R:

qvariable = UpperCaseLetter (LowerCaseLetter | UpperCaseletter)*;
spredicate = A SULTAN source predicate
prolog = A Prolog statement
V = ‘[‘ qvariable (‘,’ qvariable)* ‘]’;
D = ‘(‘ (spredicate | prolog) ((‘,’|’;’) (spredicate | prolog))* ‘)’ ;
R = qvariable;

UpperCaseLetter represents an upper case letter, LowerCaseLetter represents a lower case letter,

prolog is a Prolog statement (involving variables introduced in the query) and spredicate is a

taken from the following list of predicates used to identify particular components of trust and

recommend rules:

p_policy(P) – P is a SULTAN policy/rule.
p_rec_pol(P) - P is a recommend rule.
p_trust_pol(P) - P is a trust rule.
p_pos_trust(P) - P is a positive trust rule.
p_neg_trust(P) - P is a negative trust rule.
p_pos_rec(P) - P is a positive recommend rule.
p_neg_rec(P) - P is a negative recommend rule.
p_entity(E, P) - E is the entity in rule P.
p_subject(E,P) - E is the subject of rule P.
p_target(E,P) - E is the target of rule P.
p_trustor(E, P) - E is the trustor of rule P.
p_trustee(E, P) - E is the trustee of rule P.
p_recommendor(E, P) - E is the recommendor of rule P.
p_recommendee(E, P) - E is the recommendee of rule P.
p_level(L, P) - L is the level associated with rule P.
p_constraints(C, P) - C is the set of constraints associated with rule P.
p_actionset(A, P) - A is the actionset associated with rule P.
p_actions(A, P) - A is the actionset associated with rule P.
p_commonAS(P, Q) – P and Q have a common actionset.
p_commonAS(P, Q, A) – P and Q have a common actionset A.
p_trustedby(E, N, L, A, e) - Entity E is trusted by exactly N other entities at level L to

perform action(s) A.
p_trustedby(E, N, L, A, a) - Entity E is trusted by at least N other entities at level L to

perform action(s) A.
p_constraints(X, Y, C) - C is the set of constraints for the rules that relate entities X and Y.

Examples of source analysis queries that can be formulated are:

• query([E], (p_trustee(E, P), p_trustor(microsoft, P)), Result).

What entities, E, satisfy the following: E is the trustee of a policy, which has microsoft as trustor? (i.e.

which entities are trusted by microsoft?)

Chapter 4. Analysing Trust

97

• query([X, Y], (p_pos_trust(X), p_neg_trust(Y), p_trustor(sun, X), p_trustee(dse, X), p_actions(ACT,
X), p_trustor(sun, Y), p_trustee(dse, Y), p_actions(ACT, Y)), Result).

What rules, X and Y, satisfy the following: X is a positive trust rule between sun (trustor) and dse

(trustee) with respect to actionset ACT and Y is a negative trust rule between sun (trustor) and dse

(trustee) for that same actionset? (i.e. which conflicting policies represent trust and distrust

relationships between sun and dse for the same actionset?)

• query([PR, D], (p_pos_rec(PR), p_neg_trust(D), p_subject(Rr,PR), p_subject(Rr, D),
p_target(Re,PR), p_target(Re, D), p_actionset(ACT, PR), p_actionset(ACT, D)), Result).

What positive recommendation and a distrust rule, PR and D, satisfy the following: PR and D have the

same specified subject, target and actionsets? (This detects conflicts when a recommendation and

distrust rule relate to the same subject, target and actionset.)

4.2.2 Analysis about a scenario

Scenario analysis involves reasoning about the state of the system, and the current state of the

constraints. This form of analysis requires that both the Specification and State Information

Databases be examined to determine the current state of constraints of specified relationships.

To perform a scenario analysis, a query predicate with the same form as the one used for source

analysis is used.

query(V, D, R).

The difference in the definition of the two queries lies in the construction of D. Syntactically,

the only difference is that the source analysis predicates have the letters ‘p_’ as their prefix.

Thus, ‘trustee’ is the scenario analysis equivalent of the source analysis predicate ‘p_trustee’.

The close relation of the description predicates given here and the ones given in the section on

source analysis is intentional; to make it easier for people to learn the predicates and their

purposes. Given the following SULTAN recommend rule:

Veri: recommend (Verisign, _KeyHolder, loadScript(_X), -50)
← isCustomer(VeriSign, _KeyHolder) & isUsedBy(VerisSign, _X) &
 outStandingBalance(VeriSign, _KeyHolder) > 40;

and the following query:

query([R], (neg_rec(R), subject(Verisign, R), actions(loadScript(_),R)), Answer);

The Analysis Model will check the State Information Database to determine the current values

of isCustomer(VeriSign, _KeyHolder), isUsed(VeriSign, _X) and

outStandingBalance(VeriSign, _KeyHolder) before including rule Veri as an answer. Note that

the values are automatically updated by the monitoring system, which will be discussed in

Chapter 5. The following are examples of scenario-based analysis:

Chapter 4. Analysing Trust

98

• query([P, Q], (trustee(E, P), trustee(E, Q), P =/= Q, trustor(sun, P), trustor(sun, Q)), Result).

What rules, P and Q, satisfy the following: P and Q have the same trustees, their trustor is sun and

they have different names?

• query([E], (recommendee(E, P), recommendor(tpm, P), actions(load_script(_,_), Y)),Result).

What entities, E, satisfy the following: E is recommended by tpm to perform load_script ?

• query([T1,T2], (pos_trust(T1), pos_trust(T2), T1 \== T2, trustee(Te,T1), trustee(Te, T2),
 actions(ActionSet, T1), actions(ActionSet, T2)), Result).

What rules, T1 and T2, satisfy the following: T1 and T2 are different positive trust rules with the same

trustee and actionset? (This could be one way of specifying a conflict of interest, where a conflict of

interest occurs when one entity is trusted by two (other) competing entities)

• query([T1,T2], (pos_trust(T1), pos_trust(T2), T1 \== T2, trustee(manager,T1), trustee(manager, T2),
actions([sign(_,_)], T1), actions([authorize(_, _)], T2)), Result).

What rules, T1 and T2, satisfy the following: T1 and T2 are different trust rules with the trustee being

manager and T1 containing the sign action in its actionset and T2 containing the authorize action in its

actionset? (This expresses a standard separation of duties conflict, where the manager should not be

trusted to perform both sign and authorize)

• query([A, C], (constraints(A,B), constraints(B,C), pos_trust(A), pos_trust(B), pos_trust(C)),
Result).

What rules, A and C, satisfy the following: A is the constraint for B, B is the constraint for C and A, B

and C are positive trust rules? (This expresses a standard dependency analysis query)

To demonstrate the difference between source and scenario analysis, the specifications from

Bob’s Music Warehouse (from the Chapter 3) will be used. Their Prolog-equivalent

representation is assumed to be:

trust(_X, clientapp, [decrypt(clientapp, encrypted, titlename)], 100, d1).

trust(_X, _Y, [decrypt(_Y, encrypted, titlename)], -100, d2).

trust(bmw, clientapp, [play(clientapp, titlename)], 100, p1) :-

decrypt(clientapp, encrypted, titlename).

trust(provE, front, [encrypt(front, titlename, encrypted),

 send(front, encrypted, provE)], 100, pe1).

trust(clientapp, pca, [send(pca, information, clientapp)], 100, l1).

trust(pca, clientapp, [send(clientapp, information, pca)], 100, l2).

The following two analysis queries ask a similar question. However, one is a source query and

the other is a scenario query.
query([X], (p_pos_trust(X), p_subject(bmw,X), p_target(clientapp,X)), Answer).

query([X], (pos_trust(X), subject(bmw,X), target(clientapp,X)), Answer).

The first query (the source-based one) will return the rule p1 as the answer because it assumes

all constraints are true, i.e. it reasons about the possibility or the potential of a rule being true.

Chapter 4. Analysing Trust

99

The second query would check the State Information Database to determine the value of

decrypt(clientapp, encrypted, titlename). If the value is true, then the query will return the rule

p1, else it will return an empty list.

4.2.3 Detecting cycles

When the truth or falsity of a constraint must be evaluated, the possibility may arise, when

executing a query, that the processing mechanism may never return an answer, because of an

analysis loop. This occurs when the value of a previously encountered constraint is required to

evaluate the current (set of) constraint(s). Thus, there is a circular pattern in the evaluation

sequence, i.e. a cycle has been encountered. The code below illustrates a simple case where a

specification might contain cycles.

JenReal: trust (Jenny, Realtor, send_deals(Realtor, Jenny), HighTrust)
← trust (Jenny, Tom, ProvideInfo(Jenny), MediumTrust) |
 trust (Tom, Realtor, send_deals(Realtor, Tom), MediumTrust);

JenTom : trust (Jenny, Tom, ProvideInfo(Jenny), MediumTrust)
← recommend (UKRealEstateAssoc, Tom, GiveEstateAdviceProvideInfo(Tom), HighRec);

TomReal : trust (Tom, Realtor, send_deals(Realtor, _X), MediumTrust)
← trust (_X, Realtor, send_deals(Realtor, _X), HighTrust);

Using the above specifications, if the question query([P], (trustor(Jenny, P), trustee(Realtor,

P)), Result) is asked, it would be necessary to evaluate the constraints of rule JenReal, which

leads to rule TomReal, which leads back to JenReal. In this case, the query would never be

answered (if cycles were not detected and resolved). The SAM ensures that before performing a

scenario analysis query, cycles are detected in order to ensure that the query will always return

an answer. If a cycle is detected in the course of performing a scenario analysis query, then the

administrator is told that a cycle exists and where to look. The method of cycle resolution is left

to him. However, a simple cycle resolution strategy is provided in the SAM. This strategy

involves renaming the constraint that completes the cycle and setting its value to false. After

using the cycle resolution strategy provided, the specification above would become:

JenReal: trust (Jenny, Realtor, send_deals(Realtor, Jenny), HighTrust)
← trust (Jenny, Tom, ProvideInfo(Jenny), MediumTrust) |
 trust (Tom, Realtor, send_deals(Realtor, Tom), MediumTrust);

JenTom : trust (Jenny, Tom, ProvideInfo(Jenny), MediumTrust)
← recommend (UKRealEstateAssoc, Tom, GiveEstateAdviceProvideInfo(Tom), HighRec);

TomReal : trust (Tom, Realtor, send_deals(Realtor, _X), MediumTrust)
← rule_JenReal;

Chapter 4. Analysing Trust

100

This renaming process allows scenario-based analysis to proceed. The constraint is returned to

its original name when the analysis tool is closed and at the system administrator’s request. The

SAM provides the query(cycle, R) predicate to allow the administrator to manually detect

cycles in the specification. R contains a pair of policy names: the first being the start of the

cycle, and the other being the policy that completes the cycle. The resolution strategy employed

by the SAM can be employed by using query(make_acyclic).

4.2.4 Identifying constraints to be satisfied

When performing scenario analysis, there will be some constraints that evaluate to false, which

may occur when either they are absent from the State Information Database or they have

explicitly stated false values. In both cases, these constraints are the ones that need to be

satisfied for the trust relationship to be valid. In the context of trust establishment, these could

be interpreted as the credentials that need to be presented or the tasks that need to be done by

the trustee. In the context of proving the trustworthiness of a trustee, these constraints could

direct the sequence and focus of credential discovery. Thus, enabling the discovery of these

missing or unsatisfied constraints may be valuable in trust negotiation and or in credential

discovery. The SAM provides for the formulation of these constraint satisfaction queries using

abduction.

Abduction is normally seen as the problem of finding a set of hypotheses (i.e. an explanation or

a plan), which when added to a formal specification, allows a goal to be inferred, without

causing contradictions. Formally stated, given a specification D and a goal G, abduction

attempts to identify a set of assertions, ∆, such that (D ∪ ∆)╞ G (i.e. (D ∪ ∆) semantically

entails G) and (D ∪ ∆) is consistent. The set ∆ consists of only abducible statements, i.e. base

assertions. It is important to note that abducible statements are normally domain-specific and

are required to be minimal. In the case of constraint satisfaction analysis, D is an arbitrary

SULTAN specification for the organization and G is the trust or recommend statement that is

being queried. All predicates that are not trust or recommend statements are assumed to be

abducible. Thus, ∆ is the set of constraints that would make (D ∪ ∆)╞ G. The predicate that

allows this sort of query to be constructed has the following form:

query(A, R).

A can be either a trust statement or a recommend statement, while R is the list of constraints that

need to be satisfied for the statement to be true. The following represents a simplified model

where a constraint satisfaction query may be used:

Chapter 4. Analysing Trust

101

BankMachine: trust (natWest, _Client, useNatWestABM(_Client, _SwitchCard), 100)

← isClient(natWest, _Client) & isValidCard(natwest, _SwitchCard) ;

Suppose the monitoring system is given the information that isValidCard(natWest,

_SwitchCard) is true (probably via information gathered from the security application when the

Switch Card is passed through the scanner at the ABM’s door). If the question

query(trust(natwest, X, useNatWestABM(X,Y), 100, _), R) is asked, then the SULTAN

Analysis system would say that R = [isClient(natWest, X)]. This may be interpreted as

representing that it needs to be determined if X is a client of natWest. Given a complex web of

specifications, the algorithm traverses through the list of constraints to find all the constraints

that require information from the monitoring service. A scenario that illustrates the practical

use of this type of analysis query is given in Chapter 9.

4.3 Generic Analysis Queries

Although, the analysis model allows the construction of application-specific queries, there are

queries that cover all application domains. These are generic conflicts and ambiguities.

Appendix E contains the complete template of generic queries that are included as a part of the

SAM. In this section, one generic conflict, namely the trust-recommend conflict, and a generic

redundancy, namely the recommend redundancy, will be discussed.

4.3.1 Trust-Recommend Conflict

A trust-recommend conflict is, strictly speaking, a conflict between a trust statement and a

recommendation. There are two situations that may lead to such a conflict, namely: 1) when

there is a positive trust statement and negative recommend statement in conflict, and 2) when

there is a distrust statement and a positive recommend statement in conflict. When the conflict

concerns a trust statement and negative recommendation, it can be stated as:

/* SOURCE */
query([T, NR], (p_pos_trust(T), p_neg_rec(NR), p_subject(Rr,T), p_subject(Rr, NR),
 p_target(Re,T), p_target(Re, NR), p_actionset(ACTT, T),
 p_actionset(ACTNR, NR), intersect(ACTT, ACTNR, ACTR), not_empty(ACTR)),
 Result).

/* SCENARIO */
query([T, NR], (pos_trust(T), neg_rec(NR), subject(Rr,T), subject(Rr, NR), target(Re,T),
 target(Re, NR), actionset(ACTT, T), actionset(ACTNR, NR),
 intersect(ACTT, ACTNR, ACTR), not_empty(ACTR)),
 Result).

Chapter 4. Analysing Trust

102

The scenario-based query asks ‘What rules, T and NR, satisfy the following : T is a positive

trust statement, NR is a negative recommend statement, both T and NR have the same trustor

and trustee and both have a common set of actions?’ The predicates intersect and not_empty are

defined in the SAM. They are used to ensure that common actions are identified, in spite of the

ordering and grouping of the actions in the actionset of the SULTAN specifications.

A conflict involving a positive recommendation and a distrust statement can be identified by

using the following:

/* SOURCE */
query([PR, D], (p_pos_rec(PR), p_neg_trust(D), p_subject(Rr,PR), p_subject(Rr, D),
 p_target(Re,PR), p_target(Re, D), p_actionset(ACTPR, PR),
 p_actionset(ACTD, D), intersect(ACTPR, ACTD, ACTR), not_empty(ACTR)),
 Result).

/* SCENARIO */
query([PR, D], (pos_rec(PR), neg_trust(D), subject(Rr,PR), subject(Rr, D), target(Re,PR),
 target(Re, D), actionset(ACTPR, PR), actionset(ACTD, D),
 intersect(ACTPR, ACTD, ACTR), not_empty(ACTR)),
 Result).

The interpretation of these queries is similar to the one given for a trust statement and negative

recommendation.

4.3.2 Recommend Redundancy

A recommendation redundancy occurs when two recommend statements exist about the same

trustor, trustee and actions and where the levels are of the same polarity but different. Although

the inclusion of redundancies may be legitimate and intended, it is important to be cognizant of

their presence. Detecting the presence of a recommend redundancy between two positive

recommendations can be done using the following:

/* SOURCE */
query([R1,R2], (p_pos_rec(R1), p_pos_rec(R2), R1 \== R2, p_subject(Rr,R1), p_subject(Rr, R2),
 p_target(Re,R1), p_target(Re, R2), p_actionset(ACT1, R1),
 p_actionset(ACT2, R2), intersect(ACT1, ACT2, ACTR), not_empty(ACTR),
 p_level(L1, R1), p_level(L2, R2), L1 =\= L2),
 Result).

/* SCENARIO */
query([R1,R2], (pos_rec(R1), pos_rec(R2), R1 \== R2, subject(Tr,R1), subject(Tr, R2),
 target(Te,R1), target(Te, R2), actionset(ACT1, R1), actionset(ACT2, R2),
 intersect(ACT1, ACT2, ACTR), not_empty(ACTR),
 level(L1, R1), level(L2, R2), L1 =\= L2),
 Result).

Chapter 4. Analysing Trust

103

The queries above ask ‘What rules, R1 and R2, satisfy the following: R1 and R2 are different

positive recommend rules with the same subject and target, with a common set of actions and

with levels with different values?’

Discovering a recommend redundancy between two negative recommendations can be done

using:

/* SOURCE */
query([R1,R2], (p_neg_rec(R1), p_neg_rec(R2), R1 \== R2, p_subject(Rr,R1),
 p_subject(Rr, R2), p_target(Re,R1), p_target(Re, R2), p_actionset(ACT1, R1),
 p_actionset(ACT2, R2), intersect(ACT1, ACT2, ACTR), not_empty(ACTR),
 p_level(L1, R1), p_level(L2, R2), L1 =\= L2),
 Result).

/* SCENARIO */
query([R1,R2], (neg_rec(R1), neg_rec(R2), R1 \== R2, subject(Tr,R1), subject(Tr, R2),
 target(Te,R1), target(Te, R2), actionset(ACT, R1), actionset(ACT, R2),
 level(L1, R1), level(L2, R2), L1 =\= L2),
 Result).

All the generic conflicts and redundancies highlighted in this section (as well as the ones in

Appendix E) have been identified based on generalized questions that firms may need answered.

However, it is possible to ignore these conflicts if they are deemed irrelevant.

4.4 Summary

This chapter started with a discussion of the requirements of analysis. These requirements are:

1) a notation that allows the construction of analysis questions, 2) the ability to specify standard

analysis questions, 3) the ability to specify application-specific analysis questions, 4) an

associated set of specifications, written in a notation that can be transformed into an information

database that can be analysed, 5) the ability to perform program reasoning on the associated set

of specifications, and 6) the ability to reason about the current state of the relationships in the

associated set of specifications. The SULTAN specification language is the notation used to

represent the trust relationships analysed by the SAM. Though the SULTAN notation cannot be

analysed directly, it is easily translated to Prolog to make use of a standard logic based analysis

framework. The discussion of the predicates of SULTAN Analysis Model (SAM) illustrate the

types of analysis questions that can be asked and also demonstrates that the SAM satisfies the

requirements outlined above. The SAM facilitates both simulation and property analysis, but in

this chapter we focused only on property analysis. Properties can be with respect to the

specification source, which is essentially program reasoning, or with respect to scenarios, which

is reasoning about the state of trust relationships. It is also possible to ask questions about the

Chapter 4. Analysing Trust

104

presence of cycles and about constraints that need to be satisfied. The chapter ended with a

presentation of some of the generic analysis queries included in the SAM.

 105

Chapter 5 Risk in Trust Management

“Risk taking is an integral part of progress, and failure a key part of learning.” [145]

For interacting parties in a distributed computing platform, there is always an element of risk

involved. Generally, risk is defined as the exposure to uncertainty with a known probability

distribution of events. For the context of Internet applications, risk is the probability of a failure

with respect to the context of the interaction, e.g. non-payment for service, service failure, etc.

The connection between risk and trust is sparsely researched. From general observation, risk

and trust are inter-related in the following ways:

• Risk may be used to determine the level of trust.

• Trust may be used to determine the riskiness of a venture.

In both cases, there seems to be an inverse relationship between the two concepts. A transaction

that is viewed as being ‘not so risky’ is normally assigned a higher level of trust, while a highly-

trusted transaction is considered to be of low risk. The precise nature of the relationship

between these concepts (whether linear or exponential or other) is still an open research topic.

For Internet applications, it is possible to use the concepts of trust and risk independently in

determining whether or not a transaction should be initiated. For example, a high-risk

transaction regarding a low-valued product may still be embarked upon because the transaction

may be deemed trustworthy enough for it to be undertaken. This illustrates that scenarios exist

where both trust and risk may be used independently, with one concept having more influence

on the decision than the other. However, it is normally the case that risk influences trust and

vice versa. This is the premise used in this thesis.

There are numerous attempts at risk modelling in computer science. Current research is

grounded in decision theory, which is about a decision maker facing several choices and

choosing a consequence (or an outcome) based on some strategy (e.g., Maximin, Minimin,

Maximax, etc.). Decision theory is subdivided into: 1) decision under certainty, 2) decisions

under risk, and 3) decisions under uncertainty. For Internet applications, decisions under risk

and decisions under uncertainty are of primary concern. In the context of decisions under risk,

each choice will have one of several possible consequences, and the probability of occurrence

for each consequence is known. Thus, each alternative is associated with a probability

distribution, and a choice among probability distributions. When the probability distributions

Chapter 5. Risk in Trust Management

106

are unknown, the context is now decisions under uncertainty. An implicit assumption of

decision theory models is that the returns or losses accrue only to the decision maker. For

example, if the decision is to carry an umbrella or not, the return (I get wet or not) depends on

the state of nature. However, nature is not concerned with the outcome. This assumption may

not be appropriate for trust decision making by Internet applications because both parties in a

given interaction have a vested interest in the decisions taken by each other with respect to the

transaction. This is always the case when the parties wish to engage in future transactions.

The focus of this chapter is the description of the risk model used in the SULTAN TMF. This

discussion details the solutions provided to the risk assessment/calculation and risk provision

problems. Before presenting the SULTAN risk assessment solution, the current approaches to

building risk assessment models is given.

5.1 Risk Models

The standard approach to risk modelling is to adhere to a set of well-defined steps that allow the

application of statistical methods to the risk data in order to do some useful task (normally

decision-making or analysis). There are two traditional risk model approaches: the quantitative

model and the qualitative model. In computing, there is also the de facto standard software

development risk model, which is a hybrid of the two traditional models. Each of these models

is briefly presented.

5.1.1 Quantitative Model

A quantitative risk model (also called an EL-based model) has two essential elements: the

probability of an event occurring, p(E), and the likely loss should the event occur, L(E). These

two numbers are used to determine the EL – Expected Loss, which is also called the Annual

Loss Expectancy (ALE) or the Estimated Annual Cost (EAC). The formula used is:

EL = p(E) * L(E)

E is the event of interest and EL represents a quantification of the financial impact of the risk of

E. A lower EL implies a lower risk. Thus, given a set of events, their probabilities of

occurrence and their expected losses, it is possible to create a hierarchy of events, from most

risky to least risky event. Figure 5.1 shows a typical scenario where ELs may be used.

Chapter 5. Risk in Trust Management

107

Figure 5.1: A typical risky transaction

Jane & Mike wish to buy a house from Estates.com. For simplicity, it is assumed that there are

only two outcomes pertinent to Jane & Mike, namely: the theft of their credit card information

and the refusal of the company to honour the transaction. Table 5.1 shows the risk metrics that

are defined for the couple.

Event Loss (in £) Probability of Event Occurring
Theft of Credit Card Details 100 0.6
Dishonouring Transaction 200 0.1

Table 5.1: Risk Metrics for Jane & Mike

From Table 5.1, the Expected Loss for the transaction will be 80 pounds (the sum of the EL for

each event). If this amount is negligible to the couple, then they should initiate the transaction.

The couple may place greater importance on the theft of their credit card details, which would

imply that they should use the expected loss for that risk as their decision variable. It is

important to state that risk may be measured in terms of a gain, rather than a loss. Estimated

gain is defined by the following formula:

EG = p(E) * G(E)

EG is the expected gain and G(E) is the estimated gain (or profit) from event E.

5.1.2 Qualitative Model

In a qualitative risk model, probability is not considered; only estimated potential loss is used.

The basic elements of a qualitative model are: threats, vulnerabilities and controls. A threat is

something that can go wrong or that can attack the system. A vulnerability makes the system

more prone to attack by a threat or makes an attack more likely to be successful and have an

impact. A control is a countermeasure for a vulnerability. There are four types of controls:

� Deterrent controls reduce the likelihood of a deliberate attack,

� Preventative controls protect vulnerabilities and make an attack unsuccessful or reduce its

impact,

Estates.com Jane & Mike

Jane & Mike want to buy
a house from RealEstates.com

Chapter 5. Risk in Trust Management

108

� Corrective controls reduce the impact of an attack, and

� Detective controls discover attacks and trigger preventative or corrective measures.

Figure 5.2 (adapted from [146]) shows the interaction between the components of a qualitative

risk model.

Attack

Impact

Threat

Vulnerability

Deterrent
Controls

Detective
Controls

Preventative
Controls

Corrective
Controls

creates

exp lo its

results in

decreases

reduces

protects

triggers

triggers

discovers

reduces
likelihood of

Figure 5.2: Interaction of the Components of a Quantitative Risk Model

5.1.3 Software Development Risk Model

For software risk management, risk is defined as “exposure to harm or loss” [147]. On a given

project, a software developer’s definition of a risk is refined from the above definition. A

developer’s view and identification of a risk is normally a function of the software’s application

domain, the development platform and the developer’s experience and knowledge base. Thus,

views of ‘what is a risk?’ may vary from developer to developer, and from project to project.

The risk management process is normally incorporated into the software development model

that is being used, e.g. the waterfall model, the rapid prototyping model, the spiral model, etc.

The risk management model that will be presented here is generic and stereotypical of risk

management models worldwide [148, 149].

Chapter 5. Risk in Trust Management

109

The steps involved in the software risk management model are:

1. Identify Risk

All the risks to the software project must be identified. This can be done by using the

Taxonomy-Based Risk Identification Questionnaire produced by the SEI (Software

Engineering Institute at Carnegie Mellon University) [145]. After identification, the risks

are analysed.

2. Analyse Risk

In this step, the risks are quantified. This means assigning probabilities to the risks and

estimating the impact to the project of these risks occurring. Once this is done, overall risk

values are calculated. The above step corresponds to a traditional quantitative risk model.

However, due to the imprecise nature of the data, qualitative labels are normally used for

both the probabilities and impact estimates. For example, using the scheme outlined in

[150], risk probabilities may be: very low, low, medium, high or very high and the impacts

of risk may be: negligible, marginal, critical or catastrophic. The calculation of the overall

risk value is done by evaluating the impact/probability matrix, which is constructed from

the assignments. After analysis, a list of highest risks can be identified. These risks should

be the first to be planned for.

3. Plan for Risk

Risk planning means formulating methods to address each risk. In planning, the following

should be covered: why is the risk important? What is needed to track the risk? Who is

responsible for the risk management activity? What resources are needed to perform the

activity? A detailed plan of how the risk will be prevented and or corrected needs to be

formulated. This includes an action plan – to resolve an immediate risk, and a contingency

plan – to monitor the risk and trigger a predetermined response.

4. Tracking Risks

Tracking risks ensures that if triggers are activated the entire development team is made

aware and plans are put into action. This is useful because past knowledge of risk may

improve current and future projects.

5. Control the Risk Management Process

A process needs to be in place at the project’s start to identify, analyse and track risks. If

this process is not adequate, and risks are getting uncontrollable, then it should be re-

Chapter 5. Risk in Trust Management

110

formulated. This step is normally considered at the start of a software development process.

However, steps 1 to 4 are executed sequentially.

5.2 The Problems with the Risk Models

There are four main problems with quantitative risk models. The first is that data is often

unreliable and inaccurate, because it may be extremely hard to consistently assign correct values

to p(E) and L(E). The second problem is that incorrect assignment of probabilities in the real

world makes them imprecise and their use (or over-use) can promote complacency and a false

sense of security. The third problem is that they depend on information that is normally

extremely sparse. EL-based models assume that frequency, valuation and efficacy data are

always available. Usually, much of this data is largely unavailable. Though there are

mechanisms for the valuation of information and the determination of consequences in other

research fields, from the survey performed there are no such mechanisms available in the

computing field. The fourth problem is that this model does not consider interdependencies

between events.

The qualitative model suffers from three similar problems. The first is that the potential loss

that can be incurred by a particular attack is often difficult to determine in real world scenarios.

Without this, it is impossible to construct a hierarchy of risky attacks. The second is that this

model tends to favour a significantly greater detail than is normally efficiently feasible to

describe [151]. Take the example of applying a qualitative risk model implementation to

Microsoft Windows 95. There are thousands (probably hundreds of thousands) of

vulnerabilities. The number of threats (and attacks) will be directly proportional to the number

of vulnerabilities. Thus, a proportional number of controls will be needed to counter these

attacks. The task of providing the controls for all these attacks is daunting at the least. The

third problem is that implementations of these types of risk models do not scale well. This is a

direct consequence of the models requiring large volumes of data to be effective. This problem

is usually true of EL-based implementations.

It is argued that the fact that current risk models are completely deterministic and variables are

assessed as single-point estimates rather than probabilistic ranges of values (probability

distribution functions) is a major flaw in the design of these models. This is a reasonable

criticism. However, the inclusion of probability distribution functions (pdfs) would compound

the scaleability issue. In addition, this quest to incorporate uncertainty into risk models requires

Chapter 5. Risk in Trust Management

111

that these pdfs be mapped to a single value in order to facilitate ease of use. Though a range of

EL values may be useful in certain situations, for applicability a range is normally represented

by a single-point estimate (e.g. a mean and or standard deviation).

The software risk management model has the same problems as both the quantitative and

qualitative risk models, but to a lower extent. This is because decision under risk theory can be

easily adapted for use in software development. The majority of (if not, all) the risks faced by

the software developer can be easily identified and prioritised and the assumption that the

returns or losses accrue to the decision maker holds for this domain. The key lesson learnt from

all the risk models that have been designed and implemented is that every risk model will suffer

from the issues mentioned above. The task before the designer of a new risk model is to

identify and incorporate techniques that reduce the magnitude and effect of the potential

problems, which is often referred to as risk mitigation.

5.3 SULTAN Risk Model

The SULTAN Risk Model is a hybrid risk model, i.e. it incorporates elements of the qualitative

and quantitative risk models. The functions of the SULTAN Risk Model are to assess risk for a

particular transaction and to retrieve previously stored risk information, which is gathered by

the monitoring system and stored in a repository. The component of the SULTAN TMF that

encapsulates the Risk Model’s functionality is called the SULTAN Risk Service (SRS). The

decision to make the Risk Model a hybrid model is based on the fact that a hybrid model could

be used to reduce the magnitude of the problems discussed in the previous section. A

discussion on how this is done will be presented later. Given the fact that the Risk Model

follows from traditional approaches to risk modelling, there are a number of issues that need to

be addressed, namely: determining the risks, determining the potential losses, handling

dependency and determining the risk profiles. Figure 5.3 presents an overview of the risk

assessment in trust management problem and its solution. The root node of Figure 5.3 describes

the problem that this chapter is addressing. The root node leads to the four sub-problems that

must be solved. Each sub-problem is linked to the solution employed and all four solutions are

connected through the SULTAN Risk Model.

Chapter 5. Risk in Trust Management

112

SULTAN Risk Model

Risk Model
in TMF

 Risk and
Probability

Determination

Loss

Determination

 Dependency
Handling

 Risk
Profiles

 Expected
Loss

Modeling

 Expected
Loss

Modeling

 Subjective
Logic

 Risk
Thresholds

Figure 5.3: The ‘Risk Assessment in Trust Management’ Issues

5.3.1 Determining Risks and their Probability of Occurrences

There are a large number of risks that can be encountered in an Internet transaction. The risks

can relate to the transaction protocol, the storage media and mechanism, the software used and

standard transaction risks, such as refusal of payment. A system that models all these risks

would be prohibitively large and would not scale well. To reduce the information demand, the

SULTAN Risk Model does not require an explicit listing of risks, but instead uses a list of ten

common categories of risks that may occur. These risk categories are: receipt of malicious

code, refusal to produce goods, service failure, theft of information, fraud, transaction error,

denial of service, non payment of service, illegal transaction, and security failure. Each risk is

given a unique risk id and an initial probability of occurrence, p, and a measure of confidence

(i.e. uncertainty) in our estimate of the probability, u, are assigned. Note that the sum of p and u

equal to 1. This is consistent with Dempster-Shafer belief theory [152, 153]. All this

information is stored in a risk-likelihood repository in the SULTAN TMF. The general

categories of risk, their initial probabilities and the uncertainty measures are derived from a

collection of articles on E-Commerce risks [154-157]. Note that the category listing of risks

may be extended, modified or reduced by the system administrator.

Chapter 5. Risk in Trust Management

113

5.3.2 Determining Potential Losses

All daily business transactions have a loss value associated with them. This value is normally a

function of the cost of the items being purchased and any legal (and or insurance-related)

remuneration agreed upon by the stakeholders. For the buyer on the Internet, the transaction

loss value is, in most cases, equal to the cost of the item being purchased. Currently, legal and

other considerations are not included because these concerns have not been globally addressed

in the Internet Commerce framework. Calls to the SRS normally contain the transaction cost as

a parameter. However, when an Internet transaction is primarily concerned with the use of the

trustor’s resources, then the value of the item equals the value of the resource. The value of the

resource will not normally be known by the application calling the SRS. Thus, the SRS may be

called with a parameter representing the resource in question. The Risk Service calculates its

value by querying the trustor’s asset repository, which stores the total value of all the resources

and the contribution of each resource to the overall portfolio. The formula used in the

calculation of the value of the resource is:

Ri = β i (RT)

Ri is the value of resource i, β i represents the contribution of resource i to the overall portfolio

of resources and RT is the total value of all the resources. It should be noted that:

1
1

=∑
=

N

i
iβ .

The formula for the calculation of Ri is derived from the Expected Loss formula discussed

earlier in the chapter.

Figure 5.4: Stereotypical Example of Resource Value Calculation

Resource A Resource B

Resource C Resource D

Total Value of Resources = £500

1.0=Aβ 4.0=Bβ

3.0=Cβ 2.0=Dβ

Chapter 5. Risk in Trust Management

114

Figure 5.4 shows a stereotypical example domain with 4 resources. From Figure 5.4, the value

of resource B is £200 (£500 * 0.4). The initialisation of the asset repository is a one-time task

that is performed by the system administrator, with the help of tools from the SULTAN TMF.

This process and the asset update service are described in Chapter 7.

5.3.3 Handling Dependencies

In handling dependencies, two issues must be resolved. Firstly, the detection of the

dependencies. Secondly, the calculation of the probability of occurrence taking the

dependencies into account. The SRS addresses the first issue by encoding the action

dependencies in the dependency repository. Note that the dependency repository is checked for

cycles before being used. If cycles are discovered then the repository must be modified until it

is acyclic. The (initial) population of the repository is done through the monitoring system,

which is discussed in Chapter 6. The second issue requires a more involved solution. Since

traditional EL-based risk models do not have any facility for handling the re-calculation of the

probability of an action that is dependent upon another, a possible solution would be to assume

that dependent actions could be treated as conditional events and to apply Bayes’ Theorem of

conditional probability evaluation:

)(
)(*)|()|(

Bp
ApABpBAp =

A is an action that is dependent on action B. In using Bayes’ Theorem, a request for the base

actions, p(A) and p(B), and the conditional event p(B|A) is made. In the Internet environment,

this data is often unavailable. The problem escalates if action A depends on multiple actions.

The number of probabilities required makes the application of Bayes’ Theorem infeasible. To

handle the action dependency problem, the SULTAN dependency probability algorithm (dpa) is

employed. The dpa makes use of Subjective Logic [19, 23, 95-100], an uncertainty trust model

that is a generalized model of binary logic and probability calculus. Subjective Logic is used

because it is consistent with Shaferian belief theory, but has a consensus operator that provides

more realistic answers [101]. The dpa is outlined below:

1 Determine the set of dependent actions, S.

2 Let n be the cardinality of S.

3 Create and initialise a structure, T, of n Subjective Logic opinions.

4 Set an action counter variable, x, to 0.

5 For each dependent action, d, in the set S, do the following:

Chapter 5. Risk in Trust Management

115

5.1 Set a probability value variable, v to 0.

5.2 If d is dependent, then perform the dpa on the actions that d depends on and store the

value to v.

5.3 If d is not dependent, then retrieve the probability from the risk-likelihood repository and

store it to v.

5.4 Set the opinion at position x to a new opinion created from value v.

6 Find the consensus of the opinions in T.

7 Convert the consensus to its probability expectation value, p.

8 Return p.

Subjective Logic opinions are used because an easy and consistent mapping may be performed

from the opinion space to the probability space (and vice versa) and the consensus operator

offers a novel way to represent (and the calculate) the overall notion of the agreement of many

different viewpoints.

5.3.4 Determining Risk Profiles

The subjectivity of loss and risk thresholds is an issue that is not covered by standard risk

models, but that must be modelled in the SULTAN system. Depending on the trustee and the

trusted action, the trustor may have a different maximum allowable loss and risk threshold. For

example, if Microsoft is to be trusted to automatically fetch and install Windows updates on my

behalf then the loss I am willing to incur may not be the same if Microsoft is to be trusted to

store and manage my personal and financial details. The same is true for the level of risk that

will be allowed for each context. People may have different contextual propensities to risk (i.e,

they may be risk-averse or risk-loving) and this means that they will have different risk

allowances. For this reason, a trustor-risk repository in the SULTAN TMF contains information

on the subject, action, maximum allowable loss (MAL) and risk threshold (RT). RT is a value,

between 0 and 1, above which an entity deems a transaction too risky to engage in. MAL is the

maximum loss that an entity wishes to incur for a particular action(s). Initially, the

administrator sets up the risk profiles for the entities identified in the entity-connections

database. Updating risk profiles is done by the monitoring system. It should be noted that risk

profile creation is a one-time task performed only when the SULTAN TMF is first being used.

The update of the risk profile data is discussed in Chapter 6, while the initialisation is presented

in Chapter 7.

Chapter 5. Risk in Trust Management

116

5.3.5 Calculating Risk

Figure 5.5 shows a generalized risk calculation process. In calculating the risk involved in a

transaction, the SRS is provided with the subject, target, action(s), risk id and the transaction

cost (or asset name). The SRS searches the trustor-risk repository to retrieve the Maximum

Allowable Loss (MAL) and Risk Threshold (RT) information. If the information is not found,

then a NO TARGET-ACTION error is returned to the calling application. Otherwise, the

probability of the risk occurring (p) is searched for and retrieved from the risk-likelihood

repository. If the risk id cannot be found, then an INVALID RISK ID error is returned to the

calling application. The action is then checked for dependencies (by checking the dependency

repository). If dependencies are present, then the dpa is used to determine the new value of p.

In the flowchart below (Figure 5.5), it is assumed that only one action is specified in the call

from the application.

If there is more than one action, the process of checking for dependencies and finding the new p

is carried out for each action and then these values are converted to opinions, their consensus

found and the result is converted back to a probability. After the checking of the action(s), it is

checked whether an asset or transaction cost is specified. If an asset is specified then the asset

repository is used to determine the loss L, else L is set to the transaction cost. The Expected

Loss, EL, is calculated by multiplying L and p. If EL < MAL, then the risk value is ((EL/MAL)

* 100) else it is 100.

As stated previously, the issues of massive information demands, large storage requirements

and lack of scaleability are faced by all risk models. In an effort, to reduce the effect of these

issues, general categories have been used in the repositories, which reduces the storage needs

and information demands, and an alternative probability calculation mechanism presented for

dependent actions, which will again lower the information needs. The issue of scaleability will

be addressed further in Chapter 7.

Chapter 5. Risk in Trust Management

117

Calling Application
what is risk for

subject, target, actions,
riskid, cost | resource ?

Trustor-Risk Base

Retrieve MAL and
RT

MAL & RT
Found ?

No

Retrieve for p,
probability of riskid

occuringRisk-Likeli. Base

p Found ?

Yes

Yes

No

Retrieve the
dependencies of

the actions

Dependency Base

Dependencies?

Transaction cost
passed ?

No

Yes
Recalculate p

using dpa
algorithm

No

Yes

Set L to
transaction cost

Expected Loss =
L * p

EL< MAL

Retrieve Ri and Bi

Asset Base

Set L to Ri * Bi

Yes

risk value =
(EL/MAL) * 100

No

return
risk

value

risk value = 100

Figure 5.5: Risk Calculation in the SRS

5.3.6 Retrieving Risk Information

The second function of the SRS is to provide a risk information retrieval service (Figure 5.6).

As stated in Chapter 3, risk information is gathered by the monitoring system and stored in the

State Information Database. The request for risk information is made through the SULTAN

Consulting Service, which is described in Chapter 7. On receiving the request, the SRS queries

Chapter 5. Risk in Trust Management

118

the State Information Database and always returns an estimate of the risk. This estimate may

not always be available from information present in the State Information Database.

Figure 5.6: SRS RISK Information Retrieval

The following algorithm shows the steps taken by the SRS in retrieving risk information:
1. Search the State Information Server for the information.

2. If the risk information is present for the subject, target and action(s) then simply return the risk value

retrieved.

3. If there is risk information present for the target and the actionset, then calculate the weighted average

risk value for the target-action pair information present and return this value.

4. If there is no risk information present, then risk calculation is performed.

Steps 3 and 4 return a flag to the calling application that indicates that the information provided

is not retrieved from information present in the state database. Risk information is stored using

the following format:

(risk, subject, target, actionset, riskvalue)

riskvalue is the value of the risk that subject undertakes when target performs actionset, where

riskvalue is an integer between 0 and 100. The rules for the construction of the elements of the

above tuple are:

subject = reference ;
target = reference;

Chapter 3 provides the definition of actionset. Questions posed by user applications are

constructed in a similar format. The syntax and operation of the SULTAN Consultant Service

calls is provided in Chapter 7.

5.4 Summary

Risk modelling is a difficult task that requires the balancing of large data requirements and

applicability. Traditional models utilize very specific, low-level definitions, which reduced

their usefulness and limited their commercial applicability. In this chapter, the traditional

Calling Application

Computer A

SULTAN
Risk

Service

The risk value

What is my risk in
engaging in actions
with target Y?

Chapter 5. Risk in Trust Management

119

approaches to risk model design were reviewed. The problems with these models were

highlighted and the fact that every risk model that is designed faces similar problems. The

lesson learnt from the problems of traditional risk models is that the potential problems must be

managed. The SULTAN Risk Model seeks to reduce the informational demands and storage

requirements normally expected from other risk models. The issues of the determination of

risks and losses, the treatment of dependencies and the inclusion of risk allowances for a typical

domain using the SULTAN TMF were discussed. The primary functions of the SULTAN Risk

Model were also stated. These functions: 1) to calculate risk for a transaction, and 2) to retrieve

previously stored risk information.

 120

Chapter 6 Experience, Monitoring and Re-evaluation

“A trusted application is one that can easily render your system insecure.”
- Adapted from the Orange Book [82]

This chapter is about trust evolution, which involves changing the terms of a relationship based

on new evidence. Relationship evolution is necessary because trust is a dynamic concept. A

trust relationship does not stay static in the face of new evidence. New data, along with the

accumulated older facts, may constitute the experience with respect to the interactions relating

to the trust relationship(s). Monitoring is the process of acquiring information about

interactions. Thus, monitoring allows experience information to be gathered. To ensure that the

relationships actually change as new information is presented, it is necessary for the

relationships to be re-evaluated, i.e. the constraints of the relationships must be re-examined.

Experience

Re-Evaluation

Trust
Relationships

Monitoring determine the
relationships that
need to be

is used by
re-assesses

updates

Figure 6.1: Experience, monitoring and re-evaluation

Thus, the concepts of experience, monitoring and re-evaluation are related, and are necessary to

model trust relationship evolution. This connection is illustrated in Figure 6.1.

Chapter 6. Experience, Monitoring and Re-evaluation

121

6.1 Experience

In this context, experience is the knowledge acquired as a result of observations of the outcomes

of the interactions. A consumer may have an initial level of trust in a company that may change

over time as the consumer’s experience with the company increases. Thus, experience may help

to determine the nature of the trust relationship. As stated in Chapter 2, there seems to be a

direct relationship between experience and trust. The better the experience with a firm, the

higher the level of trust that may be placed in them. When attempting to model experience in a

TMF, the issues that must be resolved are: 1) the representation of the observations of the

interaction outcomes, 2) the acquisition of these observations, and 3) the usage strategies for

these observations. The collection of experience information is done via the monitoring system,

which is discussed later in this chapter.

6.1.1 Experience Representation

To record an experience, the following information is required: the experience observer, the

entity that was observed, the observed action(s) and the measure of the experience, i.e. the

experience value. An experience record is encoded using the following tuple:

(experience, subject, target, actionset, expvalue)

Subject is the observer, target is the observed entity, actionset is the observed action(s) and

expvalue is the experience value, which is an integer between –100 and 100 (0 exclusive).

Negative values representing a negative experience and positive values representing positive

experiences. The rules for the construction of the elements of an experience tuple are similar to

the rules for a risk tuple (given in Chapter 5). Note that all experience information is time-

stamped before being stored in the State Information Database.

6.1.2 Usage Strategies

The combined body of experience information relating to a particular subject, target and

actionset may increase to become a large (and seemingly contradictory) set of facts. For

example, in 1998 Linda had a positive experience with the update service provided by

Microsoft. A month later, she gets infected with a virus caused by using Microsoft’s update

service. These facts may lead to the inclusion of the following facts in the State Information

Database:

Chapter 6. Experience, Monitoring and Re-evaluation

122

(experience, Linda, Microsoft, update_service(Linda, _X), 50)

(experience, Linda, Microsoft, update_service(Linda, _X):run_activeX(Linda,_Y), -100)

When Linda (or any other member of the organisation) wishes to use experience information on

Microsoft’s update service for a trust decision, the presence of multiple facts means that a usage

strategy needs to be employed. A usage strategy is a mechanism that combines a related set of

statements into one representative statement. Classically, there are four experience usage

strategies: optimistic, pessimistic, cautious and most-recently-used.

Optimistic Strategy

An optimistic perspective assumes that the best experience will always be used. Thus, given a

set of experience records, the optimistic strategy returns the maximum experience value. For

example, Linda would use experience value 50.

Pessimistic Strategy

A pessimistic strategy assumes the worse case scenario, i.e. the minimum experience value of

the set of records is returned. Using the example above, Linda would be given the experience

value –100.

Cautious Strategy

A cautious strategy uses a weighted average to get a balanced estimate of all the information

present. For the two records presented above, Linda would be given an experience value of –

25, ie. (-100+50)/2.

Most-Recently-Used Strategy

Using this strategy, Linda would use the experience information relating to her specified context

with the most recent time-stamp. In essence, she assumes only short-term memory.

Regular bill payments (by credit card or direct debit) establish a series of experience records

accumulated by the bill collector, which may be used to determine if the bill payer may be

allowed to access other services provided by the payee. For example, The Royal Bank of

Scotland (RBS) may use account activity (i.e. regular deposits and expenses) to determine if a

client may be trusted with a RBS credit card. This is an application of the cautious strategy.

From the perspective of the client, consistent behaviour delivering products and services

generates experience records, which may be used to determine the nature of future interactions

with a company. The consumer’s strategy is totally dependent on his personal philosophy

towards producer evaluation. For example, he may view one bad transaction (in a small set of

Chapter 6. Experience, Monitoring and Re-evaluation

123

high-valued transactions) to be enough information to decide against using that producer again

(pessimistic strategy). Another consumer may look at a measure of the entire history with the

producer and use this as a basis for a decision (cautious strategy). In the SULTAN TMF, when

the experience information is required for analysis or an experience question is asked by a user

application, a cautious strategy is employed.

6.2 Monitoring

Trust Monitoring involves the update or addition of information. Figure 6.2 shows the basic

outline of a generalised Trust Monitor.

Monitor
Server

Monitor
Client

Application

Database

update

Figure 6.2: A Generalised Trust Monitor

Figure 6.2 illustrates that for trust monitoring there needs to be a monitor client on the machine

of each user in the organization, which interfaces with user applications and sends information

to the monitor server. When a monitor client is initially installed on a computer, how does the

client determine what information is to be monitored? There are two approaches to solving this

problem, namely: using active-design architecture or using passive-design architecture.

6.2.1 Active Design Architecture

In active-design architecture, the monitor client actively polls the application for monitoring

information. To reduce the overhead involved in polling applications, the system administrator

provides a mapping of the constraints to the programs that may generate them. This mapping is

included in the monitor client and the client checks constantly if any of these programs are

running. If they are, then the application is polled for a fixed time after a socket connection is

detected. This is to determine the data to be monitored. The advantage of this approach is that

monitoring is more or less automatic. The disadvantage is that at times the data to be monitored

may not be reliably and correctly identified. This drawback may be mitigated by the

Chapter 6. Experience, Monitoring and Re-evaluation

124

administrator providing a very detailed and precise mapping of the constraints to the programs

that may create them and the circumstances under which they may be created.

6.2.2 Passive Design Architecture

In a passive design architecture, the work of configuring the application to send information to

the monitor client is the responsibility of the administrator. The administrator installs the client

and uses his knowledge of both the specification and application to configure the application to

send the right fact at the right time. The advantage of this approach is that any fact in the

database from the monitor will be useful. The disadvantage is that the system administrator is

expected to know and understand the programming language and operation of the application.

A good rule of thumb that could be used to lessen the job of the system administrator is to use a

small, rich set of constraints. This will help in the configuration of the user application(s).

6.2.3 The SULTAN Monitor Architecture

The SULTAN Monitor (SM) utilizes a passive design architecture to gather the information

used by the TMF. The duties of the SM are:

• To update the entity connections repository

• To keep state, risk and experience information current

• To update the action dependency database

• To update the risk profiles.

Figure 6.3 shows the basic interaction of the SULTAN Monitor client and server. A user

application makes a call to the SM Client, which sends this information on to the SM Server.

Note that the SM Client first either generates or looks up the unique id for the application and

then sends it with the request to SM Server, which authenticates the source and then performs

the required update function on the appropriate repository. The SM Client contains a local list,

which contains a unique id for the computer and pairs of application ids and application names.

Figure 6.4 illustrates the method used to generate the unique computer id (UCI) for a computer

that has a new instance of the SM Client installed.

Chapter 6. Experience, Monitoring and Re-evaluation

125

State
Information

Entity
Connections

Action
Dependency

Risk
Profiles

SM Server

Computer X

SM Client

Applicaton

Figure 6.3: Overview of SULTAN Monitoring

The computer characteristic used for the current version of the TMF is the computer’s IP

address. A hash function, known only to the SM Client and the SM Server, is used to map the

characteristic to a UCI, which is sent to the Server, where it is placed in a job queue for the

system administrator. The administrator has to associate it to the organizational hierarchy using

the isPartOf rule.

Computer
Characteristic

SM Client

SM Monitor

Unique Computer Id
(UCI)

1. Client gets computer
 characteristic

3. Client registers UCI
 with Monitor

2. Hash of Characteristic
 is used to generate id

Figure 6.4: Computer Id Generation

When an application uses the SM Client, the following process is followed:
• The application makes a call to the TMF through the SM Client.

• The SM Client checks its list of id-name tuples.

• If the application name is not in the list.

Chapter 6. Experience, Monitoring and Re-evaluation

126

� The SM Client uses the UCI to generate an application id for the application.

� The id-name tuple is stored locally.

� The command isPartOf(app-id, UCI) is issued to the SM Server.

• The application id is sent with the request.

For example, given a SM Client with the following local store:

Comp1500169
Comp1500169_1 winlogon.exe
Comp1500169_2 snmp.exe
Comp1500169_3 svchost.exe

If the application csrss.exe wishes to use the monitoring system, then it would be allocated the

id Comp1500169_4 and associated with the computer Comp1500169. This association is done

to model the distinction between the behaviour of application on computer A from the

behaviour of the same application on computer B.

6.2.4 Updating entity connections

Chapter 1 highlighted the fact that the firm’s organizational chart has to be initially constructed

by the system administrator. This organizational information identifies the basic entity names

and is encoded in a series of isPartOf facts in the Entity-Connections Database. This Entity-

Connections Database may be modified directly only by the administrator. However, as new

computers and applications are added to the domain, there is a need to record it. A request of

the following format is used:
(isPartOf, app-id, UCI) – app-id is a part of UCI

This is translated to the isPartOf facts discussed in Chapter 3.

6.2.5 Updating risk, experience and state information

Risk and experience information are recorded using the following tuples:

(risk, target, actionset, riskvalue) – provides risk information

(experience, target, actionset, expvalue) – provides experience information

Note that the subject is the application sending the request, which will be identified by an

application id. The application sends one of the above tuples to the SM Client, which

determines the name of the calling application, and translates the tuple to:

(risk, app-id, target, actionset, riskvalue)

(experience, app-id, target, actionset, expvalue)

Chapter 6. Experience, Monitoring and Re-evaluation

127

It is assumed that target is a foreign entity, which implies that an isPartOf(target, foreign) tuple

will have to be sent by the SM Client if the target name is not found in the Client’s local store.

Before being stored in the State Information Database, both risk and experience information are

time-stamped. This implies that a usage strategy must be employed when a representative

record is necessary for a set of related records. The cautious strategy is used when such a record

is required for both risk and experience. The history-based approach to the storage of risk and

experience records is used to give a bigger picture of the relationship evolution, i.e. to provide a

method of simulating memory in the TMF. This particular approach may lead to demanding

storage requirements, but partitioning and distribution may lessen these requirements.

State information is information concerning the constraints used in the rules in the Specification

Database, e.g. the current value of a variable. State information is sent to the SM Client via the

a record of the following format:

 (attribute, value) – provides state information

State information is also time-stamped. However, unlike risk and experience information, state

information about a previous stored attribute is not kept in the State Information Database.

Currently, it is deleted and the new state record is added. However, old data could be easily

archived if it is deemed useable.

6.2.6 Updating action dependency information

Action dependencies are necessary to build a model of the tasks performed by an application.

For example, the chat program may make calls to the test_sound_card and

start_network_connection external functions, which implies that the chat program is dependent

on both those functions. For the production of risk values, it is necessary to be cognizant of

these dependencies. An application sends dependency information using the following:

 (depends, action1, action2) – for action1 depends on actrion2

This is converted to a dependency record of the form:

(depends, subject, action1, action2) – for subject, action1 depends on actrion2

This information is not time-stamped before storage.

Chapter 6. Experience, Monitoring and Re-evaluation

128

6.2.7 Updating risk profiles

A risk profile represents an entity’s subjective risk propensity. A risk profile is defined on a

‘per-entity’ basis and states the entity’s limits with respective to targets performing action(s).

An application makes a risk profile update by specified a tuple of the following format:

(rprofile, actions, MAL, RT) – MAL and RT are the values for subject and actions

This is converted to tuples of the form:

 (rprofile, UCI, actions, MAL, RT) – MAL and RT are the values for subject and actions

MAL is the maximum allowable loss and RT is the risk threshold. It is assumed that MAL is in

a universally accepted currency. Currency conversions would require a conversion module,

which must be first integrated in the Internet infrastructure.

An added feature of the SM Server is that it may be configured to delete particular facts, when

the SM client gives it a signal. This feature may be used to remove session-specific facts and

stem the growth rate of the databases.

6.3 Re-evaluation

Re-evaluation is the process of re-examining the trust relationships based on new information

gathered by the monitoring system. The monitoring system updates the information in the State

Information Database, which is used by the analysis module in scenario-based analysis queries

(Figure 6.5).

State Information
Database

Specification
Database

AnalysisMonitoring

Figure 6.5: Monitoring and Analysis

Chapter 6. Experience, Monitoring and Re-evaluation

129

After state information is added, the SM Server performs an analysis against the template of

conflicts and ambiguities supplied with the SULTAN TMF. If a potential conflict is detected, a

flag is set to alert the administrator. This is then added to his tasks to be done. Once the real

problems are identified, the system uses the specifications to determine if the current trust

relationships require adjustment, i.e. whether to continue the relationship (give another chance),

discontinue the relationship, or discontinue the relationship and seek punitive actions against the

betrayer. To illustrate a very simple (and abstract) scenario where re-evaluation may be used, a

small example is used. The Specification Database has the following rules:

PDA: trust (Morris, Symantec, definition_update(Morris, Computer), 100)
← DefinitionState(Symantec) = “old”;

MVer: recommend (Morris, _KeyHolder, loadScript(_X), 50)
← trust+(Verisign, KeyHolder, _X);

Initially, the State Information Database contains no information pertinent to the above

specifications. If the analysis question query([X], (trustee(X,P), trustor(Morris,P),

actions(definition_update(_,_), P)), Answer), i.e. which entities do Morris trust to perform

definition_update?, is asked, an answer of none will be returned because there is no attribute-

value pair for DefinitionState(Symantec). Four days later, Morris executes the Norton Antivirus

program to perform his weekly virus-scan. The program checks the date of the virus definition

file and established that the file is old. It then sends the tuple (DefinitionState(Symantec),

“old”) to the SM Client and requests that Morris updates the definitions. Morris decides to use

the TMF to help in the decision, he does this by using the consulting service (discussed in

Chapter 7). Essentially a question similar to the analysis query presented above is asked. The

system returns the fact that Symantec may be trusted.

6.4 Summary

In this chapter, the connection between experience, monitoring and re-evaluation was initially

explained. Experience is the knowledge acquired as a result of observations of the outcomes of

the interactions. Monitoring is the process of acquiring information about interactions. Re-

evaluation is the process of re-examining the trust relationships based on new information

gathered by the monitoring system. The representation of experience was highlighted and the

four usage strategies presented, namely: optimistic, pessimistic, cautious and most-recently-

used. The SULTAN Monitoring systems updates the state, risk and experience information, as

Chapter 6. Experience, Monitoring and Re-evaluation

130

well as updating the Entity-Connections Database, the Action Dependency Database and the

risk profiles. The chapter ended with an example that highlighted the re-evaluation process.

 131

Chapter 7 SULTAN Trust Management

“The outcome, in the real world, of software system operation is inherently uncertain with the
precise area of uncertainty also not knowable.”

- Lehman [158]

Trust management, as defined in Chapter 1, is defined as:

“the activity of collecting, encoding, analysing and presenting evidence relating

to competence, honesty, security or dependability with the purpose of making

assessments and decisions regarding trust relationships for Internet

applications.” [4, 5]

To enable the collection, encoding, analysis and presentation of evidence, tools are included in

the SULTAN TMF [2] that support the following processes:

• Trust specification - the process of defining trust relationships in terms of the parties

involved, and the context of the interaction. This is done using the Specification Editor.

• Trust analysis – the process of examining a set of trust relationship specifications to

identify unwanted implicit relationships and possible conflicts of relationships. The

Analysis Tool facilitates this process.

• Trust monitoring – the process of updating experience, risk and state information. This

allows for the re-evaluation of the trust specifications based on this evidence, i.e. experience

from interactions, new risk evaluation methods or changes in an entity’s credit ratings. This

process is accomplished using the Trust Monitor.

• Risk evaluation – the process of estimating the risk involved in a transaction based on

collected information or context-sensitive risk metrics. This is performed by the Risk

Service.

• Trust consultation – the process of providing trust information to a user to enable more

informed trust decision-making. The Trust Consultant is the SULTAN TMF Component

that enables this functionality.

Figure 7.1 shows the current toolset and how these tools may be used by an organization. A

process not mentioned above that is partially facilitated by the tools in the SULTAN TMF is

Trust Establishment, which is the process of defining the protocols by which parties, wishing to

Chapter 7. SULTAN Trust Management

132

form a trust relationship, can negotiate and exchange evidence and credentials. The

Establishment process involves discovering the credentials that need to be presented and

transporting these credentials between the parties involved. The process of securely exchanging

the (possibly sensitive) credentials between entities is not currently facilitated in the SULTAN

toolset.

Figure 7.1: SULTAN Tools and their interactions to the external system

However, the SULTAN system can be used to identify the artifacts needed for a successful

establishment negotiation. The constraints of a SULTAN specification may represent the

credentials that need to be present for the initiation of a trust relationship. By performing a

constraint satisfaction query (discussed in Chapter 4), the credentials required can be

ascertained.

7.1 Trust Management Life Cycle

The SULTAN trust management life cycle (Figure 7.2) highlights the activities involved in

setting up and maintaining a system that coordinates trust relationship information. The Setup

Phase corresponds to the period when the system administrator is installing the SULTAN TMF.

During this phase, she must perform a set of initialisation tasks, which are: 1) initialising the

asset repository, 2) constructing the organizational chart, and 3) initialising the risk profile data.

These tasks are supported through tools in the Specification Editor, which is discussed later in

the chapter. After setup, the administrator specifies the trust relationships and performs some

analysis (whether from the template provided by the SULTAN system or queries she has

constructed). The bi-directional arrow between the specification/modification box in Figure 7.2

(module 1) represents data flow between the Specification Editor and the repositories of the

Chapter 7. SULTAN Trust Management

133

TMF. Analysis may lead to the specifications being revised to eliminate an unwanted property.

It should be noted that modules 0, 1 and 2 are activities that can only be directly performed by

the administrator and modules 3 and 4 are done by the computers in the domain. These

computers are assumed to be proxies for the human operators and the applications they use.

Information on system state, risk and experience are collected from these computers.

0. Initialisation
Tasks

3. Information
Collection

1. Specification/
Modification

4. Application Use

2. Analysis

TMF

Setup Phase Normal Operation

Figure 7.2: SULTAN Trust Management Life Cycle

The process of information collection leads to information being stored in the TMF and may

trigger an analysis alarm. The relationships specified and information gathered from the

monitoring service may be queried by applications about to engage in a transaction (module 4).

7.2 Basic Data Structures

The basic structures used in the SULTAN TMF can be placed in the following categories:

specification-oriented, analysis-oriented, and risk calculation oriented. The specification-

oriented databases are the Specification Database and the Entity-Connections Database, which

represents the organizational chart for the firm. The analysis-oriented structures are the State

Information Database, the SULTAN Analysis Model (SAM) and the predefined template of

conflicts and ambiguities. The Risk Likelihood, Risk Profile, Action Dependency and Asset

Databases are the risk calculation oriented databases.

Chapter 7. SULTAN Trust Management

134

7.2.1 Specification Server

The Specification Database stores the trust and recommend statements created by the

administrator. A container object, called the Specification Server, encapsulates the database.

The Specification Server abstracts away the implementation details of the database and

facilitates the use of access control and security measures on the Specification Database.

Specification
Database

Guard Object

Interface Thread

Specification Server

Workstation

SysAdmin

Application query that requires
specification information, e.g.
analysis engine query

Specification Storage/Retriveal/
Manipluation request

Figure 7.3: Specification Server

Figure 7.3 shows the organization of the Specification Server. Bi-directional broken lines

represent the fact that requests can be made and answers returned. Solid lines represent data

flow. The Guard Object (GO) is the primary interface to the database. The Interface Thread

(IT) is the application programming interface (API) that allows programs to read and selectively

write data. Essentially, the IT offers a subset of the methods available in the GO. This was

done to ensure that applications do not have more access than is required to fulfil their tasks

(‘least privilege principle’). This design decision reduces the risk of the Specification Server

being compromised by user applications. It should be noted that it is assumed that entities

wishing to use the IT or GO must provide an authentication token to verify their identify.

7.2.2 Entity-Connections Server

As stated in Chapter 6, the Entity-Connections Database stores a representation of the

organizational chart for a firm in a set of isPartOf tuples. Chapters 3 and 6 discuss the symbol

representation of such a tuple and its interpretation. This Database is important to identify the

initial entities of the system and the relations between them, which is useful in analysis.

As with the Specification Database, the Entity-Connections Database is encapsulated. The

functions of the IT and GO in the Entity-Connections Server is similar to those in the

Chapter 7. SULTAN Trust Management

135

Specification Server. However, the IT in this context only accepts update requests from the

SULTAN Trust Monitor. The Entity-Connections Server enables the application of transitivity

on entity names when the administrator is analysing specifications. This will be illustrated in

Chapter 9.

Entity-
Connections

Database

Guard Object

Interface Thread

E_Connections Server
SysAdmin

Monitor update

Store - Retrieve - Edit Data

Monitor

Figure 7.4: Entity-Connections Server

7.2.3 State Information Server

The State Information Database stores the risk, experience and state information for the system.

This Database enables the scenario-based analysis and some of the SULTAN consulting

services. Since the State Information Database currently has only three potential users, the

SULTAN Trust Monitor, the SULTAN Analysis Tool or the SULTAN Consultant, the

architecture is simpler than the ones previously discussed. There is no need for the

differentiation between one interface for the system administrator and another for everyone else.

Figure 7.5 shows the State Information Server and its interactions with the Analysis Tool,

SULTAN Consultant and SULTAN Monitor. Note that the IT in the State Information Server

allows: 1) the Consultant to ask the Database questions and to retrieve data from it, 2) the

Monitor to write information to the Database, and 3) the Analysis Tool to store, retrieve and

manipulate the State Information Database.

Chapter 7. SULTAN Trust Management

136

App1 App2

SULTAN Monitor

ComputerN

App1 App2

SULTAN Consultant

Computer1

State Information Server

State
Information
Database

Interface Thread

Analysis Tool

Figure 7.5: State Information Server

7.2.4 Risk Likelihood Server

The Risk Likelihood Database contains information on a set of risks, their probability of

occurrence and a measure of confidence (i.e. uncertainty) in the probability estimate. This

information is necessary for risk calculation. Figure 7.6 shows the architecture of the Risk-

Likelihood Server, which encapsulates the Database.

Risk
Likelihood
Database

Interface
Thread

Risk-Likelihood Server

Risk Service
SysAdmin

SULTAN Consultant

Guard Object

T1 T1

T2T2

Figure 7.6: Risk-Likelihood Server

Chapter 7. SULTAN Trust Management

137

The Risk Service is the only entity that uses the Risk-Likelihood Server. However, the Risk

Service receives two streams of traffic: one from the system administrator (T1) and one from

the Consultant (T2). It is a part of the job of the Risk Service to determine the appropriate

interface depending on the calling application. This is done with the help of authentication

tokens.

7.2.5 The Other Risk Calculation Oriented Structures

The other databases used by the SULTAN TMF are the Risk Profile Database, the Dependency

Database and the Asset Database, which are all used for risk calculation. They all have the

same architecture as the Risk-Likelihood Server (Figure 7.6). The differences between the Risk

Profile Database, the Dependency Database and the Asset Database lie in the information stored

in their respective databases. The Risk Profile Database contains information on the entities in

the system, their maximum allowable loss, their risk threshold and the context for which these

numbers are valid (context is specified as an action or set of actions). Initially, the entity names

(subject names) in this Database are populated with the entities defined by the system

administrator in the Entity-Connections Database. The Dependency Database contains a list of

subject-specific action dependencies. This means that information on a subject, the root action

and the action it is dependent upon is stored. The Asset Database may be conceptually viewed

as a sequence of tuples of the form:

(resource, ASSET_NAME, ASSET_CONTRIBUTION).

With a header tuple of the form (rTotal, Value). However, for the version of the toolset, the

Asset Database is implemented as an Access database, with two tables.

7.2.6 The Other Analysis Oriented Structures

The other analysis-oriented structures are the SULTAN Analysis Model (SAM) and the

template of queries. Both are simple text files, which contain Prolog definitions that enable

queries to be performed.

7.2.7 Basic Data Structure Overview

Most of the basic structures are encapsulated in container objects, called Servers. This

encapsulation allows the implementation details of the structure to be abstracted away and

provides a mechanism by which access control can be enforced and the Databases’ integrity can

Chapter 7. SULTAN Trust Management

138

be verified. Each structure interacts with a specific set of tools from the TMF. Figure 7.7

shows the connections between the tools and the structures.

Comp 1
Comp N

Data
Repositories

Admin
Apps

Application
Level
Apps

Applications

Risk ServiceSpecification
Editor

Analysis
Tool

S EC A RP D RL SI MT

SULTAN
Consultant

SULTAN
Monitor

Figure 7.7: Data Structures, Tools and their connections

Abbreviation Meaning
S Specification Server
EC Entity-Connections Server
A Asset Server
RP Risk Profile Server
D Dependency Server
RL Risk Likelihood Server
SI State Information Server
MT SULTAN Analysis Model & Template

Table 7.1: Abbreviations for Data Structure Chart

With the exception of the SULTAN Analysis Model and the SULTAN template of standard

queries, all the databases have been implemented in Microsoft Access and all the GOs and ITs

developed in Java.

Chapter 7. SULTAN Trust Management

139

7.3 Specification Editor

The Specification Editor is an Integrated Development Environment that ties together the

processes of creating, modifying, compiling, storing, retrieving and translating specifications.

The Editor also supports the tasks of creating, updating, storing and retrieving risk profile,

entity-connections and asset information. The contents of the risk-likelihood database are also

manipulated through this tool. Figure 7.8 shows the basic elements of the Specification Editor.

CompilerStandard
Editor

SULTAN to
Prolog

Translator

External
Translators

Software
Hooks

AST
Walker

Specification Editor

Figure 7.8: Components of the Specification Editor

In this section, each of the components shown in Figure 7.8 will be presented.

7.3.1 Standard Editor

The Standard Editor is a fully customisable, basic text editor designed specifically for

manipulating SULTAN specifications. Standard text manipulations functions, such as copying,

pasting, searching, replacing, shifting lines right, etc are supported. The Editor also supports

syntax highlighting for reserved words of the SULTAN specification language. This is enabled

by storing all the settings for the editor. Figure 7.9 shows a snapshot of the Editor, with the

specifications from the example in Chapter 3. Associated with the Standard Editor is a context-

sensitive mini-editor, which interfaces with the Risk-Likelihood, Asset, Entity-Connections and

Risk Profile Servers. Figure 7.10 shows the mini-editor when used to manipulate the Entity-

Connections Server. The mini-editor is run from the menu options in the Standard Editor. It

should be noted that the Editor environment is stored in a series of settings files. Thus, all the

features of the Editor, from the text size for the menu options to look and feel of the windows,

may be reconfigured by the administrator through the Options menu choice in the Editor.

Chapter 7. SULTAN Trust Management

140

Figure 7.9: Snapshot of the Specification Editor

isPartOf(BMW,).

isPartOf(ClientApp,).

isPartOf(Front,).

isPartOf(WebBrowser,).

isPartOf(CD,).

isPartOf(PCA,).

isPartOf(CCS,).

isPartOf(ProvE,).

Ready

File Help

Figure 7.10: Mini-Editor used to update Entity-Connections Database

Chapter 7. SULTAN Trust Management

141

7.3.2 Compiler

The SULTAN Compiler ensures that code entered by the administrator adheres to the syntactic

and semantic rules used to define valid SULTAN code. These rules are outlined in Chapter 3

and in the Appendices. Figure 7.11 illustrate the process involved in the compilation of

SULTAN specifications.

The main modules of the compiler are based on a LALR(1) parser, which was generated by

SableCC, an object-oriented Java parser generator [159]. The current compiler provides an

intermediate representation, which is an abstract syntax tree with added label, and allows the

addition of translators (abstract syntax tree walkers). Semantic checks enforce the ‘common

sense’ rules discussed in Chapter 3 on the use of particulars features in the specification

notation, e.g. a variable trust level must be a part of a constraint involving a comparison, action

restrictions cannot be used in distrust statements, etc.

Syntax Analyser

SULTAN
Specifications

Semantic
Analyser

Abstract
Syntax
Tree

Refinement
Tools (s)

PONDER

REFEREE

KeyNote

TrustBuilder

.........

Prolog Target
Code

Intermediate
Representation

Lexical Analyser

Lexemes

Figure 7.11: SULTAN Compiler Processes

Figure 7.12 shows a snapshot of the Editor, with the compilation results, for BMW (from

Chapter 3).

Chapter 7. SULTAN Trust Management

142

Figure 7.12: Compiled Specifications for BMW

From Figure 7.12, it is clear that some semantic warnings are not treated as critical; they are

simply flagged. This is done in order to allow translation to proceed. However, it is advised

that all errors and warnings be resolved as only a compiled set of specifications can be stored to

the Specification Database.

7.3.3 AST Walker

The AST (Abstract Syntax Tree) Walker is a graphical representation of the abstract syntax tree

for the specifications currently being manipulated by the administrator. Figure 7.13 shows the

result of calling the AST Walker on the specifications for BMW. It is a required that

specifications be compiled before the AST Walker may be run, because the compilation process

produces the AST to be walked.

Chapter 7. SULTAN Trust Management

143

Figure 7.13: AST Walker run on BMW specifications

7.3.4 SULTAN to Prolog Translator

As proof that the refinement of SULTAN specifications to other languages is possible, a

translator from SULTAN to Prolog is an integral part of the Specification Editor. Such a

translator is also necessary to allow the specifications to be analysed by the Analysis Tool.

Figure 7.14 shows the results of executing the translator on the specifications for BMW. The

translation rules are outlined in Appendix C. As illustrated in Figure 7.11, the translator walks

the AST and transforms the tree into the target code, which is Prolog in this case.

Chapter 7. SULTAN Trust Management

144

Figure 7.14: Using the SULTAN to Prolog translator on the BMW specifications

7.3.5 External Translators

External Translators can be integrated in the Specification Editor by adding them to a list of

supported translators. This list is stored locally in the Editor settings files, which means that all

translators added to the Editor will be accessible through the Editor on subsequent runs. Thus,

once a translator (AST walker and transformer) has been created, it can be integrated into the

Editor functionality.

Once translators have been created then the Editor provides a facility to specify the file and its

location and have it integrated as a part of the Editor. The dialog used to perform this

integration is shown in Figure 7.15. It should be noted that standard checks are performed on

the file (a java source file) before it is integrated with the Specification Editor. These tests

include checks on the file’s existence, permissions, and it’s use of the AST.

Chapter 7. SULTAN Trust Management

145

Figure 7.15: Adding an External Translator

7.3.6 Software Hooks

The Specification Editor has hooks into the Analysis Tool, the Risk Service and the mini-Editor.

These hooks pass the state of the Specification Editor to the tool being switched to. For

example, using the hook to the Mini-Editor for risk profiles, the Specification Editor can be

asked to load the Mini-Editor with a template of risk profile records for each of the entities used

in the specifications (Figure 7.16). Similarly, hooking into the Analysis Tool would mean that

the specifications would be automatically translated and loaded into the Analysis Tool.

7.4 Analysis Tool

The Analysis Tool is the graphical front-end for the Analysis Engine, which is the component

that interfaces with the Specification Server, State Information Server, the SICStus Prolog

System, the SULTAN Analysis Model, the organization chart information and the template of

conflicts and redundancies. Figure 7.17 further illustrates this point. The Analysis Engine

encapsulates the SICStus Prolog System. This is done to secure the Prolog System from

Chapter 7. SULTAN Trust Management

146

(possibly intentional and malicious) manipulation. A Guard Object is defined in the Engine that

negotiates access to the Prolog System.

riskProfile(BMW, actionset0, MAL0, RT0).

riskProfile(ClientApp, actionset0, MAL1, RT1).

riskProfile(Front, actionset0, MAL2, RT2).

riskProfile(WebBrowser, actionset0, MAL3, RT3).

riskProfile(CD, actionset0, MAL4, RT4).

riskProfile(PCA, actionset0, MAL5, RT5).

riskProfile(CCS, actionset0, MAL6, RT6).

Ready

File Help

Figure 7.16: Software Hook to the Risk-Profile Mini-Editor

The interface used from the GO (coded in Java) to Prolog System is the Jasper Interface. Using

Figure 7.17, a call to the Analysis Tool results in the GO retrieving the specifications from the

Specification Server, loading the organisation chart information, getting the state information

from the State Information Server, retrieving the SULTAN Analysis Model (which defines the

reasoning mechanism), retrieving the SULTAN Analysis Template and loading all of this

information into the Prolog System. Note that specifications, organisational chart information

and state information are translated to Prolog before being loaded into the System. The bi-

directional arrows between the GO and the SULTAN Analysis Template and the GO and the

State Information Server indicate that the GO is able to change and store these two artefacts.

This is done via the Analysis Tool. The exact circumstance where this may be necessary will be

discussed further in this section.

Chapter 7. SULTAN Trust Management

147

Specification ServerState Information Server

Analysis Engine

Guard Object

SICStus
Prolog
System

Analysis
Tool

Interface
Thread

Sys
Admin

Consultant

Specification ServerState Information Server

Analysis Engine

Guard Object

SICStus
Prolog
System

Analysis
Tool

Analysis
Tool

Interface
Thread

Sys
Admin

Sys
Admin

Consultant

SULTAN
Analysis
Model

SULTAN
Analysis
Template

Org.
Chart
Info

Figure 7.17: Analysis Tool – Analysis Engine Connection

The Analysis Tool provides a number of tools that try to make the process of analysis query

construction easier, namely: the console, the loader, the viewer, query statement builder and the

state manager. The value of the Analysis Tool increases over time, as it acquires new

information and is able to provide the administrator with less obvious results.

7.4.1 The Console

The console is the data input area, which is the bottom part of the Tool window. SULTAN

Analysis query statements (adhering to the format discussed in Chapter 4) are entered into the

console. These statements are executed at the administrator’s request. Each request made to

Prolog system is assumed to take a long time. Thus, each request is executed in a child

execution thread and the administrator is free to enter new requests immediately. The requests

are queued and the results are sent to the output area of the Analysis Tool in the order of receipt.

All this is managed by an execution thread manager.

Chapter 7. SULTAN Trust Management

148

Figure 7.18: Snapshot of the Analysis Tool

7.4.2 The Loader

The loader allows the administrator to include a set of assertions from an already existing file.

This feature is included to allow the re-use of previously created analysis queries and or

scenarios. Note that the file must contain Prolog statements. An Open-Dialog box is the

primary interface used to call the loader. Figure 7.19 shows the dialog used. It is important to

mention that the Analysis Tool contains facilities for the storage of the history of queries

entered in its current execution. In addition, the loader performs a simple syntax check to

ensure that the file adheres to Prolog syntax.

7.4.3 The Viewer

The viewer is a simple text editor that allows the administrator to see the state information, the

translated specifications and the SULTAN Analysis Model. It also allows the display and

modification of the SULTAN Analysis Template. Figure 7.20 shows the viewer being used to

look at the Template.

Chapter 7. SULTAN Trust Management

149

Figure 7.19: Loading a file

Figure 7.20: Using the Viewer on the Template

Chapter 7. SULTAN Trust Management

150

The administrator may use the viewer to update the Template and then use the Loader to

redefine the common set of conflicts and ambiguities.

7.4.4 Query Statement Builder

Analysis queries may be complex. They may vary in difficulty within a particular query type

(hard versus easy source analysis queries) and across query types (e.g. constraint satisfaction

queries tend to be easier to formulate than some scenario analysis queries). To enable the easy

construction of analysis queries the Analysis Tool contains a Query Statement Builder, which is

a simple GUI that allows the query formulation. Figures 7.21 and 7.22 show different aspects

of the Query Statement Builder. Figure 7.21 shows the types of queries accommodated. The

Builder allows the creation of all five categories of queries, i.e. source queries, scenario queries,

mixed queries (i.e. a mix of both source and scenario predicates), cycle detection queries and

constraint discovery queries. Figure 7.22 shows the beginnings of a source analysis.

Figure 7.21: SULTAN Query Statement Builder (First Level)

7.4.5 State Manager

The state manager keeps a history of the queries entered into the Console and a record of the

facts and rules stored in the memory of the Prolog system in the current run of the Analysis

Chapter 7. SULTAN Trust Management

151

Tool. At any time the query history or the assertions stored in the Prolog system can be saved

to temporary files. This facility makes it possible for the administrator to continue a previous

line of analysis or even combine several streams of previous analyses.

Figure 7.22: Source Analysis using the SULTAN Query Statement Builder

7.5 Trust Monitor

In Chapter 6, it was stated that the Trust Monitor is the tool that updates the entity connections

database, the action dependency database, the risk profiles database, state, risk and experience

information. It was also stated that the Monitor is designed on a client-server architecture. In

this section, the technological details behind the architecture employed will be further

discussed. Figure 7.23 represents a realistic illustration of the Trust Monitor architecture. From

the discussion in Chapter 6, it is assumed that a SM Client is installed on each of the computers

in the domain. The SM Client appears to the application to be a socket server, i.e. the SM

Client has a socket open on port 33991. Thus, any application that can read and send

information to a socket can use the SM Client. Behind the socket server interface presented to

the application is a Java RMI (Remote Method Invocation) Client, which uses the methods

defined in RMI Server in the SM Server. The use of sockets as the interface to applications

Chapter 7. SULTAN Trust Management

152

implies that the SM Client has to implement its own communication protocol and server access

logic. Thus, the single uni-directional arrow between the application and the SM Client is

actually an abstraction, which represents three local interactions (Figure 7.24). Why use both

RMI and sockets? Sockets are used because it enables the SM Client to be used by any

application. Using RMI as the application interface would imply that all the application using

the SM Client must be written in Java, which is not a feasible assumption. RMI is used in the

background because it offers an easy way to develop the SM Server without worrying about

communication details, connection management or session management.

State
Information

Entity
Connections

Action
Dependency

Risk
Profiles

Computer X

ApplicatonNApplicaton1

SM Client

RMI Client

SM Server

RMI Server

Figure 7.23: More detailed SULTAN Monitor Architecture

The SM Client socket server employs a simple communication protocol. This is illustrated in

Figure 7.24.

SM Client Application

I want to send you something

Go ahead

Here is the data

Figure 7.24: SM Client Socket Server Interactions

The process outlined in Figure 7.24 can be stated as follows:

Chapter 7. SULTAN Trust Management

153

▪ The application sends a packet (hello, Name), which means ‘Hello, I am application Name.

Can I send you some info?’

▪ The SM Client receives this packet and checks its list of apps. If the app exists then the SM

Client records the application id. If the app does not exist the SM Client creates an

application id and records the id. Finally, the SM Client tells the application to send the

data. (The id generation process is described in Chapter 6)

▪ The application sends the monitoring data.

Summarizing the discussion of Trust Monitoring in Chapter 6, the application can send

monitoring data in the following formats:

(risk, target, actionset, riskvalue) – provides risk information

(experience, target, actionset, expvalue) – provides experience information

(attribute, value) – provides state information

(isPartOf, app-id, UCI) – app-id is a part of UCI

(depends, action1, action2) – for action1 depends on action2

(rprofile, actions, MAL, RT) – MAL and RT are the values for subject and actions

When risk, experience or state information is added/updated, the SM Server calls the Analysis

Tool to run the queries in the SULTAN Analysis Template. These queries are run in a separate

thread so as not to significantly impact the process of information receipt by the SM Server. It

is understood that these queries are performed on the information in the Specification Server

and the State Information Server. If a potential conflict or ambiguity is detected then the

SULTAN System sets a flag to alert the administrator the next time the Specification Editor or

Analysis Tool or Risk Service is used.

7.6 Risk Service

As stated in Chapter 1, risk is a measure of the probability of a transaction failing. The job of

the Risk Service is to provide such a measure, either based on stored risk information or on

transaction risk factors (e.g. risk likelihood, etc.). Thus, the Risk Service has two purposes

(presented in Chapter 5), which are to retrieve risk information and or to assess the risk for a

particular context. The processes involved in risk information retrieval and risk assessment

were covered in Chapter 5. In this section, the architecture of the Risk Service will be

explained. Figure 7.25 is a pictorial representation of the Risk Service’s architecture.

Chapter 7. SULTAN Trust Management

154

Guard Object

Interface Thread

Retrival
Module

Calculation
Module

SULTAN Consultant

SysAdmin

Risk
Profiles

State
Information

Asset Dependency Risk
Likelihood

Figure 7.25: Architecture of the Risk Service

SULTAN Risk Service

Exit Help Switch to

Retrieve Info Assess Risk

Subject :

Target:

Action(set):

Risk ID: (optional)

Risk Value:

Perform Task

Figure 7.26: Snapshot of Admin’s interface to Risk Service

The Consultant (discussed in the next section) allows ordinary users to ask questions concerning

the risk involved in a transaction. The system administrator is provided with a simple interface

(Figure 7.26), which allows him to examine the riskiness of certain contexts and possibly use

Chapter 7. SULTAN Trust Management

155

this information to refine the system’s specifications. The admin’s graphical interface to the

Risk Service currently offers the basic functionality. For tasks such as calculating the expected

loss, the SRS should be called at the command line with arguments.

7.7 Trust Consultant

The trust consultant performs an advice service. This function is normally described as

‘recommendation provision’ in other contemporary trust management systems. In the context

of these systems, the term recommendation is normally used to imply the fact that the system

recommends a course of action, but the decision is inevitably the user’s. In the SULTAN TMF,

the task of providing the user with information to enable decision-making is referred to as a

trust consultation. To enable trust consultations, a trust consultant client must be resident on

each of the firm’s machine. These clients interact with the SULTAN Trust Consultant (STC)

Server. Figure 7.27 illustrates the architecture employed to facilitate consultation.

Computer Y

ApplicatonNApplicaton1

STC Client

RMI Client

ST
C

 S
er

ve
r

RMI Server

Analysis
Engine Risk Service

State
Information

Figure 7.27: Architecture of the Sultan Trust Consultant (STC)

The STC’s architecture is similar to that of the Trust Monitor. The STC Client is viewed as a

socket server by applications (on port 33993). The Client interacts with the RMI Server in the

STC Server, which interfaces with the Analysis Tool, Risk Service and State Information

Chapter 7. SULTAN Trust Management

156

Server. Applications go through the same three-step protocol process stated in the discussion on

the Trust Monitor. The questions that can be asked by an application are:

1. Should I trust target, Y, to perform action(set), A?

This question sent in the format (trust, Y, A) to the STC Client.

2. Should I trust target, Y, to perform action(set), A, at level L?

This is stated in the format (trust, Y, A, L) to the STC Client.

3. Should I recommend target, Y, to perform action(set), A?

This is specified in the format (recommend, Y, A).

4. Should I recommend target, Y, to perform action(set), A, at level L?

This question is constructed using the form (recommend, Y, A, L).

5. What is the risk in engaging actions, A, with target, Y?

This is asked by sending a tuple of the form (risk, A, Y) to the STC Client.

6. What has my experience been with respect to target, Y, and actions, A?

This is stated in a form similar to (exp, Y, A).

The answer returned is dependent on the question asked. Questions 1 to 4 will return a tuple of

the form (BooleAnswer, Justification), where BooleAnswer is Yes or No, and Justification is the

partial explanation for the answer. For example, the question (trust, ClientApp, play(ClientApp,

TitleName)), with the specifications for BMW in Chapter 3 and an empty State Information

Database, will return (No, decrypt(ClientApp, TitleName, DecryptedFile)). Thus, the user is

now aware that, based on the information in the system, decrypt(ClientApp, TitleName,

DecryptedFile) must be proven before ClientApp trust should be trusted. If the State

Information Database contained the fact that decrypt(ClientApp, TitleName, DecryptedFile) is

true, then the answer returned would be (Yes, trust(Front, ClientApp, play(ClientApp,

TitleName), 100)). This means that ClientApp should be trusted based on the trust specification

that states that Front trusts ClientApp to perform play(ClientApp, titleName) at trust level 100.

For question 5, the answer returned is (RiskValue, Justification), where Justification is either the

risk record(s) used to get the risk value or the word calculated. For example, an answer of the

form (100, risk(A,B,C)) is interpreted as the risk value is 100 due to the risk record relating to A,

B, C in the State Information Database. An answer of the form (-50, calculated) states that

based on a risk calculation the risk value is -50. For question 6, the answer may be either

(ExpValue, Justification) or (0, none). A result of (0, none) means that there is no experience

information for the context specified. As with the answer to question 5, Justification is the

record(s) used to derive the value.

Chapter 7. SULTAN Trust Management

157

7.8 Summary

This chapter presented SULTAN Trust Management. It was emphasised that trust management,

in this context, is being viewed as:

“the activity of collecting, encoding, analysing and presenting evidence relating

to competence, honesty, security or dependability with the purpose of making

assessments and decisions regarding trust relationships for Internet

applications.” [4, 5]

This definition implies that trust must be specified, analysed and monitored; and that risk should

be evaluated and trust information used in decision-making. The SULTAN TMF contains tools

that support these trust management processes. The basic trust management lifecycle was

presented and the core data structures used in the TMF were presented. Finally, the

architecture, basic internal operations and use of each of the tools in the TMF were presented.

 158

Chapter 8 Uses of the SULTAN TMF

"Nothing tends so much to the advancement of knowledge as the application of a new
instrument. "

- Sir Humphrey Davy [160]

The SULAN TMF may be used both as a decision support tool to aid human managers or

automated manager agents and to support on-line trust queries for policy decisions relating to

access control or which security mechanisms to use. The components of the TMF may be used

in a diverse range of tasks, e.g. the specification notation may be used to model a variety of

situations (described in Appendix F). In this chapter, specific instances where the TMF may be

used are presented.

8.1 Simulation Analysis

The Analysis Tool (presented in Chapter 7) provides an interface to the addition and retraction

facilities of Prolog. Once the Tool is being used, the administrator has a local copy of the state

information and specifications. He can insert trust/recommend rules, perform analysis queries,

add state information and perform even more queries to ascertain the impact of his changes. To

demonstrate how simulation may proceed, a very simple example using the BMW specifications

from Chapter 3 will be used. The specifications for BMW are:

i1 : trust(BMW, ClientApp, decrypt(ClientApp, TitleName, Decrypted), 100);
i2 : trust(BMW, _Y, decrypt(_Y, TitleName, Decrypted), -100);
ii : trust(Front, ClientApp, play(ClientApp, TitleName), 100)

← decrypt(ClientApp, TitleName, DecryptedFile);
iii : trust(Front, WebBrowser, AccessMusic(CD): BuyMusic(Front, Title), 100);
iv : trust(BMW, PCA, AccessMusic(CD), 100);
v : trust(Front, CCS, VerifyCreditInfo(CCS, CreditDetails):
 StoreCreditInfo(CCS, CreditDetails), 100);
vi : trust(Front, CD, encrypt(CD, Title, EncryptedFile): ProvideMusic(CD, Title), 100);
vii : trust(Front, ProvE, ProvideMusic(CD, NewTitles), 100);

For this example, the Prolog translated representation will be used during analysis. Suppose the

administrator wants to find out if there are any trust conflicts in the source code. He could use

the p_trust_conflict(X) statement from the template.

Chapter 8. Uses of the SULTAN TMF

159

Figure 8.1: Source Trust Conflict for BMW

From Figure 8.1, there is a source trust conflict between rules i1 and i2. Note that a feature of

the Prolog engine used is that lists are returned in Lisp-like dotted pair notation. Suppose the

administrator wants to see the effect of deleting i2.

Figure 8.2: Deletion then Source Trust Conflict for BMW

In Figure 8.2, the administrator has issued the command to delete rule i2. Then he re-executes

the query and sees that there are no more source trust conflicts. This is a simple demonstration

of how the process of simulation takes place.

8.2 Using SULTAN with Ponder

Ponder is a language for specifying security and management policies, while SULTAN is a

language for specifying and analysing trust relationships. The two frameworks may be

connected by either:

� Using SULTAN in Ponder policies.

� Using Ponder as the target for the refinement of SULTAN rules.

8.2.1 Using SULTAN in Ponder policies

Ponder policies may use SULTAN either:

Chapter 8. Uses of the SULTAN TMF

160

� To check that someone be trusted/recommended, or

� To update experience information.

SULTAN rules as constraints

To explain this concept, a simple example is used. It is assumed that the following is the

specification being used:

inst auth+ steve_harr {
subject Steve;
target Andrea;
action FinanceAdvice;
when (trust+(Harry, Andrea, FinanceAdvice(Andrea)) or
 (recommend+(Barclays, Andrea, FinanceAdvice(Andrea));
}

In the above code segment (and all the others in this chapter), terms in bold represent Ponder

reserved words and terms in bold and italicized represent SULTAN reserved words. The above

policy states that subjects in the Steve domain are permitted to perform the action

FinanceAdvice on target objects in the Andrea domain when entities in the Harry domain trust

entities in the Andrea domain to perform FinanceAdvice(Andrea) or when entities in the

Barclays domain recommend entities in the Andrea domain to be trusted to perform

FinanceAdvice(). It should be noted that the when clause contains SULTAN trust constraints

(in the SULTAN notation). This example only shows the use of the trust+ and recommend+

functions as constraints. The constraint could have been any trust or recommend constraint

(including, trust- and recommend+). For enforcement of this policy, the Ponder system will

make a call to the SULTAN Analysis Tool to query whether the particular constraint is true or

false.

Ponder updating experience information

A Ponder policy specification may wish to update experience information as a result of the

enforcement of some policy. When an action is completed, an event can be generated to

represent the successful completion of this action. Let’s assume that the Print_Monitor is

obliged to increase the level of trust between Deandra and Diane once a print action is

successfully completed. This may be specified in Ponder as:

inst oblig+ inc_d {
subject Print_Monitor;
target TrustMonitor;
on print_complete(Deandra, Diane);
do increase(exp, Deandra, Diane, print(_), 5);
}

Chapter 8. Uses of the SULTAN TMF

161

The increase function generates a call to the SULTAN Monitor. For the remaining uses of the

SULTAN TMF, the BMW example (presented in Chapter 3) is used to illustrate them.

8.2.2 Refinement of SULTAN rules to Ponder policies

The SULTAN system operates at a higher layer of abstraction than Ponder. Thus, SULTAN

rules can be refined into Ponder policies. The refinement process involves translating a

SULTAN specification into a variety of Ponder policies (obligation, authorisation, etc.). The

refinement process will entail stipulating what should be done with the level of a SULTAN rule

and determining how constraints and entities should be treated (translated verbatim or mapped

to more meaningful low-level functions). The value of the first parameter of an action will also

be used to determine the assignment of subject and target domains of a Ponder policy. The

difficulty in refining a SULTAN rule to a Ponder policy lies in maintaining the meaning of the

rule. Is it possible to specify a semantically equivalent Ponder policy of a SULTAN trust rule?

Probably not, given that Ponder is closer to the implementation layer than SULTAN. The

refined policy will be more specific (and more closely linked to access control). It should be

noted that the Ponder equivalent might require additional statements to ensure that the

translation is as close as possible in its intent. The steps involved in refining a SULTAN

specification into Ponder policy specification are:

• Refine the principals (the subject, the target, the action set and the constraint set).

• Determine the policy type.

• Define the meaning to be associated with the level.

• Generate the necessary Ponder policies.

The aforementioned rules are purposefully high-level and indicate that automated translation of

SULTAN rules to Ponder policies is not possible. This is due to the abstract nature of the

SULTAN language. Abstract concepts will have to be translated and this translation has to be

driven by a human. It should also be noted that the problem of refinement is a difficult one, and

thus the problem of refining from SULTAN to Ponder will also be inherently difficult.

However, to illustrate that refinement is possible an example is used.

// Simple Access Example

SimpleAccess: trust(Deandra, Darren, use_printer(Deandra_Printers), 10);

Assuming that a trust level of 10 does not lead to the inclusion of any extra constraints in the

Ponder policy, the refined Ponder policy would be:

// Simple Access Example

Chapter 8. Uses of the SULTAN TMF

162

inst auth+ SimpleAccess { subject Darren; target Deandra/printers; action use_printer(); };

In the above example, it is assumed that Deandra_Printers is refined into Deandra/printers.

Now, let’s look at the refinement of two simple SULTAN distrust statements. The first states

that WebServer distrusts External to perform edit(WebServer, WebPages). In the SULTAN

notation, this may be represented as:

// Simple Distrust Example 1

SimpleDistrust: trust(WebServer, External, edit(WebServer, WebPages), -10);

Given a similar assumption about the trust level as used in the previous example, the refined

Ponder policy is:

// Simple Distrust Example 1
inst auth- SimpleDistrust { subject External; target WebServer, action edit(WebPages); }

Our second simple distrust example states that Ann distrusts BuggySw site for downloads. This

is written as:

// Simple Distrust Example 2

SDE2: trust(Ann, BuggySw, download(BuggySw), -10);

It is not possible to install authorisation policies on BuggySw, so this SULTAN statement

should be modelled as a Ponder refrain policy. The refined policy should be written:

// Simple Distrust Example 2
inst refrain SDE2 {subject Ann/PC; target BuggSw; action download(); }

The interesting point about the above two examples is that the trustor corresponds to the target

in the first and the subject in the second.

To show that refinement from SULTAN to Ponder is not a trivial task, more difficult examples

will be discussed.

/* A Little More Difficult */
MGR: trust(AdminMan, PayrollMan, sign(Cheque), 10) ← associated(Cheque, Company).

Rule MGR states that AdminMan trusts PayrollMan at trust level 10 to perform sign(Cheque) if

associated(Cheque, Company) is true. In translating this to Ponder, a statement that says that

PayrollMan is authorised to perform sign on Cheque (the target – because the first parameter of

an action name is the location of the action) if associated(Cheque, Company) is true is

constructed. In Ponder, this would be:

/* A Little More Difficult */
inst auth+ MGR {
 subject PayrollMan; target Cheque;
 action sign; when associated(Cheque, Company); }

Chapter 8. Uses of the SULTAN TMF

163

Suppose Dan is trusted to perform the print and configure functions at trust level 100 if

DSEAdmin(Dan) is true. In the SULTAN notation, this is:

/* A More Difficult Example */
Diff : trust(DSE, Dan, print(PRINTERS):configure(PRINTERS), 100) ← DSEAdmin(Dan);

Applying the rules discussed above to perform the refinement may result in the following steps:

Step 1: Refine the principals

For this example, it is assumed that entity names are translated verbatim. However, if the

SULTAN specification contains highly abstract principals, it is likely that each of these

principals would have to be mapped to lower level principals by the system administrator.

Step 2: Determine the policy type

Intuitively, it is clear that this example requires an authorisation policy. However, if the

example is sufficiently hard, then the patterns presented above may be used to determine the

particular Ponder policies required. It should be noted that a mapping from SULTAN rule

patterns to their corresponding Ponder equivalents has not yet been done.

Step 3: Define the meaning to be associated with the level.

For this example, a trust level below 50 necessitates that an entity be checked for an additional

security credential and that a trust level above 50 means that this check is not done.

Step 4: Generate the necessary Ponder policies.

The final step is simply putting all the pieces together.

/* A More Difficult Example */
inst auth+ Diff { subject Dan; target PRINTERS;
 action print, configure;
 when DSEAdmin(Dan); }

Note that this example is still relatively very simple. Automatic generation will not always

create one authorisation for each SULTAN trust rule. A network of policies (both authorization

and obligatory) may often be required in refining a SULTAN rule. For complex examples, the

refinement process becomes more difficult. For example, if there is a SULTAN rule that is

modelling ‘delegation’ trust, then it might be refined into a Ponder delegation policy. Thus, the

context of a rule is an important issue in the refinement process. An added problem is the

treatment of SULTAN recommend rules. Currently there is no direct (or indirect)

representation for SULTAN recommend rules in Ponder. To solve this problem, rules can be

created that infer trust rules from recommend rules and refine the inferred trust rules. The

process described above may be used to translate SULTAN into the lower-level trust notations.

Chapter 8. Uses of the SULTAN TMF

164

8.3 Negotiation

The negotiation process between a client and a producer determines whether or not a business

relationship should be set up. This process governs the exchange of credentials [134],

bargaining over price and possibly quality of service. BMW might be approached by another

content provider MusicStore. Initially, MusicStore would only have a low default trust level, so

BMW would take a cautious approach. However, as part of the credential exchange,

MusicStore provides a signed recommendation from PMW. This recommendation is inserted

into BMWs trust spec and now there is a match with a trust specification based on a PMW

recommendation, so the trust level of MusicStore is now medium.

8.4 Contract Evaluation

Eventually BMW has two potential contracts to choose from but decides it really only needs one

more content supplier. When faced with a choice between a group of potential E-commerce

partners, the SULTAN trust framework can be used to help in selecting the appropriate partner.

AllMP3 has revealed that part of its content is outsourced from DodgyStores and BMW has

experience information about DodgyStores. The manager of BMW queries the information

store and Specification Server to give all recommendations, trust rules, experience and risk

information relating to an entity and then inserts a new trust rule which effectively gives greater

weight to bank recommendations than client recommendations.

8.5 Recommendation Formation

It is possible to explicitly specify recommendations in the SULTAN notation. However, humans

may want to generate recommendations about an entity based on a current trust rating for that

entity either within the same context or even with respect to a different context i.e. there are no

existing trust rules for that specific context. For example, BMW gets a request for a

recommendation of PMW as video content supplier but only has a trust rule related to music

supply. BMW is not quite sure about PMW’s ability to provide the data rate needed for video

so only gives a low rating for a recommendation, which is inserted in the Specification Server.

Chapter 8. Uses of the SULTAN TMF

165

8.6 Infrastructural Security

Trust-based decision-making can be used to configure the security of infrastructure. BMW sets

up a contract with a local radio station to give unlimited access to all its music sources for a

fixed monthly charge. A VPN connection is used to link the Radio station network and BMW,

so the encryption can be disabled on sending music to the Radio station as the VPN provides a

secure channel.

8.7 Access Control Decisions

The trust level of a trustee can be the basis of an authorisation decision for access to a trustor’s

resources or services by a trustee. A new customer of BMW is covered by the following rule,

which allocates a default low trust level of 10.

DefCust: trust (BMW, _newCustomer, AccessMusic(ContentDatabase), 10);

A couple of Ponder authorisation policies can be used to give access to all music if the customer

trust level is high but only to a subset if the trust level is low. A Ponder authorisation policy

specifies access control for security. Positive authorisation policies specify the actions that a

subject is permitted to perform on a target object, while negative authorisation policies specify

the actions that a subject is forbidden from performing on the target object.

type auth+ Access (domain SegmentofContentBase, string TrustValue){
subject Client; target SegmentofContentBase; action AccessMusic();
when (trust+(FrontEnd, ClientApp, AccessMusic(ContentDatabase), TrustValue)) };

inst auth+ AccessHigh = Access(/BMW/ContentBase, HighTrust);

inst auth+ AccessLow = Access(/BMW/ContentBase/Restricted, LowTrust);

This defines a Ponder policy type called Access with 2 parameters – the segment of the music to

which access is to be permitted and a trust value. The constraint to the policy is in the form of a

query to the SULTAN framework to determine whether the subject is trusted at the required

level. Two policy instances are then created to cater for the high and low trust situations. This

is an application of using SULTAN queries as Ponder constraints (to aid access control

decisions).

Chapter 8. Uses of the SULTAN TMF

166

8.8 Resource Allocation

BMW performs an audit of its records relating to customer use every six months. Based on the

experience information on the customer and the trust level (and the changes in the trust level) of

the customer, BMW decides whether to upgrade the customer’s status and give the customer

further discounts on all purchases.

8.9 Summary

This chapter presented typical instances where the SULTAN TMF may be used. The first

instance discussed was simulation analysis, which involves the creation of ‘What-if’ scenarios.

SULTAN rules may be used as constraints or as a source notation for refinement into lower

frameworks. The components of the TMF may be used to help in the negotiation, contract

evaluation and recommendation formation processes. The TMF may also help in the

determination of infrastructure security, access control decisions and resource allocation.

 167

Chapter 9 Case Study

"A theory, ultimately, must be judged for its accord with reality."
Stanislaw Leshniewski (1886 - 1939), [62]

This chapter describes a real business (based on [161]). However, names and figures have been

modified in order to make the case study more generic and to not infringe on the company’s

copyright. The SULTAN TMF is incorporated into the study to demonstrate its applicability to

Internet-based corporations.

9.1 Overview

ResWorld is an Internet-based distribution network for the hotel industry, which has its

headquarters in the USA and offices in the United Kingdom and France. The client database

consists of travellers, hotels and partners. Currently, ResWorld has a network that includes

50,000 properties, over 3,000 Web distribution partners, 80,000 travel agents and the global

distribution systems Galileo, Sabre and Worldspan. The strategic objectives of ResWorld are:

• to generate additional revenue for hotels at a lower cost, through online marketing and

distribution, and

• to provide consumers with a more efficient and effective shopping and booking experience.

9.2 The Players

A partner is a company that sees the benefit of establishing a symbiotic relationship with

ResWorld. All partners receive a portion of the revenues generated by reservations booked

online. Partners may connect to ResWorld through a range of methods, e.g. a simple link or full

technical integration.

Member hotels may post content on ResWorld’s website. This information includes detailed

information and photos, which is distributed to partners or through their own Web site using the

ResWorld network and technology.

Chapter 9. Case Study

168

Travellers, who are ResWorld members, may view travel web pages and or make online

reservations. The company makes revenue every time a reservation is made through its system.

9.3 Processes and Infrastructure

Content for member hotels is stored in a central database, which is connected to ResWorld's

network of partners. Hotels can update their content in real time. When this is done, the

changes are automatically transmitted to all partners simultaneously. Reservation and database

services are provided by UNIX machines and powered by Sybase database technology. Web

services are provided on Windows NT machines and all transactions use the Secure Sockets

Layer (SSL) protocol to allow for the encryption of any information that is transferred across

the Internet. Digital client identification services are provided by VeriSign Inc. To manage the

demands on ResWorld’s system, a minimum of two web servers is present for each office, with

more servers added as the load increases. High availability is enabled by using multiple parallel

servers for each hardware component of the system. If server failure is detected, the load is

shifted to another, using IP load distribution to route a user's request to the least busy server.

These servers also allow repairs and upgrades while the system is operational.

The study detailed in this chapter will focus on ResWorld’s American office, which will

hereafter be referred to as ResAm. The American office consists of a team of managers,

technical and administrative staff. The office also consists of web servers and database servers,

which represents the bare minimum equipment listing for ResAm. Management is sub-divided

into operational and strategic divisions, spearheaded by a General Manager. Technical staff is

lead by the systems administrator and includes a coalition of database administrators,

integration specialists and web services developers. Administrative staff includes

administrative assistants and legal aides.

To illustrate the applicability of the TMF to Internet-based business, this chapter will outline the

phases of the trust management lifecycle (Chapter 7) as it pertains to ResWorld.

9.4 Initialisation Tasks

The initialisation tasks are those that are performed by the systems administrator when the

SULTAN system is being installed.

Chapter 9. Case Study

169

9.4.1 Organizational Chart Diagram

Figure 9.1 shows the organizational diagram that may be constructed from the information

provided above.

ResWorld

Office Traveller Hotel Partner

ResAm ResUK ResFrance

Manager Technical Admin Equipment

OperGM

SysAdmin DBA IS

AA LA

WebServer DBServer

HotelDB PartnerDB TravellerDB

WS1 WS2

WSD

Strat

DSTravelAgentIndustry

SabreWorldSpanGalileo

Figure 9.1: Organizational Chart for ResWorld

The symbols and their representations used in Figure 9.1 that are hard to decipher are presented

in Table 9.1.

Symbol Meaning
GM General Manager
Oper Operational Manager
Strat Strategic Manager
DBA Database Administrator
IS Integration Specialist
WSD Web Services Developer
AA Administrative Assistant
LA Legal Aide
WS1 Web Server 1
WS2 Web Server 2

Table 9.1: Key for ResWorld’s Organization Chart

The above diagram would lead to the construction of the following facts:

Chapter 9. Case Study

170

isPartOf(Office, ResWorld). isPartOf(Traveller, ResWorld). isPartOf(Hotel, ResWorld).

isPartOf(Partner, ResWorld). isPartOf(ResAm, Office). isPartOf(ResUK, Office).

isPartOf(ResFrance, Office). isPartOf(Manager, ResAm). isPartOf(Technical, ResAm).

isPartOf(Admin, ResAm). isPartOf(Equipment, ResAm). isPartOf(GM, Manager).

isPartOf(Oper, Manager). isPartOf(Strat, Manager). isPartOf(SysAdmin, Technical).

isPartOf(DBA, Technical). isPartOf(IS, Technical). isPartOf(WSD, Technical).

isPartOf(AA, Admin). isPartOf(LA, Admin). isPartOf(WebServer, Equipment).

isPartOf(DBServer, Equipment). isPartOf(WS1, WebServer). isPartOf(WS2, WebServer).

isPartOf(HotelDB, DBServer). isPartOf(PartnerDB, DBServer).

isPartOf(TravellerDB, DBServer). isPartOf(Industry, Partner). isPartOf(TravelAgent, Partner).

isPartOf(DS, Partner). isPartOf(Galileo, DS). isPartOf(WorldSpan, DS). isPartOf(Sabre, DS).

isPartOf(Traveller, foreign). isPartOf(Hotel, foreign). isPartOf(Partner, foreign).

All this information is stored in the Entity-Connections database, via the Mini-Editor of the

SULTAN Specification Editor.

9.4.2 Asset Repository Construction

The asset listing has been purposefully restricted for this study. Currently, there are five assets,

i.e. the web servers and the databases. As the web servers merely provide an interface to the

data and implement server access control logic, their value is determined from the cost of the

machines and the software running on them. This is approximated to £4,000. The monetary

value of the databases is surmised from the potential worth of the data in the databases. Since

the database contains sensitive information, their initial value is assumed to be £12,000. This

means that the total value of all the assets is £44,000 (£4,000 + £4,000 + £12,000 + £12,000 +

£12,000). This information would necessitate the construction of an asset repository with the

following information:

rTotal(44000). resource(WS1, 0.0909). resource(WS2, 0.0909). resource(HotelDB, 0.2727).

resource(PartnerDB, 0.2727). resource(TravellerDB, 0.2728)

Note that the contribution of TravellerDB is rounded up to ensure that the proportions sum to

one (to be consistent with the theory presented in Chapter 5).

9.4.3 Risk Profile Data

To specify risk profiles, the set of actions that is to be used in the trust and recommend

specifications must be known. To ascertain these actions, the options available to the different

Chapter 9. Case Study

171

parties and the system administrator’s comprehension of the functions of the members of the

organizations are used. ResWorld’s website states:
We offer the following services:

For travellers

Find, see and book a hotel
room. Get the best discounts
in your favourite destinations,
including distinctive hotels,
inns and resorts worldwide at
www.PlacesToStay.com

For hotels

Join ResWorld or upgrade
your current ResWorld
services to make your hotel
bookable to millions of
worldwide consumers and
travel agents.

For Partners

ResWorld offers leading
Web sites, travel agencies
and call centers the largest
and most unique selection
of hotels, bed & breakfasts
and inns.

Technical Support is provided for any problem.

A quick scan of the services provided by ResWorld to its clients and the outline presented in

earlier sections of this chapter reveal that the following actions will be required:
Action Signature Interpretation

send_payment(Obj, Portion, ToP, TransId) Sends payment, Portion, to ToP for
transaction TransId.

view_info(Obj, Id) Entity Id views information.
post(Obj, MemId, Cont) Entity MemId posts content Cont.
update(Obj, MemId, Cont) Entity MemId updates Cont.
search(Obj, MemId, ForText) MemId searches Obj using ForText.
book(Obj, MemId) MemId books a room.
send_info(Obj, MemId) Obj sends new information to MemId.

Table 9.2: Initial set of actions for ResWorld

Since the perspective taken by the system administrator is from the point of view of the

American Office (i.e. ResAm), the risk profiles will be defined for ResAm. Actions relating to

bookings and the transmission of information and or monetary units are assigned higher

Maximum Allowable Losses and lower Risk Thresholds. The following represents an initial,

administrator-assigned risk profile repository:

rprofile(ResAm, send_payment(_O, _P, _T, _TID), 500, 0.15).

rprofile(ResAm, view_info(_O, _Id), 100, 0.50). rprofile(ResAm, post(_O, _Mid, _C), 200, 0.20).

rprofile(ResAm, update(_O, _Mid, _C), 200, 0.30).

rprofile(ResAm, search(_O, _Mid, _F, _R), 100, 0.65).

rprofile(ResAm, book(_O, _Mid), 600, 0.10).

rprofile(ResAm, send_info(_O, _Mid), 250, 0.30).

It should be noted that there isn’t a rigid linear progression of activities. It is often the case that

initialisation and specification occur simultaneously.

Chapter 9. Case Study

172

9.5 Specification

The trust relationships for ResAm can be ascertained from the description of the business,

which was provided earlier in this chapter, and from the information garnered from executing

the initialisation tasks. In this section, all the trust relationships involving ResAm will be

outlined. These relationships are:

1. ResAm’s partners trust ResAm to send a portion of a reservation revenue, once a booking is
made.

2. ResAm’s partners trust ResAm to send information once it has been posted or updated on
ResAm’s site.

3. ResAm trusts its partners to responsibly view the information in ResAm’s databases. (the
partnership integration agreement).

4. ResAm trusts its member hotels to post and update content.

5. ResAm trusts Traveller to responsibly search, view and make bookings through their web
system.

In additional to the above trust relationships, the administrator knows that there are other

relationships that relate to the people in the organization, namely:

6. Technical staff are trusted to configure and maintain the equipment. They are also trusted
to produce status reports for the equipment.

7. Database Administrators are distrusted to configure and maintain web servers

8. Web Service Developers are distrusted to configure and maintain the database servers.

9. Administrative Assistants are trusted to check client information, once they have
authorisation from a manager.

10. Managers are trusted to read equipment status reports and view equipment settings.

The above is a snapshot of (some of) the organizational trust relationships that exist in this

application domain. These relationships necessitate the use of additional actions, namely:

Action Signature Interpretation
view_sett(Obj, Id) Id views the settings of Obj.
update_sett(Obj, Id, NewSet) Id updates the settings for Obj with NewSet.
reset(Obj, Id) Id resets the settings for Obj.
create_srep(Obj, Id) Id creates a status report for Obj
read_srep(Obj, Id) Id reads a status report for Obj
check(Obj, Id, ClientID) Id checks the information entered by

ClientID

Table 9.3: Additional actions for ResWorld

It is assumed that the risk profiles for these actions will be:

rprofile(ResAm, view_sett(_O, _ID), 150, 0.20).

rprofile(ResAm, update_sett(_O, _Id, _NS), 300, 0.10). rprofile(ResAm, reset(_O, _Id), 400, 0.10).

Chapter 9. Case Study

173

rprofile(ResAm, create_srep(_O, _Id), 50, 0.70). rprofile(ResAm, read_srep(_O, _Id), 100, 0.70).

rprofile(ResAm, check(_O, _Id, _C), 100, 0.50).

The SULTAN specifications correlating to the trust relationships broadly defined above are:

1. PPay : trust(Partner, ResAm, send_payment(WebServer, _Portion, Partner, _T_Id), 100)
← booking_made(_T_Id) & portion(Partner, _T_Id, _Portion);

Partner trust ResAm to perform send_payment(WebServer, Portion, Partner, T_Id) at trust level 100 if
the booking was made for transaction T_Id and Portion is the Partner share of the transaction.

2. PSend : trust(Partner, ResAm, send_info(WebServer, _P_Id), 100)
← is_security_token(_P_Id, Partner);

Partner trust ResAm to perform send_info(WebServer, _P_Id) at trust level 100 if _P_Id is the security
token for Partner. This token is assumed to be a credential.

3. PView : trust(ResAm, Partner, view_info(DBServer, _PartId), 50)
← is_security_token(_PartId, Partner);

ResAm trusts Partner to perform view_info(DBServer, _PartId) at trust level 50 if _PartId is the
security token for Partner.

4. HCont: trust(ResAm, Hotel, post(WebServer, _H_Id, _Cont) :
 update(WebServer, _H_Id, _Cont), 100)

← is_security_token(_H_Id, Hotel) & is_valid(_Cont,_H_Id);

ResAm trusts Hotel to perform post(WebServer, _H_Id, _Cont) and update(WebServer, _H_Id, _Cont)
at trust level 100 if is_security_token(_H_Id, Hotel) and is_valid(_Cont, _H_Id) are both true. Note
that is_valid(_Cont, _H_Id) represents the fact that validity checks have been performed on _Cont to
ensure that its integrity has not been compromised and that it was actually sent by _H_Id.

5. Table1 : trust(ResAm, Traveller, search(WebServer, _T_Id, _Text), 100)
← is_security_token(_T_Id, Traveller) & is_valid(_Text, T_Id);

ResAm trusts Traveller to perform search(WebServer, _T_Id, _Text) at trust level 100 if
is_security_token(_T_Id, Traveller) and is_valid(_Text, T_Id) are true.

Table2 : trust(ResAm, Traveller, view_info(WebServer, _T_Id):book(WebServer, _T_Id), 100)
← is_security_token(_T_Id, Traveller);

ResAm trusts Traveller to perform view_info(WebServer, _T_Id) and book(WebServer, _T_Id) at trust
level 100 if is_security_token(_T_Id, Traveller) is true.

6. TechAble : trust(ResAm, Technical, view_sett(Equipment, _T_Id) :
update_sett(Equipment, _T_Id, _NewSet) :
reset(Equipment, _T_Id) : create_srep(Equipment, _T_Id), 100)

← is_security_token(_T_Id, Technical);

ResAm trusts Technical to perform view_sett(Equipment, _T_Id), update_sett(Equipment, _T_Id,
_NewSet), reset(Equipment, _T_Id) and create_srep(Equipment, _T_Id) at trust level 100 if
is_security_token(_T_Id, Technical) is true.

7. DBANotAble : trust(ResAm, DBA, view_sett(WebServer, _D_Id) :
update_sett(WebServer, _D_Id, _NewSet) :
reset(WebServer, _D_Id) : create_srep(WebServer, _D_Id), -100);

ResAm distrusts DBA to perform view_sett(WebServer, _D_Id), update_sett(WebServer, _D_Id,
_NewSet), reset(WebServer, _D_Id) and create_srep(WebServer, _D_Id) at trust level -100.

8. WSDAble : trust(ResAm, WSD, view_sett(DBServer, _W_Id) :
update_sett(DBServer, _W_Id, _NewSet) : reset(DBServer, _W_Id) :
create_srep(DBServer, _W_Id), -100);

ResAm distrusts WSD to perform view_sett(DBServer, _W_Id), update_sett(DBServer, _W_Id,
_NewSet), reset(DBServer, _W_Id) and create_srep(DBServer, _W_Id) at trust level -100.

Chapter 9. Case Study

174

9. AACheck : trust(ResAm, AA, check(DBServer, _A_Id, _C_Id), 100)
← is_security_token(_A_Id, AA) & auth(_M_Id, Cid) &
 is_security_token(_M_Id, Manager);

ResAm trusts AA to perform check(DBServer, _A_Id, _C_Id) at trust level 100 if
is_security_token(_A_Id, AA), auth(_M_Id, Cid) and is_security_token(_M_Id, Manager) are true.

10. MEquip : trust(ResAm, Manager, read_srep(Equipment, _M_Id) :
view_sett(Equipment, _M_Id), 100)

← is_security_token(_M_Id, Manager);

ResAm trusts Manager to perform read_srep(Equipment, _M_Id) and view_sett(Equipment, _M_Id) at
trust level 100 if is_security_token(_M_Id, Manager) is true.

Entities that are a part of the organization are linked to the entity names in the specifications by

the entity-connections update facility of the SULTAN Monitor. For foreign entities (discussed

in Section 3.4), a trust rule must be included to link these unknown parties to entities in our

domain. An alternative would be to create default trust relationships for foreign entities and

replace all entities that are a part of foreign with SULTAN variables. This would imply that

these variables will be checked in the constraints. However, since VeriSign provides the client

identification services, VeriSign certificates can be used to establish the client’s role (i.e.

Traveller, Hotel, Partner). The trust rule that allows this binding is:

11. ForeignBind : trust(ResAm, _Y, _A, _L)
← verified_as(_Y, VeriSign, _R) & isPartOf(_R, foreign) & trust(ResAm, _R, _A, _L);

ResAm trusts/distrusts an entity _Y to perform _A at trust level _L if _Y is verified by VeriSign as
having a certificate for role _R and _R is a foreign entity and _R is involved in a trust/distrust rule
involving ResAm, _R, _A and _L.

Figure 9.2 shows the compilation results of the specifications discussed above. The next

generation of the SULTAN compiler will link the organizational chart into the compilation

process. This will eliminate the semantic warnings generated in the results of Figure 9.2.

Chapter 9. Case Study

175

Figure 9.2: Compilation Results for ResWorld

9.6 Analysis

In this section, three analysis queries will be described. The Analysis Tool will be used to see

the results of each query and the necessary adjustments to the specifications presented. As these

are the questions that are asked at installation-time, they will be restricted to source analysis

queries. As a part of the information collection discussion in the next section, scenario queries

will be presented. Queries will be manipulating translated versions of the specifications, state

and organisational chart information. Thus, this discussion will highlight queries in both the

SULTAN form and their Prolog translated form.

The first query is a standard trust conflict. This will identify if there are trust and distrust

relationships between two entities for the same context. Ordinarily, this query may be specified

as:

query([T,D], (p_pos_trust(T), p_neg_trust(D), p_trustor(Tr,T), p_trustor(Tr, D),
 p_trustee(Te, T), p_trustee(Te, D), p_commonAS(T, D)), Result).

Since this generic conflict is specified in the template, the template call that may be used is:
p_trust_conflict(Result).

Chapter 9. Case Study

176

Figure 9.3: Analysis Result for Source Trust Conflict Query

From the specifications, it is noticed that technical staff is trusted to configure and maintain the

firm’s equipment, yet DBAs are not trusted with the Web Server and Web Service Developers

are not trusted with the databases. The source conflict is evident in the results of Figure 9.3,

which shows two conflicting pairs of relationships, namely 1) TechAble & DBANotAble, and

2) TechAble & WSDAble. To ensure that this conflict does not occur in actual scenarios, the

administrator needs to simply modify the constraints of TechAble to include checks that ensure

that the relationship does not hold for DBAs (with respect to the Web Servers) and Web Service

Developers (with respect to the Databases). Such a change may be:

TechAble : trust(ResAm, Technical, view_sett(Equipment, _T_Id) :
 update_sett(Equipment, _T_Id, _NewSet) :
 reset(Equipment, _T_Id) : create_srep(Equipment, _T_Id), 100)
← is_security_token(_T_Id, Technical) &
 ((is_not(Technical, WSD) & is_not(Equipment, DBServer)) |
 (is_not(Technical, DBA), is_not(Equipment, WebServer)));

This inclusion will not change the result of the source trust conflict query, but will ensure that

scenarios will not lead to this conflict. The next query that will be asked is a conflict of interest

query. This time the administrator chooses to formulate his own conflict of interest query,

namely:

query([T1,T2, Te], (p_pos_trust(T1), p_pos_trust(T2), T1 \== T2, p_trustee(Te,T1),
 p_trustee(Te, T2), p_trustor(Tr1,T1), p_trustor(Tr2,T1),

Chapter 9. Case Study

177

 Tr1 \== Tr2, p_commonAS(T1,T2)), Result).

This particular query is looking for trust relationships, with the same trustee, different trustors

and a common set of actions, i.e. which positive trust rules involve someone who is trusted by

different people to perform the same task(s)?

Figure 9.4: Analysis Result for Source Conflict of Interest Query

From Figure 9.4, it can be seen that the Result variable is empty. Thus, there are no source

conflicts of interest. The rationale behind the answers of the other variables in the query are due

to the Prolog unification algorithm and may provide some useful insight. For example, the fact

that all of our auxiliary variables have been instantiated to Prolog variables suggests that a rule

with variables for the trustor, trustee and rule-name were used to determine Result. Since the

specification is relatively small, we know that the rule in question is ForeignBind. For a source

query, ForeignBind will match every other rule in our specification (except PPay and PSend,

which have a different trustor). However, the inequality test in the conflict of interest statement

ensures that such variable-entity pairings do not appear in the result.

The final query to be examined in this section is a source separation of duties conflict. The

administrator knows from earlier conversations with the General Manager (GM) that no one

should be trusted to update the settings of the Web Servers and view information on the

Chapter 9. Case Study

178

Partners. The GM believes that disgruntled employees may be induced into committing

corporate espionage for the right price. To specify such a query, the template may be used. The

statement to be used would be:

p_separation_of_duties(Entity, [f_update_sett(e_WebServer, _)],
 [f_view_info(e_PartnerDB,_)], Result).

The above would be translated to:
query([T1,T2], (p_pos_trust(T1), p_pos_trust(T2), T1 \== T2, p_trustee(Entity,T1),
 p_trustee(Entity, T2), p_actions([f_update_sett(e_WebServer, _)], T1),
 p_actions([f_view_info(e_PartnerDB,_)], T2)), Result).

Figure 9.5: Analysis Result for Source Separation of Duties Query

From Figure 9.5, there is no separation of duties conflicts with respect to the source. This

completes the initial discussion on trust analysis. Now, the focus moves to establishing the

mechanisms necessary to collect information and how this information may be used. To

illustrate the next two sections, which highlight the SULTAN Monitor and Consultant, the

administrator’s tools will be used. This is because the Monitor and Consultant connect to user

applications via socket messages and have no graphical interface.

Chapter 9. Case Study

179

9.7 Information Collection

To enable the collection of information (i.e. relating to state, risk, experience, entity

connections, action dependencies and risk profiles), the SULTAN Monitor (SM) client will be

installed on all the machines in the domain. This implies that a SM Client must be present on

all the machines used by ResWorld’s staff and on the web and database servers. Each machine

is installed with its associated entity name in the local store of the SM Client. For the purposes

of this study, the processes involved in setting up the SM Client on WS1 will be discussed.

As stated in Chapter 6, the SULTAN Monitor is based on a passive design architecture. Thus,

the administrator decides when information is to be sent. Since, he knows the constraints that

need to be monitored, there is no problem in determining what is to be sent to the Monitor.

After modifying the software running on WS1 to send constraint information to the SM Client,

the following are the tasks performed:

• After the verification of a client, a verified_as fact and an is_security_token fact are sent to
the Monitor.

• At the end of a SSL transaction, a booking_made and an experience record are generated.

• When hotel content is received, an is_valid record is sent to the Monitor.

• Generates an is_registered record for newly registered members.

• When a booking cancellation is performed, the associated booking_made record is deleted,
a booking_cancelled record is created and a negative experience is noted.

• The SULTAN Monitor Server automatically signals the State Information Database to
delete the associated verified_as fact when a member logs out.

Suppose that Jane is going on vacation in Macau and needs to book a room for seven nights.

She has heard of ResWorld’s reputation for providing quality, low-cost accommodation and

decides to try them out. She enters her personal information, which generates an

is_registered(_JaneID, Traveller), and starts viewing the available hotels in Macau. At this

point, a VeriSign certificate is issued to Jane’s machine (and verified_as and is_security_token

facts are sent to the Monitor). At this point, the State Information Database has the following

information:
is_registered(C190123, Traveller).
verified_as(C190123, VeriSign, Traveller).
is_security_token(C190123, Traveller).

Chapter 9. Case Study

180

When each of these facts is sent to the Monitor, the template of conflicts and ambiguities is re-

evaluated. Figure 9.6 shows the results of the re-evaluation process at the point when these

three facts are in the State Information Database.

Figure 9.6: Re-evaluation Results

From Figure 9.6, it is clear that there are no conflicts or ambiguities arising from the addition of

the state information. However, if the result of any of the queries being executed returns a non-

empty set, then the re-evaluation flag is set (in the common configuration file for the

administrator's tools) and the queries involved added to a list of potential problems file. This

file and flag are reset when the administrator runs a tool and looks at the (potential) problems.

When Jane finds a room and makes a booking, a booking_made fact is sent to the Monitor and a

positive experience record generated. When she logs out, the verified_as fact is retracted. After

her success, Jane tells her two sisters about ResWorld. They coax her to let them book their

vacation accommodation using Jane’s account at ResWorld. They get their way and in the

process generate two new booking and experience records. Due to unforeseen circumstances,

Jane has to cancel her booking. Thus, a negative experience record is generated for the

transaction. Thus, our State Information Database has the following contents:
is_registered(C190123, Traveller). is_security_token(C190123, Traveller).
booking_made(C190123_11903p1400_Macau).
experience(ResWorld, C190123, book(WS1_20, C190123_11903p1400_Macau), 100).
booking_made(C190123_12903a0900_Hawaii).
experience(ResWorld, C190123, book(WS1_20, C190123_12903a0900_Hawaii), 100).
booking_made(C190123_12903a0925_Florida).
experience(ResWorld, C190123, book(WS1_20, C190123_12903a0925_Florida), 100).
experience(ResWorld, C190123, book(WS1_20, C190123_11903p1400_Macau), -20).

Chapter 9. Case Study

181

A value of –20 is used for the experience value of the cancellation to demonstrate the relative

insignificance of the cause of this record. It is assumed that a negative experience record that is

due to a more serious cause, such as the failure to pay, would have a larger negative value. The

focus moves on to how all this information may be used by the workers of ResWorld (or their

software proxies).

9.8 Application Use

For each machine in the system to take advantage of the information in the SULTAN system,

the SULTAN Consultant must be installed on every machine in ResWorld’s organisation. The

SULTAN Consultant is integrated into an application just as the SULTAN Monitor is. As

stated in Chapter 7, the questions that can be asked are:

• Should I trust a target entity in a particular context?

• Should I recommend an entity to be trusted in a particular context?

• What is the risk involved in a transaction, w.r.t. target Y and action A?

• What is the experience w.r.t. target Y and action A?

In this section, a trust and experience consultant query will be discussed. The underlying query

(made in the Analysis Tool) and the results will be presented. When Jane logs back into the

system, the application may ask the question ‘Should I trust her to search the web pages?’ The

application sends the following tuple to the STC client:

(trust, C190123, search(WS1, C190123, _))

This translates into the following question that is to be executed by the Analysis Tool:
query(trust(e_ResAm, e_C190123, [f_search(e_WS1, e_C190123, _)], _L), Result), _L>0.

Figure 9.7: Translated Trust Consultation Query

Chapter 9. Case Study

182

This is a typical abduction question, which returns the set of predicates that need to proven for

the rule to be true. In this case, the result is empty, thus the consultant will return yes and the

name of the rule to the calling application.

Suppose the web server is modified to use past experience to augment the process of deciding

who is allowed access to the system. The policy could be that a negative cumulative experience

with a trustee would override the VeriSign authentication tokens. Thus, if Jane decides to use

ResWorld’s system when this policy is in place, then the application may ask the question:

(exp, C190123, _)

This is translated to a special command that calculates the weighted average of the experience

records, which is:

getExp(e_ResAm, e_C190123, V__, Value).

Figure 9.8: Translated Experience Consultation Query

From Figure 9.8, the experience rating for Jane over her period of use has an experience value

of 70, which indicates that ResAm has had an overall positive experience. With this

information and the VeriSign certificate, the web server can decide that Jane has earned the

right to use the system once again. If for some reason, the overall experience w.r.t. Jane

becomes negative, the web server logic may dictate that Jane has become (or is becoming) a bad

customer and decide not to allow Jane to use the system. Thus, applications can use the

SULTAN system to evaluate client’s behaviour (i.e. interactions and outcomes) to determine

whether they wish to continue doing business with them or whether they should look at limiting

the business areas available to the client.

Chapter 9. Case Study

183

9.9 Summary

This chapter presented the case study of an Internet-based business, ResWorld, which provides

online, real-time reservation system. ResWorld is primarily concerned with business-to-

business operations, but also offers direct access to the consumer and a low-cost marketing

platform for smaller hotels and resorts. The phases of the trust management lifecycle were

applied to ResWorld and in each phase, it was shown how the SULTAN TMF can be

incorporated and used. From the chapter’s discussion, it is demonstrated that the current

prototype can be useful to the administrator after he has performed the necessary configurations.

 184

Chapter 10 Critical Evaluation

“It is only through evaluation that value exists: and without evaluation the nut of existence
would be hollow.”

– Friedrich Nietzsche (1844–1900), German philosopher [162]

This chapter details the limitations and deficiencies of the SULTAN TMF and highlights areas

of improvement. Firstly, the TMF is criticised in the context of related work.

10.1 Relationship to Related Work

The SULTAN Trust Management Framework emerged from work on trust models and trust

management systems (Chapter 2). All these fields concentrate on very specific issues, which

tend to be application-specific and security-biased. The SULTAN framework approaches trust

management from an application-independent, security non-specific perspective.

Logic-based trust models have focused on authentication protocol specification (BAN Logic

[46]), authentication rules (ASL [88]), modalities [89, 90], transmission reliability [91], agent

communication message history [92] and subjective proposition beliefs [96-98]. The shared

theme in these models, with the exception of Josang’s Subjective Logic, is the encoding of a

scenario into a notation, defined by the creator of the formalism, and the use of logic reasoning

to determine if the scenario adheres to particular (logical) properties. In these models, the

analysis of a scenario to determine if a logical property holds is done by a human expert. With

Josang’s Logic, the model is concerned solely with specifying and reasoning about Subjective

Opinions. The specification and analysis components of the SULTAN TMF perform the same

task executed by the majority of these trust formalisms. The SULTAN specification notation

was not designed to facilitate behavioural models of trust. Thus, modal logics that model

trusting behaviour are not modelled by the SULTAN TMF. The analysis facilities of the TMF

improve upon those of current trust models, by allowing for reasoning about standard logical

properties, as well as ad-hoc application domain-specific properties.

Computational and HCI-based trust models tend to focus on the evaluation and manipulation of

trust values. Computational trust models (whether numerical or fuzzy) emphasis the calculation

of the level of trust for a particular situation, while HCI-based models emphasis the assessment

of trustworthiness in various interfaces and the mechanisms necessary to make computer-based

Chapter 10. Critical Evaluation

185

interfaces as trustworthy as non-computer-based ones. The usefulness of the methods of trust

value calculation is governed by the underlying theory behind the calculation/assessment

algorithms and how closely they tend to follow the intuitive mechanisms used by humans. The

problems of trust value initialisation, calculation and combination are still open research issues.

The SULTAN TMF models the value of trust by the trust level component of a SULTAN trust

specification. The value is assumed to be a number assigned by the administrator or a variable

that is put in as a placeholder. From examples and studies that have been used to demonstrate

specification with the SULTAN system, it was uncovered that there are six commonly used trust

levels, namely: HIGH-trust, MEDIUM-trust, LOW-trust, HIGH-distrust, MEDIUM-distrust and

LOW-trust. The comparatively wide range of trust values supported by the SULTAN

specification language allows the notation to be tailored for a diverse number of application

areas (both current and future ones). Currently, the SULTAN specification notation is flexible

enough to facilitate variable trust levels that result from trust value calculation. The SULTAN

trust measure approximates the real trust level and is used as a baseline for comparisons to help

in analysis and decision-making.

All the trust management solutions, with the exception of TrustBuilder, can be thought of as

having a single conceptual design model, as shown in Figure 10.1. Contemporary trust

management solutions consist of a set of context-specific data, a set of rules that constitute a

policy with regards to access control or authentication and an evaluation mechanism that uses

the question posed by an application, the policy and the facts in its local repository to generate

and return an answer. The question is normally of the form, ‘Should I allow X given info Y?’

The evaluator checks to determine if X should be allowed given Y, the facts and the rules.

With public-key certificates, the facts would be the set of public keys in a local keyring. The

rules would be the criteria used to trust new keys, i.e. I trust a key if it marginally-trusted by two

meta-introducers. The evaluation mechanism is normally implemented in the software. The

same approach can be observed with PICS, PolicyMaker, Keynote, REFEREE, Fidelis, SD3,

IBM TEF, TCPA and Poblano. However, with the PolicyMaker-based systems, the evaluator

(compliance checker) may make use of external data sources and or algorithms. Fig 10.1 is also

representative of the specification and constraint satisfaction analysis components of the

SULTAN TMF. The overall structure is similar to the process of an application querying the

SULTAN consultant with a constraint satisfaction query. Contemporary solutions were

designed with particular sub-problems of the trust management issue in mind, e.g. PolicyMaker

addresses public-key authorisation, PICS tackles access control (web content filtering), etc.

Chapter 10. Critical Evaluation

186

Modifying these systems to function in other application domains, with different

implementation paradigms, would require a lot of effort. However, the SULTAN TMF can be

easily tailored to function in a variety of application domains. TrustBuilder is primarily

concerned with secure credential exchange, which is important in enforcing trust establishment

policy. As stated in Chapter 7, the SULTAN TMF can be used to aid the process of trust

establishment.

Context-
Specific
Facts

Rules

Evaluator Agent/
Application

Trust Management System

Question

Answer

Figure 10.1: General Conceptual Structure of Contemporary Trust Management

Solutions

As trust management is viewed, in this context, as an abstraction of security management, it

may be pertinent to mention a security management framework that has evolved from trust

management work and its relation to the SULTAN TMF. The StrongMan Architecture [163,

164] evolved out of the work done on PolicyMaker and KeyNote. The approach taken by the

StrongMan system allows the use of multiple application-specific policy languages to specify

security policies for particular applications. These languages map to a common layer, which is

implemented in KeyNote. The disadvantages of this system are that 1) certain features that they

want to uniformly provide in their architecture, e.g. delegation, must be specified at the lower-

level (i.e. KeyNote), which makes specification more difficult, 2) KeyNote does not have

facilities for the discovery of missing credentials, and 3) KeyNote has no support for negative

assertions (c.f. IBM’s TPL [57, 128]). These shortcomings indicate that KeyNote may not be a

suitable choice for a common target layer. At an abstract level, the difference between

StrongMan and SULTAN (apart from their areas of specialisation) is that SULTAN assumes

trust management should be an appropriate source platform for refinement into security

mechanisms, while Strongman assumes the converse.

Chapter 10. Critical Evaluation

187

The dominant connection between the SULTAN TMF and the majority of other trust models

and trust management solutions is that SULTAN specifications can be refined into the trust

policy language of these systems and that the analysis mechanisms supported by these systems

may be modelled using the SULTAN Analysis Model. Thus, the SULTAN TMF provides a

broader and more comprehensive approach to the trust management problem.

10.2 Evaluation of the Framework

In this section, the limitations and issues that need to be improved in the SULTAN TMF will be

presented.

10.2.1 Specification Language Design

One of the more powerful features of the specification notation is the use of symbolic tags to

represent entity names. This feature allows the specification of trust rules and recommendations

about objects that represent any entity, ranging from public keys to applications to IP addresses.

However, this feature may have unforeseen side effects when refinement is performed. For

example, if it is known that ProxyForAbby is an entity name used in a specification and that the

Monitor determines that PublicKey1 is a part of ProxyForAbby, then care must be taken when

determining the actions applicable to each refined entity. The semantic interpretation of the

refined entities may imply that they are used differently. ProxyForAbby may refine into a

computer peripheral and PublicKey1 may refine into a public key. This may not ordinarily be a

problem, but refinement tools need to consider this. To clarify the side effects that may occur, a

study needs to be done on the implications of refining SULTAN specifications into a variety of

different platforms. This would help to determine if untyped symbolic tags are too general an

abstraction to be included in the specification language.

The current way that trust (and recommendation) levels are modelled in the SULTAN notation

allows the specification of a large and diverse set of rules. This was illustrated in the mappings

from SULTAN to other trust policy languages (Section 3.3). It was previously mentioned that

the notation is able to handle scenarios where a trust evaluation module is set-up. The following

example illustrates how this can be done:

CustVer: trust(Supplier, Customers, view_pages(Supplier), _X)
← _X = trust_eval(Supplier, Customers, view_pages(Supplier));

Chapter 10. Critical Evaluation

188

In rule CustVer , _X is viewed as a trust value that has not been set. The method trust_eval

represents the trust value mechanism, which will determine the value of the trust level. Once

this method is defined and integrated in the framework, it will be possible to allow the (semi-)

automated calculation of trust values. The addition of this method would make the specification

process easier for the administrator. Of course, the inclusion of trust level calculation would

mean that the analysis model would have to be modified. Currently, trust level calculation is a

difficult problem, which still requires considerable research.

SULTAN specifications allow the encoding of a range of absolute trust requirements, which do

not account for uncertainty or ignorance. This is not normally the case in real life, as trust value

estimation is currently imprecise and uncertain. For example, an administrator may not know

exactly what his belief should be. He may have a rough idea, but may be uncertain about the

exact value. For this reason, there should ideally be a measure of his ignorance/uncertainty

coupled to the trust value he assigns. Thus, the incorporation of uncertainty into the SULTAN

specification language is a possible improvement, although assigning values to uncertainty can

be as difficult as assigning values for trust.

Trust is a temporal concept. The framework facilitates this temporal dimension with the

inclusion of the SULTAN Monitor and the issuing of time-stamps on some storage artefacts.

However, the issue of the inclusion of an explicit temporal component in a SULTAN

specification may enhance analysis. Temporal elements (time and date) could be inserted into

the specification format for trust and recommendation rules. This addition would require that

the specification language, the analysis model and the supporting tools be modified. The

benefit of such a change would be the possibility of useful temporally driven analyses, e.g. over

time period T days, starting from date D, which relationships were involved in one or more

trust-distrust conflicts?

The trust and recommend statement are the core of the specification notation. Both constructs

cover a wide range of scenarios that an administrator may currently want to specify. In the

future, there may be a need for additional constructs, which may be either shorthand for

complex SULTAN statement combinations or may represent related but different notions, e.g.

reputation, delegation.

Chapter 10. Critical Evaluation

189

10.2.2 Analysis Model Design

The Analysis Model is an important component of the SULTAN TMF, which allows the

formulation of a comprehensive set of analysis questions and enables reasoning on many

different levels. Reasoning may be with respect to the program code, actual scenarios, cycles

and missing credentials (constraint satisfaction). However, the addition of facilities for

reasoning about experience and risk would further enhance the Analysis Model. For example, it

may be useful for some administrators to know which clients have experience records with

decreasing experience levels pertaining to a particular context or to know the exact stored

history of experience levels for a customer. Currently, only the usage strategies (section 6.1.2)

are supported in the SAM. Thus, more complex and diverse experience and risk-based

reasoning facilities may be included to enhance the Analysis Model.

Cycle detection and resolution are important topics when dealing with analysis queries about the

actual state of particular relationships. Cycle resolution is an intensive and complex problem.

Though the Analysis Model includes a simple cycle resolution strategy, it is neither an efficient

nor an optimal solution. The current strategy merely suppresses the cycle (if it exists) and

ensures that analysis proceeds and always terminates. The real resolution occurs when some

action is taken by the administrator to remove the cycle. Thus, the cycle resolution strategy

needs to be improved. A possible improvement would be a strategy that does the following: 1)

resolves the conflict temporarily, 2) flags the rules involved for the admin’s attention, 3) allows

the query to proceed, 4) reinterprets the query results if any of the rules involved in the cycle are

to be returned to the user, and 5) reverses the resolution step to ensure that the constraints

remain in the same state that the administrator entered. The biggest drawback of this strategy is

the overhead involved in embedding these processes in each scenario-based query.

10.2.3 Architecture Design

The architecture for the SULTAN TMF is built on a simple model (Figure 10.2). A key

architectural decision was to focus on building a framework that would support the core

functionality of a trust management system, i.e. specification, analysis, monitoring, risk

provision and calculation and consultation. The issues of the security and availability of the

TMF components were considered secondary. There are standard ways of securing the

databases, such as encrypting them to protect sensitive data, creating and validating hashes to

ensure the integrity of the databases and replication could be used for improved availability, but

Chapter 10. Critical Evaluation

190

the inclusion of these issues in the current version of the prototype would have obscured the

core functionality of the project.

State
Information

Analysis
Engine

Risk
Service

Consultant

Monitor

Specifications

Systems
Administrator

Figure 10.2: Basic Architecture of the SULTAN TMF

Any framework that assumes that the state of dynamic information must be monitored and

stored will have scaleability issues. In order to lessen the effect of state space explosion, subtle

design decisions were taken in the construction of the SULTAN TMF. As this thesis discussed

each aspect of the trust management framework, simple mechanisms were introduced to

minimise the effect of the problem of scaleability. For example, in the discussion of the

SULTAN Specification Notation, entity names are made abstract and isPartOf facts are used to

make a rule applicable to a range of entities, without explicitly specifying rules for each of these

entities. This conserves the storage requirements for trust and recommend rules. In the

description of the SULTAN Analysis Model, a client-server suite was designed over this

SICStus Prolog engine to enable multiple threads to access it. This lessened the demands on the

machine hosting the Analysis Tool, by reducing the number of Prolog interface objects used in

any particular analysis session. A possible solution to the problem of a growing database of

trust and recommend rules would be to segment the databases into namespaces and store each

namespace in separate locations. This solution would require that the TMF include facilities to

handle namespace management (i.e. location discovery, namespace unavailability, etc.), to

ensure completeness and consistency of analysis results and to deal with conflicts.

In accordance with the simple design architecture, a simple protocol was used between the

Consultant (and Monitor) and an application. The issues of ensuring information

Chapter 10. Critical Evaluation

191

confidentiality, dual authentication and non-repudiation were not addressed in the current

protocol. The protocols could be enhanced to include security and dependability features if

required.

Re-evaluation is a very important concept in the TMF. It allows the identification of conflicts

and or ambiguities that may arise because of new state information. Currently, identified

problems are flagged for the administrator’s attention, which may work for an environment with

bursty transactions, but may be inappropriate for a system with a high, consistent volume of

transactions. Such a system may generate a large backlog of problems. If problems are not

addressed within appropriate timescales, then the task of resolving these (possible) problems

may seem formidable from the administrator’s perspective. This may even affect the system’s

performance. An alternate means of resolving the problems need to be devised. The ideal

solution to this issue would be the creation of an automated problem correction mechanism that

allows the administrator to specify what action must be done when certain type of conflicts or

ambiguities occur.

10.3 Evaluation of the Implementation

The primary function of the prototype was to evaluate the feasibility of implementing the

SULTAN TMF. In developing this proof-of-concept, it was hoped that the implementation

issues that arose would lead to the identification of the problems that remain unsolved and the

issues to be addressed in future implementations.

The majority of the components of the SULTAN TMF were implemented in Java version 2. A

significant part of the implementation is the Specification Editor, which incorporates a

SULTAN Compiler, an Abstract Syntax Tree (AST) Walker, a SULTAN to Prolog translator

and a mini-editor for entity connections, asset, risk likelihood and risk profile information. The

Compiler and the AST Walker allows SULTAN specifications to be mapped to a variety of

other representations. The Compiler was built using SableCC, a parser generator that created

the lexical and syntactic analysers. SableCC enabled the relatively easy production of the front-

end of the compiler. However, SableCC generates a large number of Java classes. A simple

change in the SableCC grammar file to allow actionsets to include action restrictions resulted in

the creation of six additional classes, as a result of the inclusion of two tokens in the grammar

file. This implies that a considerable change in the specification notation, say to include

additional constructs or temporal dimensions, would generate a considerably larger state space.

Chapter 10. Critical Evaluation

192

Although, this is unlikely to significantly affect the compilation process, it may make the

refinement process more involved.

The Analysis Model forms a part of the backbone of the TMF. The versatility and flexibility of

the Model is evidenced by the diverse range of questions that can be posed to it and the number

of services that depend upon it. The Analysis Model and template file were implemented in

SICStus Prolog and the databases are Microsoft Access. All analysis-related information

(organization chart, state information, specification) is translated to Prolog. The Jasper interface

used to bridge the gap between Java and Prolog provides a heavyweight Prolog object to the

Java environment. Due to the memory requirements of the Prolog object, the Analysis Tool

took an inordinately long time to respond to a query. Thus, the administrator had to wait a

considerable time to enter new queries. This was partially resolved by creating an execution

query thread management system, which coordinates the addition, output and removal of

execution threads containing analysis queries. This allows input of analysis queries to proceed

immediately after one has been sent for execution. The implementation of the Jasper interface

made it necessary to define a client-server suite on top of the Jasper interface that would allow

any thread to access the Prolog system and not just the thread that created the object. This suite

also eliminated the problem of having each query generate a new Prolog engine. Nonetheless,

the interface still requires a considerable amount of memory. Problems were initially

encountered in maintaining the Analysis Tool and Specification Editor in memory together.

These issues were resolved through creative memory management (i.e. by temporarily

unloading parts of the Specification Editor). As a result of the issues discussed above, the

Analysis Tool and Risk Service sometimes suffers time delays of more than 30 seconds. This

normally occurred at the start of the session or when more than sixty-three processes attempted

to concurrently access these tools. The scenarios that cause this delay involve asking the Prolog

system a cross-section of queries. The Jasper interface is overloaded with the queries and starts

monopolizing the available resources of the machine it is run on. In some cases, the Prolog

system has crashed the system. However, the implementation clearly showed that the analysis

defined in Chapter 4 was possible. The only issue is with the performance of the current Java-

Prolog interface.

Chapter 10. Critical Evaluation

193

10.4 Summary

This chapter started with an evaluation of the SULTAN TMF in relation to related work. The

obvious relation between the SULTAN TMF and the majority of other trust models and trust

management solutions is that SULTAN specifications can be refined into the trust policy

language of these systems and that the analysis mechanisms supported by some of these systems

(e.g. SD3) can be modelled in the SULTAN Analysis Model. The chapter then presented a

critique of the framework, highlighting the limitations and room for improvement in the

specification language, analysis model and architecture. Although the SULTAN Trust

Language seems powerful enough to specify many scenarios and the examples included in

papers describing other notations, it could benefit from the inclusion of uncertainty, trust level

calculation, an explicit temporal component in a specification, more primitive constructs and the

examination of the effects on refinement of using symbolic tags as entity names. The Analysis

Model could be improved by defining a more robust cycle resolution strategy and by allowing

reasoning about risk and experience. The overall architecture would be enhanced if databases

were segmented, replicated, securely stored and their integrity validated before use and the

protocol between an application and the client portions of the SULTAN Monitor and SULTAN

Trust Consultant were improved. Finally, an evaluation of the prototype for the SULTAN TMF

was given.

 194

Chapter 11 Conclusions

“Trust has become a critical feature for Internet applications because the economic viability of
using the Internet as a business medium has been realized. Trust has become a focal point

because of the complexity of the environment and the high level of interdependence, and thus
reliance on the behaviours of Internet agents.”

- adapted from ‘Electronic Commerce and the Concept of Trust’ [165]

In this chapter, a summary of the work covered in this thesis will be presented. The

contributions of this work will be stated and the future direction of this work will be given.

11.1 Review and Discussion

Relative to distributed computing, trust management is a new topic. The contemporary

approach has been to focus on the security management aspects of the trust management

problem, specifically the trust problems directly related to access control, authentication and

authorisation. There is a plethora of trust management solutions being developed. Each is

applicable only to a certain application domain, execution environment, or vendor. There is a

lack of a vendor and application independent solution to the problem of trust management. The

work presented here helps in that direction by providing a definition of a framework for trust

management that could be used as the blueprint for future solutions.

This thesis presents a comprehensive survey of trust definitions, trust formalisms, trust

management perspectives and trust management solutions. We defined a structure for

classification of the literature in terms of trust contexts and also discussed the characteristic

properties of a trust relationships. This work is motivated by the importance of trust to the

future success of Internet Commerce and by the necessity for a trust management framework

that focused on the trust management problem (and not a subset of the problem). The SULTAN

TMF examined the trust management problem from an abstract level, incorporating a

generalised view of trust relationships and recommendations, providing versatile and flexible

analysis facilities, including the notions of risk and experience and factoring in the nature and

characteristics of trust.

To provide a common background and define a shared lexicon, new definitions for the concepts

of trust and distrust are formulated. Trust is:

Chapter 11. Conclusions

195

“the quantified belief by a trustor with respect to the competence, honesty,

security and dependability of a trustee within a specified context.”

Each of the important terms of the definition, i.e. quantified, trustor, competence, honesty,

security, dependability, trustee, specified context, are explained further in Chapter 1. Distrust

is:

“the quantified belief by a trustor that a trustee is incompetent, dishonest, not

secure or not dependable within a specified context.”

The characteristics of the trust relationship are presented and some of the contributing factors to

a trust relationship are identified, namely: risk and experience. Trust management is defined as:

“the activity of collecting, encoding, analysing and presenting evidence relating

to competence, honesty, security or dependability with the purpose of making

assessments and decisions regarding trust relationships for Internet

applications.”

All of this background information provide a valuable starting point for our work and may be

beneficial to other researchers in the field. Trust management involves the acts of specifying

trust relationships, analysing them to uncover new (and or wanted relationships or side-effects)

and presenting evidence that can be used to make trust decisions. Evidence should be collected

from the source of the interactions and should be used to allow the subject to adapt his trust

requirements based on this (new information). Thus, the process of trust management should

also include the monitoring and (re)-evaluation of the subject’s trust information.

The SULTAN specification notation captures the essence of the trust relationships and

recommendations. Each trust relationship must have a trustor (subject), a trustee (target to be

trusted), a context (a set of actions) and a level of trust. A recommendation has a recommendor

(subject), a recommendee (target to be recommended), a context (a set of actions) a measure of

the recommendor’s confidence in the recommendation. These basic concepts for trust, distrust,

positive and negative recommendations seem to be powerful enough for most aspects of trust

relationships. Through work done with Prof. Han Reichgelt, of Georgia State University and

Dr. Audun Josang, of the Distributed Systems Technology Centre, it is believed that the

notation encapsulates the basic components of a trust relationship and a recommendation. This

belief is also confirmed by the use of these basic concepts in the design of a trust management

model for Multi-Agent Systems [2].

Chapter 11. Conclusions

196

The SULTAN Analysis Model (SAM) incorporates the visions of previous analysis models

from the world of logical trust formalisms and extends them to increase its applicability across a

spectrum of problem areas. The SAM facilitates both simulation and property analysis.

Simulation analysis is concerned with asking ‘What-If’ questions. Property analysis involves

checking whether specified properties hold on trust and recommendation rules and is concerned

with the discovery of conflicts and redundancies. A conflict arises as a result of two assertions

(trust or recommend) of different polarities (positive and negative), the same actions and

referring to the same subject and target. A redundancy (or ambiguity) is defined as the state

where two assertions, of the same type (trust or recommend), have the same subject, target,

actions and levels and where the assertions are of the same polarity, but possess different values.

The properties to be analysed can be with respect to the specification source (program

reasoning) or with respect to examining trust relationships to identify scenarios of interest.

When reasoning about scenarios, the issue of detecting cycles and the issue of the constraints

that are still to be satisfied for a trust relationship to be valid arises. Thus, the SAM allows

reasoning about source code, scenarios, cycles and constraint satisfaction (missing credentials).

A template of common conflicts and ambiguities is provided for the administrator’s use. This is

a vast improvement on the set of trust analysis models in existence.

There is no other trust management model that incorporates a well-defined risk evaluation

mechanism. The SULTAN TMF includes a Risk Service (SRS), which offers a risk provision

service and a risk assessment service. To place the SRS in context, a survey of current

approaches to risk modelling is provided and a critique of their problems given. Risk provision

involves retrieving risk information stored in the State Information Database, while risk

assessment involves generating a risk value based on the TMF’s risk calculation algorithm. The

calculation algorithm uses Josang’s Subjective Logic and incorporates ideas from expected loss

models and risk threshold models in order to overcome the problems of risk identification,

probability determination, loss evaluation, dependence handling for actionsets and risk

profiling. Novel aspects of the risk assessment service include its application of the expected

loss model to asset valuation and its handling of dependent actions.

Experience, trust monitoring and trust re-evaluation are relatively new topics in the field of trust

management. A majority of trust management solutions assume that trust is a static concept and

therefore does not require monitoring or (periodic) re-evaluation. This is not true in the real

world, where trust is dynamic and changes daily. This thesis highlights the cyclic connection

between the concepts of experience, monitoring and re-evaluation that is necessary for trust

Chapter 11. Conclusions

197

evolution. A formulation of the basic components of an experience record is presented and the

various types of experience usage strategies (i.e. optimistic, pessimistic, cautious, most-recently

used) were given. The SULTAN Monitor collects information on the system’s state, on risk and

on dependencies and connections. Based on the new information gathered by the Monitor, the

queries in the Analysis template are executed and any conflicts or ambiguities uncovered are

flagged for the administrator’s attention.

As a proof of concept, a set of tools, consisting of the Specification Editor, the Analysis Tool,

the Risk Service, the Trust Monitor and the Trust Consultant, are presented. A basic trust

management life cycle was developed and presented in conjunction with the tools and the TMF

basic data structures. The Specification Editor includes a compiler for SULTAN specifications,

an AST walker (to help in refinement to other notations), a SULTAN to Prolog translator (to

illustrate that refinement is possible) and a Mini-Editor (for the initialisation tasks). The

Analysis Tool is connected to a SICStus Prolog engine and utilises the SULTAN to Prolog

translator to convert specifications, state information and entity connection information. To

ease the effort required by the administrator, a template of conflicts and ambiguities is provided.

There is also a Query Statement Builder Tool, which helps in the formulation of analysis

queries. With the exception of the Risk Service, the other tools are strictly for use of the

machine of ordinary users. They allow the user to send the system information and to query this

information. The tools may be used for negotiation, contract evaluation, recommendation

formation, infrastructure security configuration, access control decision-making and resource

allocation.

Throughout this thesis, examples are used to describe the concepts under discussion. The

objectives of the framework (Chapter 1) are to provide:

1. A clear, semantically well-defined, expressive specification notation.

2. A comprehensive analysis model.

3. A framework that assumes trust non-monotonicity.

4. A framework that facilitates trust decision-making.

The framework, as presented in chapters 3 to 7, fully satisfies each of these objectives. Interest

in the work done on the SULTAN TMF has led to its ideas and concepts being used in many

projects, ranging from an EU project on ‘Trust and Contract Management for Secure, Dynamic

Virtual Organisations’ (TrustCoM) [166] to a project on ‘Distributed Digital Rights

Management and Security Model’ [167] to a project on ‘Trust-Based Self-Organized Routing

Chapter 11. Conclusions

198

Protocols for Secure Ad Hoc networks’ [168] to a project on ‘Building a Formal Model of Trust

for Dynamic Networks’ [169].

11.2 Future Work

Some of the issues identified as future work originated from the discussion in Chapter 10. In

this section, the most important of these issues is presented.

11.2.1 Specification Language

The idea of including uncertainty in SULTAN specifications may be an interesting one to trust

researchers. Work has been done on merging Josang’s Subjective Logic and the SULTAN

TMF. Two possible ways are identified to connect the two models, namely:

1. To modify SULTAN specification syntax and Analysis Model to handle Subjective

Opinions as trust and or recommendation levels.

2. To refine SULTAN specifications to Opinions about logical propositions.

Exploration of option 2 led to the extension of Subjective Logic to include an operator for

handling conditional statements. The conditional inference operator [170] not only facilitates

the direct refinement of SULTAN statements to Subjective Logic Opinions, but also provided

Subjective Logic with a useful way of modelling classical logical reasoning mechanisms

(modus ponens, modus tollens). However, this particular avenue represents a method of

injecting an uncertainty measure into specifications after they have been written in SULTAN,

which may not always be desirable. The issue of modifying components of the TMF to allow

direct specification and reasoning about Opinions is a possible extension.

11.2.2 Analysis Model

The Analysis Model can be improved by expanding it to incorporate ad hoc reasoning about

experience and risk. The particular type of analysis queries that should be accommodated needs

to be investigated. Should usage strategies be included in this new Model? Should time-based

reasoning about experience and risk records be allowed? The inclusion of this feature may also

impact the architecture of the TMF, i.e. the Consultant would only need to interact with the

Analysis Tool and not with the Risk Service.

Chapter 11. Conclusions

199

11.2.3 Architecture

Partitioning the Specification Database into namespaces allows the system to be used for larger

information stores. The failure of contemporary reasoning models for large-scale distributed

systems has been the performance degradation that accompanied large source files, which grow

at exponential rates. Segmentation, via namespaces, would increase the usability of databases

as they increase in size. However, this solution would raise management issues, such as

locating, combining and replicating segments and ensuring that analysis remains complete and

consistent.

11.2.4 Implementation

The performance and memory requirements of the Prolog system need to be vastly improved.

Possible replacements may be: Amzi-Prolog, B-Prolog or BinProlog, which have native

interfaces to Java. An alternative direction may be to use a Prolog engine written in Java, such

as jProlog, DGKS Prolog, JavaLog, JIProlog or MINERVA. However, the problem with this

approach is that Prolog engines in Java tend to provide just the basic Prolog inference engine

and methods for the addition and removal of facts/rules. This may not be a major problem, but

it would mean that libraries that come as standard with most pure Prolog systems would have to

be implemented in the Analysis Model. It would be interesting to evaluate the performance of

each of these approaches to determine which would produce a more stable, lightweight Analysis

system.

11.2.5 General

It is believed that the SULTAN Trust Management Framework has captured the core issues

involved in trust and trust management. Although, the current implementation is heavyweight

and may suffer from scaleability issues, the general ideas may be transferred to the research

fields of enabling Grid technology. The Distributed Systems Lab at Argonne National

Laboratory has expressed interest in utilising the ideas from this project to incorporate into the

Globus project. The core ideas of trust specification, trust analysis, trust monitoring, risk

evaluation, experience modelling and trust consultation can be applied to Peer-to-Peer

Computing, Ubiquitous Computing and Pervasive Computing. With this goal in mind, initial

discussions are in progress to augment the ‘Trusted Software Agents and Services for Pervasive

Information Environments in the Home’ project at the University of Southampton with the

lessons learnt from work done on the SULTAN TMF.

Chapter 11. Conclusions

200

11.3 Closing Remarks

Trust management is a relatively young and complex research field with many different

emerging ideas and solutions. This has led to a situation where there is confusion, ambiguity,

conflicts, misinterpretations, an absence of core principles and a lack of standard approaches

towards and about research in this field. In this thesis, a presentation is given on the basics of

trust and trust management. It is hoped that the information presented will help form a common

core of knowledge that may be the starting point for new trust researchers. A framework is

presented that incorporates risk, experience, trust relationship evolution and allows specification

and analysis of trust statements and recommendations. The process of designing and

implementing (a prototype for) this framework represents a significant challenge, which is

successfully addressed in this thesis, and which will hopefully form the basis of other work in

the field of trust management. The specification notation, analysis model, risk service and

treatment of trust relationship evolution constitute the main contributions of this thesis.

 201

Bibliography

1. Confucius, The Analects of Confucius, ed. A.T. Waley. 1989: Vintage Books. 256.

ISBN: 0679722963.

2. Grandison, T. and M. Sloman. Trust Management Tools for Internet Applications. in 1st
International Conference on Trust Management. 2003. Heraklion, Crete, Greece:
Springer. http://www.doc.ic.ac.uk/~tgrand/

3. Grandison, T. and M. Sloman, A Survey of Trust in Internet Applications. IEEE
Communications Surveys and Tutorials, 2000. 4(4).
http://www.comsoc.org/pubs/surveys/, http://www-dse.doc.ic.ac.uk/~tgrand/

4. Grandison, T., Trust Specification and Analysis for Internet Applications. 2001.
MPhil/PhD Report, Imperial College of Science, Technology and Medicine: London.
http://www.doc.ic.ac.uk/~tgrand

5. Grandison, T. and M. Sloman. Specifying and Analysing Trust for Internet Applications.
in 2nd IFIP Conference on e-Commerce, e-Business, e-Government (I3E2002). 2002.
Lisbon, Portugal: IEEE. http://www.doc.ic.ac.uk/~mss/Papers/I3e2002.pdf

6. Verissimo, P. and L. Rodrigues, Distributed Systems for System Architects. 2001.
Kluwer Academic Publishers. ISBN: 0-7923-7266-2.

7. Blaze, M., J. Feigenbaum, P. Resnick and M. Strauss, Managing Trust in an
Information-Labeling System. European Transactions on Telecommunications, 1997. 8:
p. 491-501. http://www.si.umich.edu/~presnick/papers/bfrs/Paper.ps

8. Blaze, M., J. Feigenbaum and J. Lacy, Managing Trust in Medical Information Systems.
1996. AT&T Research Labs. http://citeseer.nj.nec.com/did/35925

9. Harrington, S.J. and C.P. Ruppel, Telecommuting: a test of trust, competing values, and
relative advantage. IEEE Transactions on Professional Communication, 1999. 42(4): p.
223 - 239. http://ieeexplore.ieee.org/iel5/47/17506/00807960.pdf

10. Ordille, J.J. When agents roam, who can you trust? in First Annual Conference on
Emerging Technologies and Applications in Communications. 1996.
http://ieeexplore.ieee.org/iel4/3740/10938/00502505.pdf

11. Feigenbaum, J. and P. Lee. Trust Management and Proof-Carrying Code in Secure
Mobile Code Applications: Position Paper. in DARPA Workshop on 'Foundations for
Secure Mobile Code'. 1997. http://www.research.att.com/~jf/pubs/darpa-mobile.ps

12. Wilhelm, U.G., S. Staamann and L. Buttyan. On the problem of trust in mobile agent
systems. in IEEE Symposium on Network And Distributed System Security. 1998. San
Diego, California. http://citeseer.nj.nec.com/pdf/139207,
http://icawww.epfl.ch/buttyan/publications/NDSS98.ps

13. Ketchpel, S.P. and H. Garcia-Molina. Making trust explicit in distributed commerce
transactions. in 16th International Conference on Distributed Computing Systems.
1996. http://ieeexplore.ieee.org/iel3/3771/11006/00507925.pdf

14. Iacono, C.S. and S. Weisband. Developing trust in virtual teams. in 13th Hawaii
International Conference on System Sciences. 1997.
http://ieeexplore.ieee.org/iel4/5350/14595/00665615.pdf

Bibliography

202

15. Holland, C.P. and A.G. Lockett. Business trust and the formation of virtual
organizations. in 31st Annual Hawaii International Conference on System Sciences.
1998. Hawaii. http://ieeexplore.ieee.org/iel4/5217/14260/00654821.pdf

16. Clark, T.H. and G.L. Ho. Electronic intermediaries: trust building and market
differentiation. in 32nd Annual Hawaii International Conference on Systems Sciences.
1999. Hawaii. http://ieeexplore.ieee.org/iel5/6293/16785/00772939.pdf

17. Jarvenpaa, S.L., N. Tractinsky, L. Saarinen and M. Vitale, Consumer Trust in an
Internet Store: A Cross-Cultural Validation. Journal of Computer-Meditated
Communication, 1999. 5(2). http://www.ascusc.org/jcmc/vol5/issue2/jarvenpaa.html

18. Jiawen, S. and D.W. Manchala. Trust vs. threats: recovery and survival in electronic
commerce. in 19th IEEE International Conference on Distributed Computing Systems.
1999. http://ieeexplore.ieee.org/iel5/6307/16865/00776513.pdf

19. Jøsang, A. Trust-based decision making for electronic transactions. in The 4th Nordic
Workshop on Secure IT Systems (NORDSEC'99). 1999. Stockholm, Sweden: Stockholm
University Report 99-005, 1999.

20. Su, J. and D. Manchala. Trust vs. Threats: Recovery and Survival in Electronic
Commerce. in 19th International Conference on Distributed Computing Systems. 1999.

21. Khare, R. and A. Rifkin, Trust Management on the World Wide Web. Peer-reviewed
Journal on the Internet. 3(6). http://www.firstmonday.dk/issues/khare/index.html

22. Swarup, V. and C. Schmidt. Interoperating between Security Domains. in ECOOP
(European Conference on Object-Oriented Programming) Workshop on Distributed
Object Security. 1998. Brussels, Belgium.

23. Jøsang, A. and S.J. Knapskog. A metric for trusted systems. in 21st National Security
Conference. 1998. http://www.idt.ntnu.no/~ajos/papers.html

24. Amoroso, E., et al. Toward an approach to measuring software trust. in IEEE
Computer Society Symposium on Research in Security and Privacy. 1991.
http://ieeexplore.ieee.org/iel2/349/3628/00130788.pdf

25. Manchala, D.W. Trust metrics, models and protocols for electronic commerce
transactions. in 18th International Conference on Distributed Computing Systems.
1998. http://ieeexplore.ieee.org/iel4/5583/14954/00679731.pdf

26. Damianou, N., N. Dulay, E. Lupu and M. Sloman. The Ponder Specification Language.
in Workshop on Policies for Distributed Systems and Networks. 2001. HP Labs, Bristol:
Springer-Verlag. http://www-dse.doc.ic.ac.uk/~mss/MSSPubs.html

27. Gelfond, M. and R. Watson, Encyclopedia of Cognitive Science - Non-monotonic Logic
(Article 62). 2001. http://www.krlab.cs.ttu.edu/Papers/download/gw03.pdf

28. Luhmann, N., Trust and Power. 1982, Chicester: John Wiley & Sons. ISBN:
0471997587.

29. Kini, A. and J. Choobineh. Trust in Electronic Commerce: Definition and Theoretical
Considerations. in 31st Annual Hawaii International Conference on System Sciences.
1998. Hawaii. http://ieeexplore.ieee.org/iel4/5217/14270/00655251.pdf

30. Jones, S., TRUST-EC: requirements for Trust and Confidence in E-Commerce. 1999.
Technical Report. European Commission, Joint Research Centre.

31. Lewis, D. and A. Weigert, Social Atomism, Holism and Trust. Sociological Quaterly,
1985. 26(4): p. 455-471.

Bibliography

203

32. Mayer, R.C. and J.H. Davis, An Integrative Model of Organizational Trust. Academy of
Management Review, 1995. 20(3): p. 709 - 734.

33. Zand, D.E., Trust and Managerial Problem Solving. Administrative Science Quarterly,
1972. 17: p. 229 - 239.

34. Curral, S. and T. Judge, Measuring Trust Between Organizational Boundary Role
Persons. Organizational Behaviour and Human Decision Processes, 1995. 65: p. 601 -
620.

35. Mui, L., M. Mohtashemi and A. Halberstadt. A Computational Model of Trust and
Reputation for E-Businesses. in 35th Annual Hawaii International Conference on
System Sciences (HICSS'02). 2002. Big Island, Hawaii.
http://dlib2.computer.org/conferen/hicss/1435/pdf/14350188.pdf?,
http://www.albany.edu/~bmsi603/scholl/Mui_et_al_2002.pdf

36. Jones, A.J.I., On the Concept of Trust. http://alfebiite.ee.ic.ac.uk/docs/papers/D1/ab-d1-
jones-trust.pdf

37. Anderson, R.J., TCPA / Palladium Frequently Asked Questions Version 1.0. 2002.
http://www.cl.cam.ac.uk/~rja14/tcpa-faq.html

38. Adams, C. and S. Farrell, RFC2510 - Internet X.509 Public Key Infrastructure
Certificate Management Protocols. 1999. http://www.cis.ohio-
state.edu/htbin/rfc/rfc2510.html

39. Blaze, M., J. Feigenbaum and J. Lacy. Decentralized Trust Management. in IEEE
Conference on Security and Privacy. 1996. Oakland, California, USA: IEEE.
http://www.crypto.com/papers/policymaker.pdf

40. Blaze, M., J. Feigenbaum and M. Strauss. Compliance Checking in the PolicyMaker
Trust Management System. in Financial Cryptography: Second International
Conference. 1998. Anguilla, British West Indies.: Springer-Verlag.
http://www.crypto.com/papers/pmcomply.pdf

41. Blaze, M., J. Feigenbaum and A.D. Keromytis. KeyNote: Trust Management for Public-
Key Infrastructures. in Security Protocols International Workshop. 1998. Cambridge,
England. http://www.cis.upenn.edu/~angelos/Papers/keynote-position.ps.gz

42. Blaze, M., J. Feigenbaum, J. Ioannidis and A.D. Keromytis, The Role of Trust
Management in Distributed Systems Security, in Secure Internet Programming: Security
Issues for Mobile and Distributed Objects, Vitek and Jensen, Editors. 1999, Springer-
Verlag. http://www.crypto.com/papers/trustmgt.pdf

43. Blaze, M., J. Ioannidis and A.D. Keromytis. Trust Management and Network Layer
Security Protocols. in Cambridge Protocols Workshop. 1999. Cambridge.
http://www.crypto.com/papers/networksec.pdf

44. Blaze, M., Using the KeyNote Trust Management System. 1999, AT&T Research Labs.
http://www.crypto.com/trustmgt/kn.html

45. Blaze, M., J. Feigenbaum, I. J. and K. A., RFC2704 - The KeyNote Trust Management
System (version 2). 1999. http://www.crypto/papers/rfc2704.txt

46. Burrows, M., M. Abadi and R.M. Needham, A Logic of Authentication. ACM
Transactions on Computer Systems, 1990. 8(1): p. 18-36.
http://citeseer.nj.nec.com/details/burrows90logic.html

Bibliography

204

47. Chen, R. and W. Yeager, Poblano: A Distributed Trust Model for Peer-to-Peer
Networks. 2000, Sun Microsystems. http://www.ovmj.org/GNUnet/papers/jxtatrust.pdf

48. Chu, Y.-H., J. Feigenbaum, B. LaMacchia, P. Resnick and M. Strauss, REFEREE:
Trust Management for Web Applications. 1997, AT&T Research Labs.
http://www.farcaster.com/papers/www6-referee/

49. Chu, Y.-H., Trust Management for the World Wide Web. 1997, Massachusetts institute
of Technology. http://www.w3.org/1997/YanghuaChu/

50. Compaq, Hewlett-Packard, IBM, Intel and Microsoft, TCPA Design Philosophies and
Concepts Version 1. 2000. http://www.trustedcomputing.org/docs/designv1_0final.pdf

51. Compaq, Hewlett-Packard, IBM, Intel and Microsoft, Building a Foundation of Trust in
the PC. 2000, The Trusted Computing Platform Alliance. http://www.trustedpc.org

52. Compaq, Hewlett-Packard, IBM, Intel and Microsoft, TCPA PC Specific
Implementation Version 1.00. 2001.
http://www.trustedcomputing.org/docs/TCPA_PCSpecificSpecification_v100.pdf

53. Compaq, Hewlett-Packard, IBM, Intel and Microsoft, TCPA Main Specification version
1.1b. 2002. http://www.trustedcomputing.org/docs/main%20v1_1b.pdf

54. Compaq, Hewlett-Packard, IBM, Intel and Microsoft, TPM FAQ. 2002, Trusted
Computing Platform Alliance.
http://www.trustedcomputing.org/docs/TPM_QA_071802.pdf

55. Evans, C., C.D.W. Feather, A. Hopmann, M. Presler-Marshall and P. Resnick,
PICSRules 1.1. http://www.w3.org/TR/REC-PICSRules

56. Feigenbaum, J. Overview of the AT&T Labs Trust Management Project: Position
Paper. in Proceedings of the 1998 Cambridge University Workshop on Trust and
Delegation. 1998: Lecture Notes in Computer Science.

57. IBM, IBM Trust Establishment Policy Language.
http://www.haifa.il.ibm.com/projects/software/e-
Business/TrustManager/PolicyLanguage.html

58. Jim, T. SD3: a trust management system with certified evaluation. in IEEE Symposium
on Security and Privacy. 2001. Oakland, California, USA: IEEE Computer Society.
http://www.research.att.com/~trevor/papers/JimOakland2001.pdf

59. Miller, J., P. Resnick and D. Singer, PICS Rating Services and Rating Systems (and
Their Machine Readable Descriptions) version 1.1. http://www.w3.org/TR/REC-PICS-
services

60. McKnight, H.D. and N. Chervany, The Meanings of Trust.
http://misrc.umn.edu/wpaper/WorkingPapers/9604.pdf

61. Lamsal, P., Understanding Trust and Security. 2001.
http://citeseer.nj.nec.com/lamsal01understanding.html

62. Gerck, E., Toward Real-World Models of Trust. 1998, E Gerck and MCG.
http://www.mcg.org.br/trustdef.htm

63. Corritore, C.L., B. Kracher and S. Wiedenbeck, An Overview of Trust: Working
Document. 2001. http://cobacourses.creighton.edu/trust/articles/trustpaper2-9-
01_final.rtf

Bibliography

205

64. Marsh, S.P., Formalising Trust as a Computational Concept, in Computing Science and
Mathematics. 1994, University of Stirling: Stirling, Scotland. p. 170.
http://www.iit.nrc.ca/~steve/Publications.html

65. Mayer, F.L. A brief comparison of two different environmental guidelines for
determining 'levels of trust' (computer security). in Sixth Annual Computer Security
Applications Conference. 1990. http://ieeexplore.ieee.org/iel2/319/3856/00143781.pdf

66. Christianson, B. and W.S. Harbison. Why Isn't Trust Transitive? in Security Protocols
International Workshop. 1996. University of Cambridge.

67. Abrams, M.D., Trusted System Concepts, in Computers and Security, M.V. Joyce,
Editor. 1995. p. 45 - 56.

68. Abrams, M.D. and M.V. Joyce, Trusted Computing Update. Computers and Security,
1995. 14(1): p. 57 - 68.

69. Abrams, M.D. and M.V. Joyce, New Thinking About Information Technology Security.
Computers and Security, 1995. 14(1): p. 69 - 81.

70. Dzubeck, F., Application Service Providers: An old idea made new. 1999.
http://www.nwfusion.com/archive/1999b/0823dzubeck.html

71. Morency, J., Application Service Providers and e-business. 1999.
http://www.nwfusion.com/newsletters/nsm/0705nm1.html?nf

72. Nix, M., Entering the Application Service Provider market.
http://www.developer.ibm.com/library/articles/nixasp.html

73. Krauskopf, T., J. Miller, P. Resnick and W. Treesee, PICS Label Distribution Label
Syntax and Communication Protocols Version 1.1. http://www.w3.org/TR/REC-PICS-
labels

74. X.509 Certificates and Certificate Revocation Lists (CRLs), , Sun Microsystems Inc.
http://java.sun.com/products/jdk/1.2/docs/guide/security/cert3.html

75. An Introduction to Cryptography, in PGP 6.5.1 User's Guide, Network Associates Inc.
p. 11 - 36. http://www.fi.pgpi.org/doc/pgpintro/

76. Gerck E and M.-C. Group, Overview of Certification Systems: X.509, CA, PGP and
SKIP. 1997, Meta-Certificate Group. http://www.mcg.org.br/cert.htm

77. Galvin, P., Are you certifiable?. 2000. http://www.sunworld.com/sunworldonline/swol-
10-1997/f_swol-10-security.html

78. Gerck, E., Certification: Extrinsic, Intrinsic and Combined. 1997.
http://mcg.org.br/cie.htm

79. Rivest, R.L. Can We Eliminate Certificate Revocation Lists? in Financial
Cryptography. 1998. http://theory.lcs.mit.edu/~rivest/revocation.ps

80. Povey, D., Trust Management. 1999. http://security.dstc.edu.au/presentations/trust/

81. Ding, Y. and H. Petersen, A new approach for delegation using hierarchical delegation
tokens. 1995, University of Technology Chemnitz-Zwickau Department of Computer
Science.

82. Department of Defense: Trusted Computer System Evaluation Criteria. 1983.
http://ftp.std.com/obi/DOD/orange.book/

Bibliography

206

83. Helvik, B.E., Dependable Computer Systems and Communications Networks : Design
and Evaluation. 2001, Department of Telematics, NTNU Nowegian Univeristy of
Science and Technology. http://www.item.ntnu.no/~bjarne/Dependability-
ICTBook.toc.pdf

84. Galin, D., Software Quality Metrics—From Theory to Implementation. Software
Quality Professional, 2003. 5(3).

85. Kan, S.H., Metrics and Models in Software Quality Engineering. 1995. 344.
0201633396: 0201633396.

86. Littlewood, B. and L. Strigini. Software Reliability and Dependability: a Roadmap. in
22nd Int. Conf. on Software Engineering. 2000. Limerick: ACM Press.

87. Abdul-Rahman, A. and S. Hailes. Supporting Trust in Virtual Communities. in Hawaii
International Conference on System Sciences 33. 2000. Maui, Hawaii.
http://www.cs.cs.ucl.ac.uk/staff/F.AbdulRahman/docs/

88. Jajodia, S., P. Samarati and V. Subrahmanian. A Logical Language for Expressing
Authorizations. in Security and Information Privacy. 1997: IEEE.
http://ieeexplore.ieee.org/iel3/4693/13107/00601312.pdf

89. Firozabadi, B.S. and M. Sergot. Power and Permission in Security Systems. in 7th
International Workshop In Security Protocols. 1999. Cambridge, UK: LNCS. Springer-
Verlag.

90. Genesereth, M.R. and N.N. J., Logical Foundations of Artificial Intelligence. 1987,
California, U.S.A.: Morgan Kaufmann Publishers Inc. 405. 0-934613-31-1: 0-934613-
31-1.

91. Jones, A., J. I. and B.S. Firozabadi. On the characterisation of a Trusting agent -
Aspects of a Formal Approach. in Workshop on Deception, Trust and Fraud in Agent
Societies. 2000.

92. Rangan, P.V. An Axiomatic Basis of Trust in Distributed Systems. in Symposium on
Security and Privacy. 1988. Washington, DC: IEEE Computer Society Press.

93. Elgesem, D., The Modal Logic of Agency. Journal of Philosophical Logic, 1997. 2(2): p.
1-46.

94. Kakas, A. and R. Miller, A Simple Declarative Language for Describing Narratives
with Actions. Journal of Logic Programming, 1997(Special Issue on Reasoning About
Actions).

95. Josang, A. An Algebra for Assessing Trust in Certification Chains. in Network and
Distributed Systems Security Symposium (NDSS). 1999. San Diego, California: The
Internet Society.

96. Jøsang, A. The right type of trust for distributed systems. in ACM New Security
Paradigms Workshop. 1996. http://www.idt.ntnu.no/~ajos/papers.html

97. Jøsang, A. Artificial Reasoning with Subjective Logic. in 2nd Australian Workshop on
Commonsense Reasoning. 1997. http://www.idt.ntnu.no/~ajos/papers.html

98. Jøsang, A. Prospectives for Modelling Trust in Information Security. in Australasian
Conference on Information Security and Privacy. 1997: Springer.
http://www.idt.ntnu.no/~ajos/papers.html

Bibliography

207

99. Jøsang, A. A subjective metric of authentication. in 5th European Symposium on
Research in Computer Security (ESORICS'98). 1998: Springer-Verlag.
http://www.idt.ntnu.no/~ajos/papers.html

100. Jøsang, A., A Logic for Uncertain Propositions. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 2001. 9(3): p. 1 - 30.
http://security.dstc.edu.au/papers/

101. Jøsang, A., The Consensus Operator for Combining Beliefs. Artificial Intelligence
Journal, 2002. 1(2): p. 157 - 170. http://security.dstc.edu.au/papers/

102. Friedman, B., P.H. Kahn Jr. and D.C. Howe, Trust Online. Communications of the
ACM, 2000. 43(12): p. 34 - 40.

103. Olson, J.S. and G. Olson, i2i Trust in E-Commerce. Communications of the ACM,
2000. 43(12): p. 41 - 44.

104. Cassell, J. and T. Bickmore, External Manifestations of Trustworthiness in the
Interface. Communications of the ACM, 2000. 43(12): p. 50 - 56.

105. Schoder, D. and P.-L. Yin, Building Firm Trust Online. Communications of he ACM,
2000. 43(12): p. 73 - 79.

106. Shneiderman, B., Designing Trust into Online Experiences. Communications of the
ACM, 2000. 43(12): p. 57 - 59.

107. Schneider, J., G. Korteum, D. Preuitt, S. Fickas and Z. Segall, Auranet: Trust and Face-
to-Face Interactions in a Wearable Community. 2001,Technical Report, University of
Oregon. http://www.cs.uoregon.edu/research/wearables/Papers/auranet.pdf

108. Schneider, J., G. Korteum, J. Jager, S. Fickas and Z. Segall. Disseminating Trust
Information in Wearable Communities. in 2nd International Symposium on Handheld
and Ubiquitous Computing (HUC2K). 2000. Bristol, England.
http://www.cs.uoregon.edu/research/wearables/Papers/HUC2K.pdf

109. Egger, F.N. Affective Design of E-Commerce User Interfaces: How to Maximise
Perceived Trustworthiness. in International Conference on Affective Human Factors
Design. 2001. The Oriental, Singapore: Asean Academic Press, London.
http://www.ecommuse.com/research/publications/CAHD2001.htm

110. Staples, S.D. and P. Artnasingham. Trust: The Panacea of Virtual Management. in 19th
International Conference on Information Systems. 1998. Helsinki, Finland: Association
for Information Systems.

111. Egger, F.N. and B.d. Groot. Developing a Model of Trust for Electronic Commerce: An
Application to a Permissive Marketing Web Site. in 9th International World Wide Web
Conference. 2000. Amsterdam, The Netherlands: Foretec Seminars IInc.

112. Kim, K. and B. Prabhakar. Initial Trust, Perceived Risk and the Adoption of Internet
Banking. in International Conference on Information Systems. 2000. Brisbane,
Australia. http://www.nr.no/~abie/Papers/00RIP11.pdf

113. Bos, N., J. Olson, D. Gergle, G. Olson and Z. Wright. Effects of Four Computer-
Meditated Communications Channels on Trust Development. in Computer Human
Interaction (CHI). 2002. Minneapoli, Minnesota, USA: ACM.

114. Zheng, J., E. Veinott, N. Bos, j.S. Olson and G.M. Olson. Trust without Touch:
Jumpstarting long-distance trust with initial social activities. in Computer Human
Interaction. 2002. Minneapolis, Minnesota, USA: ACM.

Bibliography

208

115. Axelrod, R., The Evolution of Cooperation. 1985: Basic Books. ISBN: 0465021212.

116. Poundstone, W., Prisoner's Dilemma: John Von Neumann, Game Theory and the
Puzzle of the Bomb. 1993: Anchor. 294. ISBN: 038541580X.

117. Riegelsberger, J., A.M. Sasse and J. McCarthy, The Researcher's Dilemna: evaluating
trust in computer-mediated communication. International Journal of Human Computer
Studies., 2002(Special Issue on Trust).

118. Patrick, A., Privacy, Trust, Agents & Users: A Review of Human-Factors Issues
Associated with Building Trustworthy Software Agents. 2001.
http://www.iit.nrc.ca/~patricka/agents/agents.pdf

119. Riegelsberger, R. and M.A. Sasse. Trustbuilders and trustbusters: The role of trust cues
in interfaces to e-commerce applications. in 1st IFIP Conference on E-commerce, E-
business, E-government (I3E). 2001. Zurich.
http://www.cs.ucl.ac.uk/staff/jriegels/trustbuilders_and_trustbusters.htm

120. Jøsang, A. and N. Tran, Trust Management for E-Commerce. 2000.
http://citeseer.nj.nec.com/375908.html

121. Gunter, C.A. and T. Jim, Policy-directed certificate retrieval. Software: Practice &
Experience, 2000. 30(15): p. 1609 - 1640.

122. Gunter, C.A. and T. Jim. Design of an application-level security infrastructure. in
DIMACS Workshop on Design and Formal Verification of Security Protocols. 1997.
Piscataway, NJ, USA.
http://dimacs.rutgers.edu/Workshops/Security/program2/jim/index.html

123. Gunter, C.A. and T. Jim. Generalized certificate revocation. in 27th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. 2000. Boston,
Massachusetts, USA: ACM Press.

124. Yao, W.T.-M. Fidelis: A Policy-Driven Trust Management Framework. in 1st
International Conference on Trust Management. 2003. Heraklion, Crete, Greece:
Springer.

125. Yao, W.T.-M., K. Moody and J. Bacon. A model of OASIS role-based access control
and its support for active security. in Sixth ACM Symposium on Access Control Models
and Technologies. 2001. Chantilly, Va: ACM Press.
http://citeseer.nj.nec.com/yao01model.html

126. Hayton, R., J. Bacon and K. Moody. OASIS: Access control in an open, distributed
environment. in IEEE Symposium on Security and Privacy. 1998. California, USA:
IEEE Computer Society Press.

127. Bacon, J., K. Moody and W. Yao, Access Control and Trust in the use of Widely
Distributed Services. Software - Practice and Experience, 2001. 33: p. 375 - 394.
http://citeseer.nj.nec.com/bacon01access.html

128. IBM. Access Control Meets Public Key Infrastructure, or: Assigning Roles to
Strangers. in IEEE Symposium on Security and Privacy. 2000.
http://www.hrl.il.ibm.com/TrustEstablishment/paper.asp

129. Winsborough, W.H., K.E. Seamons and V.E. Jones. Negotiating Disclosure of Sensitive
Credentials. in Second Conference on Security in Communication Networks. 1999.
Amalfi, Italy. http://isrl.cs.byu.edu/pubs/TrustNegotiationFramework.pdf

Bibliography

209

130. Seamons, K.E., M. Winslett and T. Yu. Limiting the Disclosure of Access Control
Policies During Automated Trust Negotiation. in Network and Distributed System
Security Symposium. 2001. San Diego, CA. http://isrl.cs.byu.edu/pubs/ndss2001.pdf

131. Winsborough, W.H., K.E. Seamons and V.E. Jones. Automated Trust Negotiation. in
DARPA Information Survivability Conference and Exposition. 2000. Hilton Head, SC,
USA. http://isrl.cs.byu.edu/pubs/DISCEX2000.pdf

132. Barlow, T., A. Hess and K.E. Seamons. Trust Negotiation in Electronic Markets. in
Eighth Research Symposium in Emerging Electronic Markets. 2001. Maastricht,
Netherlands. http://isrl.cs.byu.edu/pubs/rseem2001.pdf

133. Yu, T., M. Winslett and K.E. Seamons. Interoperable Strategies in Automated Trust
Negotiation. in ACM Conference on Computer and Communications Security (CCS).
2001. Philadelphia, Pennslyvania, USA: ACM. http://isrl.cs.byu.edu/pubs/ccs2001.pdf

134. Winsborough, W., K. Seamons and V. Jones, Automated Trust Negotiation: Managing
Disclosure of Sensitive Credentials. 1999, Transarc.

135. Winsborough, W.H. and N. Li. Towards Practical Automated Trust Negotiation. in
Third International Workshop on Policies for Distributed Systems and Networks
(POLICY). 2002. Monterey, California: IEEE Computer Society Press, Los Alamitos,
California. http://crypto.stanford.edu/dc/papers/atn_policy02.pdf

136. Li, N., J.C. Mitchell and W.H. Winsborough. Design of a Role-based Trust-
Management Framework. in IEEE Symposium on Security and Privacy. 2002. Berkeley,
California. http://cui.unige.ch/OSG/research/trust/li.pdf

137. Shrobe, H., J. Doyle and P. Szolovits, Active Trust Management for Autonomous
Adaptive Survivable Systems. 2000,DARPA Proposal, MIT, AI Lab and Lab for
Computer Science. p. 27.

138. Kagal, L., S. Cost, T. Finin and Y. Peng. A Framework for Distributed Trust
Management. in Second Workshop on Norms and Institutions in MAS, Autonomous
Agents,. 2001. Montreal, Canada.
http://ccs.mit.edu/dell/aa2001/aa2001papers/paper4.pdf

139. Maarof, M.A. and K. Krishna, An Hybrid Trust Management Model For MAS Based
Trading Society. 2002. http://citeseer.nj.nec.com/551840.html

140. Witkowski, M., A. Artikis and J. Pitt. Trust and Cooperation in a Trading Society of
Objective Trust Based Agents. in Deception, Fraud and Trust in Agent Societies
Workshop: Autonomous Agents. 2000. Barcelona, Spain.

141. Simmons, G.J. An introduction to the mathematics of trust in security protocols. in
Computer Security Foundations Workshop VI. 1993.
http://ieeexplore.ieee.org/iel2/466/6323/00246634.pdf

142. Shand, B., N. Dimmock and J. Bacon. Trust for Ubiquitous, Transparent Collaboration.
in First IEEE International Conference on pervasive Computing and Communications.
2003. Fort Worth, Texas: IEEE.
http://www.cl.cam.ac.uk/Research/SRG/opera/publications/Papers/percom03.pdf

143. Viega, J., T. Kohno and B. Potter, Trust (and Mistrust) in Secure Applications.
Communications of the ACM, 2001. 44(2): p. 31 - 36.

144. Whitehead, A.N., Science and the Modern World, ed. T. Parsons. 1997: Simon &
Schuster Adult Publishing Group. 212. 0684836394: 0684836394.

Bibliography

210

145. Carr, M.J., S.L. Konda, I. Monarch, F.C. Ulrich and C.F. Walker, Taxonomy-based Risk
Identification. 1993, Carnegie Mellon University: Pittsburgh, Pennsylvania.

146. Introduction to Risk Analysis. 2001. http://www.security-risk-
analysis.com/intoduction.htm

147. Boehm, B.W., Software Risk Management: Principles and Practices. 1991.

148. Information Security Risk Management Guidelines. 2000, Standards Australia:
Strathfield.

149. Risk Management - AS:NZS 4360:1999. 1999.

150. Software Risk Abatement. 1988, United States Air Force.

151. Soo Hoo, K.J., How Much is Enough? A Risk management Approach to Computer
Security. 2000,Working Paper, Consortium for Research on Information Security and
Policy (CRISP), Stanford University. p. 88.

152. Shafer, G., A Mathematical Theory of Evidence. 1976, Princeton, N.J.: Princeton
University Press.

153. Advances in the Dempster-Shafer Theory of Evidence, ed. R.R. Yager, J. Kacprzyk, and
M. Fedrizzi. 1994: John Wiley & Sons. 0471552488: 0471552488.

154. Martin, D., Managing B2B E-Commerce Risks. 2001.
http://www.law.washington.edu/ABa-eADR/documentation/docs/geotrust.pdf

155. Kuester, J.R. and L.E. Thompson, Risks associated with restricting business method
and E-Commerce Patents. Georgia State University Law Review, 2001. 17(657): p. 657
- 688. http://www.ftc.gov/os/comments/intelpropertycomments/kuesterjeffreyr.pdf

156. Kamthan, P., E-Commerce on the WWW : A Matter of Trust. 1999.
http://tech.irt.org/articles/js158/index.htm

157. Hrebicek, O., Computers and E-Commerce: Issues, Risks and Concerns. 2002, Illionis
Institute of Technology.
http://www.csam.iit.edu/~cs485/spring2002/presentations/Hrebicek/issues.html

158. Lehman, M.M. Uncertainty in Computer Application is Certain - Software Engineering
as a Control. in Euro Comp. 1990. Tel Aviv.: IEEE.

159. Gagnon, E., SableCC: An Object-Oriented Compiler Framework, in School of
Computer Science. 1998, McGill University: Montreal.

160. Hager, T., in Force of Nature. 1995, Simon and Schuster: New York, USA. p. 86.

161. The European Internet Report. 1999. Industry Report, Morgan Stanley Dean Witter. p.
362.
http://www.morganstanley.com/institutional/techresearch/euroinet.html?page=research

162. The Writings of Friedrich Nietzsche. http://plato.stanford.edu/entries/nietzsche/

163. Keromytis, A.D., Scalable Security Policy Mechanisms. 2001.Technical Report,
University of Pennsylvania CIS Dept: Pennsylvania.

164. Keromytis, A.D., S. Ioannidis, M.B. Greenwald and J.M. Smith. The STRONGMAN
Architecture. in Third DARPA Information Survivability Conference and Exposition
(DISCEX III). 2003. Washington, D.C.
http://www.cis.upenn.edu/~sotiris/papers/discex03.ps

Bibliography

211

165. Keen, P.G.W., C. Ballance, S. Chan and S. Schrump, Electronic Commerce and the
Concept of Trust, in Electronic Commerce Relationships: Trust by Design, P. Ken,
Editor. 1999, Prentice Hall PTR.

166. Dimitrakos, T., TrustCoM - Enabling the on-demand creation and self-management of
secure, dynamic and scaleable virtual organisations.
http://eoi.cordis.lu/docs/int_32192.pdf

167. Abie, H., Distributed Digital Rights management (DRM) and Security Model for
Distributed Multimedia Systems. 2003. http://www.nr.no/~abie/TrustPolicy.htm

168. Xiaoqi, L., Trust Model based Self-Organized Routing Protocol for Secure Ad Hoc
Networks, ,PhD Term Paper.
http://www.cse.cuhk.edu.hk/~lyu/student/phd/gigi/term2.pdf

169. Carbone, M., M. Nielsen and V. Sassone. A Formal Model for Trust in Dynamic
Networks. in International Conference on Software Engineering and Formal Methods.
2003. Brisbane, Australia.

170. Jøsang, A. and T. Grandison. Conditional Inference in Subjective Logic. in 6th ISIF
International Conference of Information Fusion. 2003. Cairns, Australia.

 212

Appendix A Syntax Specification

The following is the grammar of the SULTAN specification notation, written using SableCC. It

can be used to generate the lexical and syntactic parser of the SULTAN compiler.

/***
* SULTAN - Trust Specification Language
*
* Author: SULTAN Implementation Group,
* Distributed Software Engineering Group,
* Department of Computing
* Imperial College
*
* Last Date Modified: Feb 18, 2002
*
* Grammar written in: SableCC
***/

Package sultan.spec.compile;

/***
 HELPERS
***/

Helpers

 all = [0 .. 127];

 cr = 13;
 lf = 10;
 eol = cr | lf | cr lf;
 tab = 9;
 non_eol = [all - [cr + lf]];
 not_star = [all - '*'];
 not_star_slash = [not_star - '/'];
 not_db = [all-'"'];

 bracketed = '"' not_db* '"';

 underscore = '_';
 letter = ['A' .. 'Z'] | ['a' .. 'z'];
 digit = ['0' .. '9'];

 dash = '-';

 l_comment = '//' non_eol* eol;
 c_comment = '/*' not_star* '*'+ (not_star_slash not_star* '*'+)* '/';

/***
 TOKENS
***/

Tokens

 /********* White Spaces **********/
 comments = l_comment | c_comment;
 blanks = (eol | tab | ' ')+;

Appendix A. Syntax Specification

213

 /********* Main predicates **********/
 trust = 'trust';
 recommend = 'recommend';

 everyone = 'everyone';
 ispartof = ‘isPartOf’;
 foreign = ‘foreign’;
 not = 'not';
 risk = 'risk';
 experience = 'experience';
 trustcp = 'trust+';
 trustcn = 'trust-';
 reccp = 'recommend+';
 reccn = 'recommend-';

 /**/
 reference = letter (underscore | letter | digit)*;
 variable = underscore (underscore | letter | digit)*;
 number = (dash? ['1' .. '9'] digit*);

 /********* Punctuation Symbols Allowed **********/
 colon = ':';
 comma = ',';
 openpr = '(';
 closepr = ')';
 implies = '<-';
 semicolon = ';';
 dquote = '"';

 /********* Boolean Operators **********/
 gt = '>';
 lt = '<';
 eq = '=';
 neq = '!=';
 leq = '<=';
 geq = '>=';

 /********* Logical Operators **********/
 and = '&';
 or = '|';

 /**/
 quoted = bracketed;

/***
 IGNORED TOKENS
***/

Ignored Tokens
 blanks,
 comments;

/***
 PRODUCTIONS
***/

Productions

 specification = statement*;

Appendix A. Syntax Specification

214

 statement =
 {trust} trust_stat |

 {recommend} recommend_stat;

 trust_stat =

 reference colon trust_lhs option? semicolon;

 recommend_stat =

 reference colon recommend_lhs option? semicolon;

 trust_lhs =

 trust openpr subject [c1]:comma target [c2]:comma action_set [c3]:comma
 level closepr;

 recommend_lhs =

 recommend openpr subject [c1]:comma target [c2]:comma action_set
 [c3]:comma level closepr;

 subject =
 {entity} reference |
 {var} variable;

 target =
 {entity} reference |
 {var} variable |
 {everyone} everyone;

 action_set =
 {action} actions more_action* |
 {var} variable;

 level =
 {num} number |
 {ref} reference |
 {var} variable;

 actions =
 {act} action |
 {notact} not openpr action more_act* closepr;

 action =
 reference openpr act_params+ closepr;

 act_params =
 param more_param*;

 param =
 {num} number |
 {ref} reference |
 {string} strg |
 {var} variable;

 more_param =
 comma param;

 more_act =
 colon action;

 more_action =
 colon actions;

 option =
 implies constraints;

Appendix A. Syntax Specification

215

 constraints =
 constraint more_constraint*;

 constraint =
 {trust} trust_lhs |
 {recommend} recommend_lhs |
 {trust_cp} trust_pos |
 {trust_cn} trust_neg |
 {rec_cp} rec_pos |
 {rec_cn} rec_neg |
 {func} func |
 {ref} reference |
 {expr} expr |
 {risk_expr} riskexpr |
 {exp_expr} expexpr |
 {part_of} ispartof_const;

 trust_pos =
 trustcp openpr subject [c1]:comma target [c2]:comma action_set closepr;

 trust_neg =
 trustcn openpr subject [c1]:comma target [c2]:comma action_set closepr;

 rec_pos =
 reccp openpr subject [c1]:comma target [c2]:comma action_set closepr;

 rec_neg =
 reccn openpr subject [c1]:comma target [c2]:comma action_set closepr;

 func =
 reference openpr parameters? closepr;

 expr =
 {func} func op value |
 {var} variable op value;

 parameters =
 parameter more_para*;

 op =
 {gt} gt |
 {lt} lt |
 {eq} eq |
 {neq} neq |
 {leq} leq |
 {geq} geq ;

 value =
 {num} number |
 {ref} reference |
 {string} strg;

 action_name =
 {ref} reference |
 {func} func;

 parameter =
 {num} number |
 {ref} reference |
 {string} strg |
 {var} variable |

Appendix A. Syntax Specification

216

 {func} func;

 more_para =
 comma parameter;

 strg =
 quoted;

 riskexpr =
 risk openpr subject [c1]:comma target [c2]:comma action_set closepr
 op number;

 expexpr =
 experience openpr subject [c1]:comma target [c2]:comma action_set closepr
 op number;

ispartof_const =
 ispartof openpr child comma parent closepr;

child =
 {var} variable |
 {ent} reference;

parent =
 {var} variable |
 {ent} reference |
 {for} foreign;

 more_constraint =
 log_op constraint;

 log_op =
 {and} and |
 {or} or ;

 217

Appendix B Missing Definitions

In this appendix, the basic definitions used for the syntax elements in the discussion of the

SULTAN specification language in Chapter 3 are presented.

Building Blocks

The following are the basic definitions that will be used in Chapter 3’s definition of the

SULTAN notation:

letter = ‘A’..’Z’ | ‘a’..’z’;
underscore = ‘-‘;
digit = ‘0’..’9’;

Comments

SULTAN comments can either be multiple-line or single-line. A multiple-line comment starts

with the characters /* and terminates with the characters */, while a single-line comment starts

with // and terminates at the end of the line.

Keywords

The following words are reserved as keywords in the SULTAN specification language:
trust recommend everyone not
risk experience trust+ trust-
recommend+ recommend- isPartOf foreign

Operators

The relational operators that can be used in SULTAN are:

> < = !=
<= >=

The logical operators are:

& |

Appendix B. Missing Definitions

218

String Literals

String literals are any sequence of characters that are enclosed by the “ character.

Functions

Be aware that trust and recommend constraints have the same syntactic structure as ordinary

function calls. Thus, the distinction is not made here.

function = reference ‘(‘ parameters? ‘)’ ;

Function Parameters

A function parameter list is a comma-delimited list of parameters, where a parameter can be a

number, reference, string or function call.

parameter = variable | number | reference | string | function;
parameters = parameter (‘,’ parameter)*;

 219

Appendix C Refining SULTAN to Trust Rules

This appendix outlines the transformation from SULTAN specifications to Prolog rules. The

details of the SULTAN to Prolog translator are not presented. Only the input and output of the

translation process is given. For this discussion, SICStus Prolog will be referred to simply as

Prolog.

Translating the trust construct

The Prolog equivalent to the SULTAN trust construct has the following form:

trust(trustor, trustee, actions, level, policy) :- constraints.

where
trustor and trustee are standard Prolog atoms or variables,
actions is a list of function names,
level is a number (It is assumed that all labels used in a SULTAN specification are converted

before translation into Prolog),
policy is the name of the policy (this must be a Prolog atom),
constraints are the conditions that must be true for the rule to be true.

In order to provide a feel of a translated specification, we provide Prolog-compatible examples

of some of the examples cited in Chapter 3. Note that the examples have not undergone the

strict translation scheme because this is not necessary to demonstrate our point.

Examples:

trust(supplier, customers, [view_pages(supplier)], 100, customerver) :-
goodcredit(customers),
risk(supplier, customers, _, X),
X >= 2.

trust(jenny, realtor, [send_deals(realtor, jenny)], 100, realtor) :-
trust(jenny, tom, [provideinfo(jenny)], 50, _) ;
trust(tom, realtor, [send_deals(realtor, tom)], 50, _).

trust(morris, symantec, [do_definition_update(morris, computer)], 100, pda) :-
eq(definitionstate(symantec), "old").

Translating the recommend construct

A SULTAN recommend construct is translated to a Prolog statement of the following form:

recommend(recommendor, recommendee, actions, level, policy) :- constraints.

Appendix C. Refining SULTAN to Trust Rules

220

where
recommendor and recommendee are standard Prolog atoms or variables,
actions is a list of function names,
level is a number,
policy is the name of the policy,
constraints are the conditions that must be true for the rule to be true.

To provide a feel of the Prolog representation of a recommendation, Prolog-compatible versions

of some of the examples cited in Chapter 3 will be presented.

Examples:

recommend(natwest, Client, [getcredit(Client, SwirtchCard)], 100, credit) :-
isClient(natWest, Client),
isValidCard(natwest, SwitchCard).

recommend (verisign, KeyHolder, loadScript(X), -50, veri) :-
 isCustomer(veriSign, KeyHolder),

 isUsedBy(verisSign, X),
 gt(outStandingBalance(veriSign, KeyHolder), 40);

recommend(ucl, openu, [do_research(openu)], -10, attpol) :-
researchquality(openu, X),
X =< 3.

Translating Policy Names

A policy name in SULTAN is defined as a sequence of letters, numbers and underscores (an

underscore not being the first character). To allow for easy translation from SULTAN to Prolog

and from Prolog back to Sultan, the SULTAN policy name is prefixed with the characters ‘p_’

to get the Prolog equivalent.

Examples:

SULTAN Policy Name Prolog Equivalent

SupplierDemand p_SupplierDemand
web_access_policy p_web_access_policy
mobile_1200 p_mobile_1200

Translating Entity Names

As stated in Chapter 3, entity names can be either references or variables. For conversion into

Prolog, references are prefixed with the characters ‘e_’ and variables are translated by prefixing

‘V_’. A variable that consists of only the underscore (an anonymous variable) undergoes the

normal translation plus a four-digit counter is appended to it. This counter represents the

relative position of this variable in the set of anonymous variables.

Appendix C. Refining SULTAN to Trust Rules

221

Examples:
SULTAN Entity Name Prolog Equivalent

Supplier e_Supplier
_Customer V__Customer
_ V__0001

Translating Actions

A SULTAN action is translated by prefixing ‘f_’ to it. All actions have one or more

arguments, which can be either a number, reference, string or function call. Numbers are

converted verbatim. For strings, the opening and closing double quotation marks are replaced by

single quotation marks. A reference is converted using the same method used to translate an

entity.

Examples:
SULTAN Function Name Prolog Equivalent

acquire(Tony) f_acquire(e_Tony).
request(Info) f_request(e_Info);
Control(_X, Router) f_Control(V__X, e_Router)
load(page, “http”) f_load(e_page, ‘http’)

Standard Action Delimiter

The standard action delimiter for SULTAN is the colon. This is converted to a comma for its

Prolog representation.

Examples:
SULTAN Action Set Prolog Equivalent

startup(MyComputer):pause(MyComputer) f_startup(e_MyComputer),
f_pause(e_MyComputer)

The not function

When an action has a not surrounding it, this represents the restriction of the performance of

these actions. To convert action sets that include the not function, the functions must be

translated using the rules outlined in this section. The word not is kept in the Prolog version.

Examples:
SULTAN Action Set Prolog Equivalent

not(acquire(tony):integrate(circuit)) not(f_acquire(e_tony), f_integrate(e_circuit))
not(Control(_X,Router)) not(f_Control(V__X, e_Router))

Appendix C. Refining SULTAN to Trust Rules

222

Action Sets

In Prolog, an action set must be enclosed in square brackets. The process is that the actions are

translated and then placed within square brackets.

Example:

SULTAN
WebUserCheck: trust(WebServer, _User, access_se(WebServer):view_pages(WebServer):
 write_pages(WebServer):logintoWeb(WebServer, ID,PASS) , 10)
 ← RealEstatePassport(_User);

Prolog
trust(e_WebServer, V__User, [f_access_se(e_WebServer), f_view_pages(e_WebServer),
 f_write_pages(e_WebServer), f_logintoWeb(e_WebServer, e_ID,e_PASS)], 10,
 p_WebUserCheck) :-
 f_RealEstatePassport(V__User).

Translating Levels

It is assumed that levels used in a Prolog representation of a SULTAN specification are

numeric. If a SULTAN specification uses a label as its level, it is assumed that the label is

translated to a number before the specification is translated to Prolog.

Translating Constraints

Constraints are the conditions that must be satisfied for a policy to be active. A policy may

have a collection of constraints separated by & (logical and) and | (logical or). These delimiters

are translated to , (logical and in Prolog) and ; (logical or in Prolog) respectively. A closer look

is taken of the various types of constraints that a SULTAN policy can have and how each is

translated to Prolog.

Translation of Trust Policy Constraints

When used as a constraint, a trust policy has the following form:

trust(trustor, trustee, actions, level)

To translate the above, the constituent elements (trustor, trustee, actions, level) are translated

and then a placeholder is inserted for the policy name. Thus, the Prolog equivalent is:

trust(trustor, trustee, actions, level, _)

Appendix C. Refining SULTAN to Trust Rules

223

To translate the trust+ and trust-, the same procedure is followed and a level constraint is added.

For example:

trust+(trustor, trustee, actions,)

becomes:

trust(trustor, trustee, actions, X, actions, _), X > 0

Translation of Recommend Policy Constraints

When used as a constraint, a recommend policy has the following form:

recommend(recommendor, recommendee, actions, level)

Its translation to Prolog involves translating the constituent elements (recommendor,

recommendee, actions, level) and then inserting a placeholder for the policy name. Thus, the

Prolog equivalent is:

recommend(recommendor, recommendee, actions, level, _)

To translate the recommend+ and recommend-, the same procedure is followed and a level

constraint is added. For example:

recommend-(recommendor, recommendee, actions)

becomes:

recommend(recommendor, recommendee, actions, X, actions, _), X < 0

User-Defined Constraints

User-defined constraints are constraints that are specific to the user’s domain. These constraints

can either be function calls, object method calls or expressions. For user-defined expression

constraints, the SULTAN operator symbols are translated according to the following table:

SULTAN Symbol Prolog Predicate

> gt(lhs, rhs)
< lt(lhs, rhs)

>= gteq(lhs, rhs)
<= Lteq(lhs, rhs)
= eq(lhs, rhs)
!= neq(lhs, rhs)

It is assumed that both the left hand side (lhs) and right hand side (rhs) of the expression are

translated using the rules previously described.

Appendix C. Refining SULTAN to Trust Rules

224

Examples:

SULTAN
Law: trust(Client, ELawyers, advice(Client), 100)
 ← Accredited(Elawyers, USBar);

Prolog
trust(e_Client, e_ELawyers, [f_advice(e_Client)], 100, p_Law) :-
 f_Accredited(e_Elawyers, e_USBar).

SULTAN
Doc: recommend(BMA, EDoctor, sell_drugs_online(EDoctor), 100)
 ← certified(EDoctor, BMA);

Prolog
recommend(e_BMA, e_EDoctor, [f_sell_drugs_online(e_EDoctor)], 100, p_Doc) :-
 f_certified(e_EDoctor, e_BMA).

SULTAN
Site: trust(I, WebSites, load(I), -100)
 ← SiteSecurityLevel(WebSites) < 3;

Prolog
trust(e_I, e_WebSites, [f_load(e_I)], -100, p_Site) :-
 lt(f_SiteSecurityLevel(e_WebSites), 3);

Translation of Auxiliary Functions

All trustees and trustors are viewed as entitles. And there are two auxiliary functions defined on

each of these entities that provide useful functionality when specifying trust specifications.

Risk

The SULTAN risk constraint has the following format:

risk(B, C, A)

The risk method returns an integer value and the method must be used in a Boolean expression.

To translate it to Prolog, we assume the existence of a predicate that has an arity of 4. Then

SULTAN terms B (an entity), C (an entity) and A (an action set) are translated using the scheme

that have outlined. Thus, a risk constraints has the following form:

 risk(B, C, A) op riskvalue

We translate such a constraint to:

risk(B,C, A, R), R op riskvalue

Appendix C. Refining SULTAN to Trust Rules

225

Examples:

SULTAN
Contract: recommend(College, Sun, access_internal_web(College), -50)
 ← risk(College, Sun, access_internal_web(College)) <= 3;

Prolog
recommend(e_College, e_Sun, [f_access_internal_web(e_College)], -50, p_Contract) :-
 risk(e_College, e_Sun, [f_access_internal_web(e_College)], R), R <= 3.

SULTAN
Amaz: trust(Amazon, _AnyOne, buy_product(Amazon), -5)
 ← .risk(Amazon, _Anyone, _) > 10;

Prolog
trust(e_Amazon, V__AnyOne, [f_buy_product(e_Amazon)], -5, p_Amaz) :-
 risk(Amazon, V__Anyone, , V__0002, R), R > 10.

Experience

The SULTAN experience method has the following form:

experience(B, C, A)

This method returns an integer, which must also be used in an expression. As such, its

translation process is exactly the same as that for a risk constraint. Thus, a experience constraint

has the following form:

experience(B, C, A) op expvalue

Will be translated to:

experience(B, C, A, E), E op expvalue

It is assumed that B, C and A are translated beforehand.

Examples:

SULTAN
Sup: recommend(EDistributor, EReseller, market(EReseller), 100)
 ← experience(EDistributor, EReseller, _) > 0;

Prolog
recommend(e_EDistributor, e_EReseller, [f_market(e_EReseller)], 100, p_Sup) :-
 experience(e_EDistributor, e_EReseller, V__0003, E), E > 0.

SULTAN
Rod: trust(Police, GSM, provide_info(GSM, Police), 100)
 ← experience(Police, GSM, provide_info(GSM, Police)) < 0;

Prolog
trust(e_Police, e_GSM, [f_provide_info(e_GSM, e_Police)], 100, p_Rod) :-
 experience(e_Police, e_GSM, [f_provide_info(e_GSM, e_Police)], E), E < 0.

 226

Appendix D SULTAN Analysis Model

The SULTAN Analysis Model is a set of rules that enable reasoning about trust specifications

and recommendations.

/***/
/* Author: Tyrone W.A. Grandison */
/* Last Date Modified: Aug 10, 2002 */
/* Purpose: This is a model that allows for the analysis of trust and recommend */
/* rules. */
/***/

/**/
/* */
/* Input Output Predicates */
/* */
/**/

/* Reads in input (Variables)-(Conditions) from Keyboard. */
readin :-
 write('\n\n'),
 write('Please enter your query :\n'),
 write(' - The format is \n'),
 write(' (Variables)-(Conditions) - for a scenario or source query . \n '),
 write(' A trust or recommend statement for an abduction query, and \n '),
 write(' The word cycle or make_acyclic for cycle investigation and correction. \n '),
 write(' or quit to exit. \n '),
 read(X),
 test(X).

/* Processes User Input */
test(quit) :- /* Exit UI */
 write('\nGoodbye'),
 fail.

test((X)-S) :- /* Source or Scenario Query */
 query(X, S, Answer),
 write('Solution(s) : \n'),
 pretty(Answer),
 write('\n'),
 readin.

test(A) :- /* Abductive Query */
 query(A, Result),
 pretty(Result),
 write('\n'),
 readin.

test(cycle) :- /* Cycle Detection
 query(cycle, Result),
 pretty(Result),
 write('\n'),
 readin.

Appendix D. SULTAN Analysis Model

227

test(make_acyclic) :- /* Cycle Resolution
 query(make_acyclic),
 error_wrapper(listing(trust), _),
 error_wrapper(listing(recommend), _),
 write('\n'),
 readin.

/* Formats the screen output */
pretty([]).

pretty([A|B]) :-
 write(' '),write(A),

write('\n'), pretty(B).

/* Main Working Predicate */

query(A, Result) :- /* Abductive Query */
 ((functor(A, trust, 5),A=trust(_,_,_,_,P));
 (functor(A, recommend, 5),A=recommend(_,_,_,_,P))
),
 (\+ cycle(P,_),
 cycles(CycList),
 (empty(CycList);
 (not_empty(CycList), write('Cycles Detected : '),
 write(CycList),write('\n'))
),
 abduce(A, Result)
);
 (cycle(P,Y),
 write('There is a cycle between rules '),
 write(P),write(' and '), write(Y),write('\n'),
 insert(error,[:, cycle, P,Y], Result)
).

query(cycle, Result) :- /* Cycle Detection */
 cycles(Result).

query(make_acyclic) :- /* Cycle Resolution */
 make_acyclic.

query(X, S, Answer) :- /* Source and or Scenario Query */
 findall(X, S, A),
 remove(A, Answer).

/***/
/* */
/* Source Reasoning Predicates */
/* */
/***/

/***/
/* Querying Basic Types & Attributes */
/***/

/* P is a SULTAN trust/recommend rule. */
p_policy(P) :-
 p_rec_pol(P) ;
 p_trust_pol(P).

Appendix D. SULTAN Analysis Model

228

/* P is a recommend rule. */
p_rec_pol(P) :-
 clause(recommend(_, _, _, _, P), _).

/* P is a trust rule. */
p_trust_pol(P) :-
 clause(trust(_, _, _, _, P), _).

/* P is a positive trust rule. */
p_pos_trust(P) :-
 clause(trust(_, _, _, L, P), _),
 integer(L), L > 0.

/* P is a negative trust rule.*/
p_neg_trust(P) :-
 clause(trust(_, _, _, L, P), _),
 integer(L), L < 0.

/* P is a positive recommend rule. */
p_pos_rec(P) :-
 clause(recommend(_, _, _, L, P), _),
 integer(L), L > 0.

/* P is a negative recommend rule. */
p_neg_rec(P) :-
 clause(recommend(_, _, _, L, P), _),
 integer(L), L < 0.

/* E is the entity in rule P. */
p_entity(E, P) :-
 p_subject(E, P) ;
 p_target(E, P).

/* E is the subject of rule P. */
p_subject(E,P) :-
 p_trustor(E,P);
 p_recommendor(E,P).

/* rules P1 and P2 have the same subject. */
p_sameSub(P1, P2) :-

p_subject(E, P1),
p_subject(E, P2).

/* E is the target of rule P. */
p_target(E,P) :-
 p_trustee(E,P);
 p_recommendee(E,P).

/* E is the trustor of rule P. */
p_trustor(E, P) :-
 clause(trust(E, _, _, _, P), _).

p_trustor(E, P) :- /* E is a trustor of rule P through an isPartOf rule */
 clause(trust(M, _, _, _, P), _),
 partOf(E,M).

/* E is the trustee of rule P. */
p_trustee(E, P) :-
 clause(trust(_, E, _, _, P), _).

p_trustee(E, P) :- /* E is a trustee of rule P through an isPartOf rule */
 clause(trust(_, M, _, _, P), _), partOf(E,M).

Appendix D. SULTAN Analysis Model

229

/* E is the recommendor of rule P. */
p_recommendor(E, P) :-
 clause(recommend(E, _, _, _, P), _).

p_recommendor(E, P) :- /* E is a recommendor of rule P through an isPartOf rule */
 clause(recommend(M, _, _, _, P), _),
 partOf(E,M).

/* E is the recommendee of rule P. */
p_recommendee(E, P) :-
 clause(recommend(_, E, _, _, P), _).

p_recommendee(E, P) :- /* E is a recommendee of rule P through an isPartOf rule */
 clause(recommend(_, M, _, _, P), _),
 partOf(E,M).

/* L is the level associated with rule P. */
p_level(L, P) :-
 (clause(trust(_, _, _, L, P), _) ;
 clause(recommend(_, _, _, L, P), _)).

/* C is the set of constraints associated with rule P. */
p_constraints(C, P):-
 (clause(trust(_, _, _, _, P), C) ;
 clause(recommend(_, _, _, _, P), C)),
 not_empty_constraint(C).

/* A is the actionset associated with rule P. */
p_actionset(A, P) :-
 clause(trust(_,_,A,_,P), _);
 clause(recommend(_,_,A,_,P), _).

/* A is a subset of the actionset of rule P. */
p_actions(A, P) :-
 (clause(trust(_,_,Action,_,P),_) ;
 clause(recommend(_,_,Action,_,P),_)),
 subset(A, Action).

/* Entity E is trusted by exactly N other entities
 at level L to perform action(s) A.*/
p_trustedby(E, N, L, A, e) :-
 findall(T, (p_trustorsWithAS(E, A, L, T)), No),
 remove_dup(No, Pol),
 count(Pol, NoPol),
 N = NoPol.

/* Entity E is trusted by at least N other entities
 at level L to perform action(s) A. */
p_trustedby(E, N, L, A, a) :-
 findall(T, (p_trustorsWithAS(E, A, L, T)), No),
 remove_dup(No, Pol),
 count(Pol, NoPol),
 N =< NoPol.

/* C is the set of constraints for the rules
 that relate entities X and Y. */
p_constraints(X, Y, C) :-
 findall(P, (clause(trust(X,Y,_,_,_), P), not_empty_constraint(P)), A),
 findall(Q, (clause(recommend(X,Y,_,_,_), Q), not_empty_constraint(Q)), B),
 findall(R, (clause(trust(Y,X,_,_,_), R), not_empty_constraint(R)), E),
 findall(S, (clause(recommend(Y,X,_,_,_), S), not_empty_constraint(S)), D),
 union(A,B, H), union(H, E, G), union(G, D, L), remove_dup(L, C).

Appendix D. SULTAN Analysis Model

230

/* Finding constraints by looking through the organisational chart links */
p_constraints(X, Y, C) :-
 partOf(X,M),
 p_constraints(M,Y,C).

p_constraints(X, Y, C) :-
 partOf(Y,M),
 p_constraints(X,M,C).

p_constraints(X, Y, C) :-
 partOf(X,M),
 partOf(Y,N),
 p_constraints(M,N,C).

/***/
/* Defining SourceShortHand Predicates */
/***/

/* X and Y have the same subject */
p_commonSubj(X,Y) :-
 p_subject(E,X),
 p_subject(E,Y),
 X \== Y.

/* X and Y have the same subject E */
p_commonSubj(X,Y,E) :-
 p_subject(E,X),
 p_subject(E,Y),
 X \== Y.

/* X and Y have the same target */
p_commonTar(X,Y) :-
 p_target(E,X),
 p_target(E,Y),
 X \== Y.

/* X and Y have the same target E */
p_commonTar(X,Y,E) :-
 p_target(E,X),
 p_target(E,Y),
 X \== Y.

/* X and Y have the same trustor */
p_commonTrustor(X,Y) :-
 p_trustor(E,X),
 p_trustor(E,Y),
 X \== Y.

/* X and Y have the same trustor E */
p_commonTrustor(X,Y,E) :-
 p_trustor(E,X),
 p_trustor(E,Y),
 X \== Y.

/* X and Y have the same trustee */
p_commonTrustee(X,Y) :-
 p_trustee(E,X),
 p_trustee(E,Y),
 X \== Y.

Appendix D. SULTAN Analysis Model

231

/* X and Y have the same trustee E */
p_commonTrustee(X,Y,E) :-
 p_trustee(E,X),
 p_trustee(E,Y),
 X \== Y.

/* X and Y have the same recommendor */
p_commonRecommendor(X,Y) :-
 p_recommendor(E,X),
 p_recommendor(E,Y),
 X \== Y.

/* X and Y have the same recommendor E */
p_commonRecommendor(X,Y,E) :-
 p_recommendor(E,X),
 p_recommendor(E,Y),
 X \== Y.

/* X and Y have the same recommendee */
p_commonRecommendee(X,Y) :-
 p_recommendee(E,X),
 p_recommendee(E,Y),
 X \== Y.

/* X and Y have the same recommendee E */
p_commonRecommendee(X,Y,E) :-
 p_recommendee(E,X),
 p_recommendee(E,Y),
 X \== Y.

/* X and Y have the same level */
p_equalLevel(X,Y) :-
 p_level(L,X),
 p_level(L,Y),
 X \== Y.

/* X and Y have the same level L */
p_equalLevel(X,Y,L) :-
 p_level(L,X),
 p_level(L,Y),
 X \== Y.

/* X and Y have the same actionset */
p_commonAS(A, B) :-
 p_actionset(APR, A),
 p_actionset(ANR, B),
 intersect(APR, ANR, ACTR),
 not_empty(ACTR).

/* Computes Action Set Equality using Organisation Chart Info */
p_commonAS(A, B) :-
 p_commonAS(A, B, X),
 not_empty(X).

p_commonAS(A, B, Result) :-
 p_actionset(AA, A),
 p_actionset(AB, B),
 find_commonAS(AA, AB, R), not_empty(R), concat([], R, Result).

Appendix D. SULTAN Analysis Model

232

/**/
/* */
/* Actual Scenarios */
/* */
/**/

/***/
/* Querying Types & Attributes */
/***/

/* P is a SULTAN trust/recommend rule. */
policy(P) :-
 rec_pol(P) ;
 trust_pol(P).

/* P is a recommend rule. */
/* To avoid nasty run-time errors, scenario predicates were implemented
 in a way to eliminate excessives to constraints that may be undefined
 at the moment of execution */
rec_pol(P) :-
 clause(recommend(_, _, _, _, P),C),
 empty_or_met(C).

/* P is a trust rule. */
trust_pol(P) :-
 clause(trust(_, _, _, _, P),C),
 empty_or_met(C),
 look_for_cycle(P).

/* P is a positive trust rule. */
pos_trust(P) :-
 clause(trust(_, _, _, L, P),C),
 integer(L), L > 0, empty_or_met(C),
 look_for_cycle(P).

/* P is a negative trust rule. */
neg_trust(P) :-
 clause(trust(_, _, _, L, P),C),
 integer(L), L < 0, empty_or_met(C),
 look_for_cycle(P).

/* P is a positive recommend rule. */
pos_rec(P) :-
 clause(recommend(_, _, _, L, P),C),
 integer(L), L > 0, empty_or_met(C),
 look_for_cycle(P).

/* P is a negative recommend rule. */
neg_rec(P) :-
 clause(recommend(_, _, _, L, P),C),
 integer(L), L < 0, empty_or_met(C),
 look_for_cycle(P).

/* E is the entity in rule P. */
entity(E, P) :-
 subject(E, P) ;
 target(E, P).

/* E is the subject of rule P. */
subject(E,P) :-
 trustor(E,P);
 recommendor(E,P).

Appendix D. SULTAN Analysis Model

233

/* E is the target of rule P. */
target(E,P) :-
 trustee(E,P);
 recommendee(E,P).

/* E is the trustor of rule P.*/
trustor(E, P) :-
 clause(trust(E, _, _, _, P),C),
 empty_or_met(C), look_for_cycle(P).

trustor(E, P) :-
 clause(trust(M, _, _, _, P),C),
 partOf(E,M), empty_or_met(C), look_for_cycle(P).

/* E is the trustee of rule P. */
trustee(E, P) :-
 clause(trust(_, E, _, _, P),C),
 empty_or_met(C), look_for_cycle(P).

trustee(E, P) :- /* E is the trustee of rule P through through organisational chart links. */
 clause(trust(_, M, _, _, P),C),
 partOf(E,M),empty_or_met(C),
 look_for_cycle(P).

/* E is the recommendor of rule P. */
recommendor(E, P) :-
 clause(recommend(E, _, _, _, P),C),
 empty_or_met(C), look_for_cycle(P).

recommendor(E, P) :- /* E is the recommendor of rule P thru org. chart. */
 clause(recommend(M, _, _, _, P),C),
 partof(E,M), empty_or_met(C), look_for_cycle(P).

/* E is the recommendee of rule P. */
recommendee(E, P) :-
 clause(recommend(_, E, _, _, P),C),
 empty_or_met(C), look_for_cycle(P).

recommendee(E, P) :- /* E is the recommendee of rule P thru org. chart. */
 clause(recommend(_, M, _, _, P),C),
 partOf(E,M), empty_or_met(C), look_for_cycle(P).

/* L is the level associated with rule P. */
level(L, P) :-
 (clause(trust(_, _, _, L, P),C) ;
 clause(recommend(_, _, _, L, P),C)
),
 empty_or_met(C), look_for_cycle(P).

/* C is the set of constraints associated with rule P. */
constraints(C, P):-
 (clause(trust(_, _, _, _, P), C) ;
 clause(recommend(_, _, _, _, P),C)
),
 empty_or_met(C), look_for_cycle(P).

/* A is the actionset associated with rule P. */
actionset(A, P) :-
 (clause(trust(_,_,A,_,P),C);
 clause(recommend(_,_,A,_,P),C)
), empty_or_met(C), look_for_cycle(P).

Appendix D. SULTAN Analysis Model

234

/* A is a subset of the actionset of rule P. */
actions(A, P) :-
 (clause(trust(_,_,Action,_,P),C) ;
 clause(recommend(_,_,Action,_,P),C)

),
 empty_or_met(C),
 subset(A, Action), look_for_cycle(P).

/* Entity E is trusted by exactly N other entities
 at level L to perform action(s) A. */
trustedby(E, N, L, A, e) :-
 findall(T, (trustorsWithAS(E, A, L, T)), No),
 remove_dup(No, Pol),
 count(Pol, NoPol),
 N = NoPol.

/* Entity E is trusted by at least N other entities
 at level L to perform action(s) A. */
trustedby(E, N, L, A, a) :-
 findall(T, (trustorsWithAS(E, A, L, T)), No),
 remove_dup(No, Pol),
 count(Pol, NoPol),
 N =< NoPol.

/* C is the set of constraints for the rules that
 relate entities X and Y.*/
constraints(X, Y, C) :-
 findall(P, (clause(trust(X,Y,_,_,_), P), empty_or_met(P)), A),
 findall(Q, (clause(recommend(X,Y,_,_,_), Q),empty_or_met(Q)), B),
 findall(R, (clause(trust(Y,X,_,_,_), R), empty_or_met(R)), E),
 findall(S, (clause(recommend(Y,X,_,_,_), S), empty_or_met(S)), D),
 union(A,B, H), union(H, E, G), union(G, D, L),
 remove_dup(L, C), look_for_cycle(P).

/* Looking through the organisational chart */
constraints(X, Y, C) :-
 partOf(X,M),
 constraints(M,Y,C).

constraints(X, Y, C) :-
 partOf(Y,M),
 constraints(X,M,C).

constraints(X, Y, C) :-
 partOf(X,M),
 partOf(Y,N),
 constraints(M,N,C).

/***/
/* Defining Scenario ShortHand Predicates */
/**/

/* X and Y have the same subject */
commonSubj(X,Y) :-
 subject(E,X),
 subject(E,Y),
 X \== Y.

/* X and Y have the same subject E */
commonSubj(X,Y,E) :-

subject(E,X),
 subject(E,Y),
 X \== Y.

Appendix D. SULTAN Analysis Model

235

/* X and Y have the same target */
commonTar(X,Y) :-
 target(E,X),
 target(E,Y),
 X \== Y.

/* X and Y have the same target E */
commonTar(X,Y,E) :-
 target(E,X),
 target(E,Y),
 X \== Y.

/* X and Y have the same trustor */
commonTrustor(X,Y) :-
 trustor(E,X),
 trustor(E,Y),
 X \== Y.

/* X and Y have the same trustor E */
commonTrustor(X,Y,E) :-
 trustor(E,X),
 trustor(E,Y),
 X \== Y.

/* X and Y have the same trustee */
commonTrustee(X,Y) :-
 trustee(E,X),
 trustee(E,Y),
 X \== Y.

/* X and Y have the same trustee E */
commonTrustee(X,Y,E) :-
 trustee(E,X),
 trustee(E,Y),
 X \== Y.

/* X and Y have the same recommendor */
commonRecommendor(X,Y) :-
 recommendor(E,X),
 recommendor(E,Y),
 X \== Y.

/* X and Y have the same recommendor E */
commonRecommendor(X,Y,E) :-
 recommendor(E,X),
 recommendor(E,Y),
 X \== Y.

/* X and Y have the same recommendee */
commonRecommendee(X,Y) :-
 recommendee(E,X),
 recommendee(E,Y),
 X \== Y.

/* X and Y have the same recommendee E */
commonRecommendee(X,Y,E) :-
 recommendee(E,X),
 recommendee(E,Y),
 X \== Y.

Appendix D. SULTAN Analysis Model

236

/* X and Y have the same level */
equalLevel(X,Y) :-
 level(L,X),
 level(L,Y),
 X \== Y.

/* X and Y have the same level L */
equalLevel(X,Y,L) :-
 level(L,X),
 level(L,Y),
 X \== Y.

/* A and B have a common actionset */
commonAS(A, B) :-
 actionset(APR, A),
 actionset(ANR, B),
 intersect(APR, ANR, ACTR),
 not_empty(ACTR).

/* A and B have a common actionset (using part of rules) */
commonAS(A, B) :-
 commonAS(A, B, X),
 not_empty(X).

commonAS(A, B, Result) :-
 actionset(AA, A),
 actionset(AB, B),
 find_commonAS(AA, AB, R), concat([], R, Result).

/***/
/* Identifying Cycles */
/***/

cycles(Result) :-
 findall([A,B], cycle(A,B), Temp),
 remove(Temp, Result).

/* A cycle exists between rules PA and PB. */
cycle(PA, PB) :-
 exists(PA, CA), exists(PB, CB), PA \== PB,
 sys_con(CA, CAA), sys_con(CB, CBA),
 entails(CBA, PA),
 circle(CAA, PB).

/* There is a path from the set of constraints CoA to rule PB. */
circle(CoA, PB) :-
 first(CoA, Element, Rest),
 (
 (Element = trust(Subject, Target, Actions, Level, Policy);
 Element = recommend(Subject, Target, Actions, Level, Policy)
),
 clause(Element, Con),
 not_empty_constraint(Con),
 convert_to_list(Con, Constr),
 (entails(Constr, PB) ;
 (sys_con(Constr, CoH), not_empty(CoH), circle(CoH, PB)), !
);
 (not_empty(Rest), circle(Rest, PB))
).

/* There exists a trust rule Policy that has a set of constraints called Constraints. */
exists(Policy, Constraints) :-

Appendix D. SULTAN Analysis Model

237

 clause(trust(_Sub, _Tar, _Act, _Lev, Policy), Con),
 convert_to_list(Con, Constraints).

/* There exists a recommend rule Policy that has a set of constraints called Constraints. */
exists(Policy, Constraints) :-
 clause(recommend(_Sub, _Tar, _Act, _Lev, Policy), Con),
 convert_to_list(Con, Constraints).

/* CoA is the set of trust and recommend rules present in CA. */
sys_con(CA, CoA) :-
 findall(X, (member(X, CA),(functor(X, trust, 5);
 functor(X, recommend, 5))), CoA).

/* The constraint set CBA contains the trust rule PA. */
entails(CBA, PA) :-
 clause(trust(Subject, Target, Actions, Level, PA), _),
 member(trust(Subject, Target, Actions, Level, PA),CBA).

/* The constraint set CBA contains the recommend rule PA. */
entails(CBA, PA) :-
 clause(recommend(Subject, Target, Actions, Level, PA), _),
 member(recommend(Subject, Target, Actions, Level, PA),CBA).

/***/
/* Removing Cycles */
/***/

/* Make the specification acyclic. */
make_acyclic :-
 cycles(Result),
 process_cycles(Result).

/* Processes the cycles in List. */
process_cycles(List) :-
 get_first_pair(List, Policy1, Policy2, Rest),
 correct_cycle(Policy1, Policy2),
 process_cycles(Rest).

process_cycles([]). /* base case */

/* Corrects a cycle between two trust rules Policy1 and Policy2. */
correct_cycle(Policy1, Policy2) :-
 clause(trust(Subject1,Target1,Actions1,Level1,Policy1), _),
 clause(trust(Subject2,Target2,Actions2,Level2,Policy2), Constr2),
 convert_to_list(Constr2, ConstrSet2),
 delete(trust(Subject1,Target1,Actions1,Level1,Policy1), ConstrSet2, ConstrSet3),
 insert(rule(Policy1), ConstrSet3, ConstrSet4),
 to_constraints(ConstrSet4, Con4),
 retractall(trust(Subject2,Target2,Actions2,Level2,Policy2)),
 assertz((:-(trust(Subject2,Target2,Actions2,Level2,Policy2),Con4))).

/* Corrects a cycle between two recommend rules Policy1 and Policy2. */
correct_cycle(Policy1, Policy2) :-
 clause(recommend(Rr1,Re1,Actions1,Level1,Policy1), _),
 clause(recommend(Rr2,Re2,Actions2,Level2,Policy2), Constr2),
 convert_to_list(Constr2, ConstrSet2),
 delete(recommend(Rr1,Re1,Actions1,Level1,Policy1), ConstrSet2, ConstrSet3),
 insert(rule(Policy1), ConstrSet3, ConstrSet4),
 to_constraints(ConstrSet4, Con4),
 retractall(recommend(Rr2,Re2,Actions2,Level2,Policy2)),

Appendix D. SULTAN Analysis Model

238

 assertz((:-(recommend(Rr2,Re2,Actions2,Level2,Policy2),Con4))).

/* Corrects a cycle between two trust rule Policy1 and recommend rule Policy2.*/
correct_cycle(Policy1, Policy2) :-
 clause(trust(Subject1,Target1,Actions1,Level1,Policy1), _),
 clause(recommend(Rr2,Re2,Actions2,Level2,Policy2), Constr2),
 convert_to_list(Constr2, ConstrSet2),
 delete(trust(Subject1,Target1,Actions1,Level1,Policy1), ConstrSet2, ConstrSet3),
 insert(rule(Policy1), ConstrSet3, ConstrSet4),
 to_constraints(ConstrSet4, Con4),
 retractall(recommend(Rr2,Re2,Actions2,Level2,Policy2)),
 assertz((:-(recommend(Rr2,Re2,Actions2,Level2,Policy2),Con4))).

/***/
/* Constraint Satisfaction */
/***/

abduce(Head, Things) :-
 solve(Head, [], Things).

solve(Head, Interm, Things) :-
 findall(Body, clause(Head, Body), Ans),
 process_list(Ans, Interm, Thing),
 meets(Thing,[],Things).

process_list(Ans, Interm, Things) :-
 first(Ans, Top, Rest),
 processtop(Top, Interm, NewInterm),
 process_list(Rest, NewInterm, Things).

process_list([], Things, Things).

processtop(Top, Interm, NewInterm) :-
 \+ functor(Top, ',', _),
 process_predicate(Top, Interm, NewInterm).

processtop(Top, Interm, NewInterm) :-
 functor(Top, ',', _),
 convert_to_list(Top, T),
 process_list(T, Interm, NewInterm).

process_predicate(Top, Interm, NewInterm) :-
 (functor(Top, trust, 5);functor(Top, recommend, 5)),
 solve(Top, Interm, NewInterm).

process_predicate(Top, Interm, NewInterm) :-
 \+ (functor(Top, trust, 5);functor(Top, recommend, 5)),
 complement(Top, Neg),
 \+ contains(Interm, Neg),
 insert(Top, Interm, NewInterm).

meets([], F, F).

meets(L, I, F) :-
 first(L, H, T),
 asserta(exist(all)),
 on_exception(E, H, check(E, H)),
 (
 (exist(all), concat(I, [], NI), retractall(exist(all)), meets(T, NI, F));
 (exist(Top), (Top \== all), retractall(exist(_)), insert(Top, I, NI) , meets(T, NI, F))
).

Appendix D. SULTAN Analysis Model

239

check(E, Top) :-
 E = existence_error(_,_,_,_,_),
 retractall(exist(all)),
 asserta(exist(Top)).

getExp(Tr, Te, As, Value) :-
 findall(Ev, (experience(Tr,Te,As,Ev)), Eval),
 sum(Eval, Val),
 count(Eval, D), D > 0,
 Value is Val // D .

getOptimistExp(S, T, As, Value) :-
 findall(Ev, (experience(Tr,Te,As,Ev)), Eval),
 sort(Ev, SortedEv),
 append(_, [Value], SortedEv).

getPessimExp(S, T, As, Value) :-
 findall(Ev, (experience(Tr,Te,As,Ev)), Eval),
 sort(Ev, [Value|_]).

/**/
/* */
/* Auxiliary and Low Level Predicates */
/* */
/**/

/* The set of constraints C is empty of has been satisfied */
empty_or_met(C) :-
 (empty_constraint(C);
 (not_empty_constraint(C),
 convert_to_list(C,CList),
 meets(CList,[],Met),
 empty(Met)
)
).

/* Look for cycles, first ones relating to policy P */
look_for_cycle(P) :-
 (\+ cycle(P,_),
 cycles(CycList),
 (empty(CycList);
 (not_empty(CycList), write('Cycles Detected : '),
 write(CycList),write('\n'))
)
);
 (cycle(P,Y),
 write('There is a cycle between rules '),
 write(P),write(' and '), write(Y),write('\n')
).

/* Auxiliary Predicate used to determine a trust relationship
 with E as the trustee, A is contained in the actionset and
 the level is L */
p_trustorsWithAS(E, A, L, T) :- /* Source version */
 p_trustee(E, P),
 p_level(L, p),
 p_actionset(Action, P),
 subset(A, Action),
 p_trustor(T,P),
 T \== E.

Appendix D. SULTAN Analysis Model

240

trustorsWithAS(E, A, L, T) :- /* Scenario Version */
 trustee(E, P),
 level(L, p),
 actionset(Action, P),
 subset(A, Action),
 trustor(T,P),
 T \== E.

/* Includes the organizational chart info in finding common
 Action Sets */
find_commonAS([], _, []).

find_commonAS([X|Y], [A|B], [Common|R]) :-
 functor(X, Name, Num), functor(A, Name, Num),
 same_first_argument(X, A, Common),
 Common \== Name,
 N is Num-1, check_other_arguments(X, A, 2, N),
 find_commonAS(Y, B, R).

find_commonAS([X|Y], [A|B], R) :-
 functor(X, Name, Num), functor(A, Name, Num),
 same_first_argument(X, A, Common),
 Common == Name,
 find_commonAS(Y, B, R).

find_commonAS([X|Y], [A|B], R) :-
 functor(X, Name1, Num), functor(A, Name2, Num),
 Name1 \== Name2,
 (find_commonAS([X|Y], B, R);find_commonAS(X, [A|B], R)).

/* Ensuring that the first argument of an actionset match */
same_first_argument(F, S, F) :-
 arg(1, F, Ent1), arg(1, S, Ent2),
 partOf(Ent1, Ent2).

same_first_argument(F, S, S) :-
 arg(1, F, Ent1), arg(1, S, Ent2),
 partOf(Ent2, Ent1).

same_first_argument(F, S, X) :-
 arg(1, F, Ent1), arg(1, S, Ent2),
 \+ partOf(Ent1, Ent2), \+ partOf(Ent2,Ent2),
 functor(F, X, _).

/* Checking that the other arguments in the actionset match */
check_other_arguments(_, _, _, 0).

check_other_arguments(X, Y, Start, Num) :-
 arg(Start, X, XStart), arg(Start, Y, YStart),
 (
 (var(XStart));(var(YStart));
 (nonvar(XStart),nonvar(YStart), XStart==YStart)
),
 NewS is Start+1, NewNum is Num-1,
 check_other_arguments(X, Y, NewS, NewNum).

/* C is an empty constraint */
empty_constraint(C) :- =(C, true).

/* C is a non-empty constraint */

Appendix D. SULTAN Analysis Model

241

not_empty_constraint(C) :- \+ =(C, true).

/* B is the complement of A. */
complement(A, B) :- B = not(A).
complement(A, B) :- B = (\+(A)).

/* X is a member of the list, specified by the second parameter. */
member(X, [X|_]).
member(X, [_|Y]) :- member(X,Y).

/* X is not a member of the list, specified by the second parameter. */
non_member(X,[Y|T]) :- X \== Y, non_member(X,T).
non_member(_,[]).

/* X is the head of the list specified by the first parameter (a list) and Y is the list
 minus the first element X. */
first([X|Y], X, Y).

/* The first parameter is a list that is a subset of the second parameter
 (which is also a list). */
subset([A|X], Y) :- member(A, Y), subset(X, Y).
subset([], _).

/* N is the number of elements in the list that specified by the first parameter. */
count([_|Y], N) :- count(Y, X), N is 1 + X.
count([],0).

/* V is the sum of the integers in the list, the first parameter */
sum([], 0).
sum([X|Y], V) :-
 sum(Y, Z), V is Z + X.

/* The third parameter is the set union of the sets
 specified by the first and second paramaters
 (which are also sets that are represented by lists). */
union([X|Y], Z, W) :- member(X, Z), union(Y, Z, W).
union([X|Y], Z, [X|W]) :- \+ member(X, Z), union(Y, Z, W).
union([], Z, Z).

/* Finding the intersection of two lists */
intersect([],_,[]).
intersect([X|R],Y,[X|Z]) :- member(X,Y),!,intersect(R,Y,Z).
intersect([X|R],Y,Z) :- non_member(X,Y),!,intersect(R,Y,Z).

/* Constructing the permutations of a set*/
permutation([], []).
permutation(L, [F|P]) :-
 select(F, L, R),
 permutation(R, P).

select(E, [E|T], T).
select(E, [H|T1], [H|T2]) :-
 select(E, T1, T2).

/* M is the set L minus the duplicate elements. */
remove_dup(L, M) :- rdup(L, [], M).
rdup([], A, A).
rdup([H|T], A, L) :- member(H, A), rdup(T, A, L).
rdup([H|T], A, L) :- rdup(T, [H|A], L).

/* The parameter passed to it is an empty list. */
empty([]).

Appendix D. SULTAN Analysis Model

242

/* A is not an empty list. */
not_empty(A) :- \+ empty(A).

/* Inserts the element E into the list L and produces the new list (the third parameter).*/
insert(E, L, [E|L]).

/* Element E is contained the list specified by the first parameter. */
contains([E|_], E).
contains([H|T], E) :- H \== E, contains(T,E).

/* Deletes element E from the list specified by the second parameter
 and produces the new list (the third parameter). */
delete(E, [E|T], T).
delete(E, [H|T], [H|N]) :- delete(E, T, N).

/* The second and third parameters are the first pair of elements
 from the list of pairs specified by the first parameter and
 T is the remainder of the list. */
get_first_pair([[X, Y]| T], X, Y, T).

/* Converts a list (the first parameter)
 to a set of constraints (the second parameter). */
to_constraints([H|T], (H, Z)) :- to_constraints(T, Z).
to_constraints([X], (X)).

/* Converts a set of constraints (the first parameter)
 into a list (the second parameter).*/
convert_to_list((X,Y),[X|Z]) :- !, convert_to_list(Y, Z).
convert_to_list(X,[X]).

/* Adds two lists together (the first and second paramters)
 to produce a new concatenated list (the third parameter) */
concat([], L, L).
concat([X|L1], L2, [X|L3]) :- concat(L1, L2, L3).

/* Removes duplicates from a list of lists, L, and returns
 the List R. Element order is the sublist is ignored.
 Thus, if L is [[a,b],[b,a]], then R will be [[a,b]],
 because [a,b] is considered equal to [b,a] */
remove(L, R) :-
 removeAux(L, [], R).

/* General Case - removing duplicates from list of lists */
removeAux(Start, Interm, Result) :-
 first(Start, Head, Tail),
 (
 ((\+ mem(Head, Interm)),
 insert(Head, Interm, NewInterm)
);
 (mem(Head, Interm),
 concat(Interm,[], NewInterm))
),
 removeAux(Tail, NewInterm, Result).

removeAux([],R,R).

mem(ListA, ListB) :-
 first(ListB, Head, _),
 \+ empty(Head),
 findall(A, (permutation(Head,A)), Result),
 member(ListA, Result).

Appendix D. SULTAN Analysis Model

243

mem(ListA, ListB) :-
 first(ListB, Head, Tail),
 \+ empty(Head),
 findall(A, (permutation(Head,A)), Result),
 \+ member(ListA, Result),
 mem(ListA, Tail).

mem(_, ListB) :-
 first(ListB, Head, _),
 empty(Head), fail.

/* Inclusion of Organisational Chart Info */
partOf(X,Y) :-
 on_exception(existence_error(_,_,_,_,_), isPartOf(X,Y), fail).

partOf(X,Y) :-
 on_exception(existence_error(_,_,_,_,_), isPartOf(T,Y), fail),
 partOf(X,T).

/* Predicates for translated expressions - Numbers */
gt(LHS,RHS) :-
 eq(LHS, A), RHS > A.

gt(LHS,RHS) :-
 eq(LHS, A), RHS @> A.

lt(LHS,RHS) :-
 eq(LHS, A), RHS < A.

lt(LHS,RHS) :-
 eq(LHS, A), RHS @< A.

gteq(LHS, RHS) :-
 eq(LHS, A), RHS >= A.

gteq(LHS, RHS) :-
 eq(LHS, A), RHS @>= A.

lteq(LHS, RHS) :-
 eq(LHS, A), RHS =< A.

lteq(LHS, RHS) :-
 eq(LHS, A), RHS @=< A.

neq(LHS, RHS) :-
 eq(LHS, A), RHS =\= A.

neq(LHS, RHS) :-
 eq(LHS, A), RHS \== A.

/* Error Handling */
error_wrapper(Statement, E) :-
 on_exception(E, Statement, error_message(E, Statement)).

error_message(_,_).

 244

Appendix E Template of Conflicts and Ambiguities

This appendix lists the definitions of the SULTAN Analysis Template.

/**/
/* Author: Tyrone W.A. Grandison */
/* Last Date Modified: Aug 10, 2002 */
/* Purpose: This is the SULTAN template, which contains a list of generic conflicts */
/* and ambiguities. */
/**/

/* Trust conflict - occurs when there is a trust rule and a distrust rule relating to the */
/* same trustor, trustee and actionset. * /

/* Source Trust Conflict */
p_trust_conflict(Result) :-
 query([T,D], (p_pos_trust(T), p_neg_trust(D), p_trustor(Tr,T), p_trustor(Tr, D),
 p_trustee(Te,T), p_trustee(Te, D), p_commonAS(T, D)
), Result).

/* Scenario Trust Conflict */
trust_conflict(Result) :-
 query([T,D], (pos_trust(T), neg_trust(D), trustor(Tr,T), trustor(Tr, D),
 trustee(Te,T), trustee(Te, D), commonAS(T, D)
), Result).

/* Recommendation Conflict - occurs when there is a positive recommendation */
/* and a negative recommendation relating to same recommendor, recommendee */
/* and set of recommended actions. */

/* Source Recommendation Conflict */
p_rec_conflict(Result) :-
 query([PR, NR], (p_pos_rec(PR), p_neg_rec(NR), p_recommendor(Rr,PR),
 p_recommendor(Rr, NR), p_recommendee(Re,PR),
 p_recommendee(Re, NR), p_commonAS(PR, NR)
), Result).

/* Scenario Recommendation Conflict */
rec_conflict(Result) :-
 query([PR, NR], (pos_rec(PR), neg_rec(NR), recommendor(Rr,PR),
 recommendor(Rr, NR), recommendee(Re,PR),
 recommendee(Re, NR), commonAS(PR, NR)
), Result).

/* Trust-Recommend Conflict - occurs when a trust policy and a recommendation */
/* related to the same subject, target and actions. */

/* Source Positive Trust - Negative Recommendation Conflict*/
p_tr_conflict(Result) :-
 query([T, NR], (p_pos_trust(T), p_neg_rec(NR), p_subject(Rr,T),
 p_subject(Rr, NR), p_target(Re,T), p_target(Re, NR),
 p_commonAS(T, NR)
), Result).

/* Scenario Positive Trust - Negative Recommendation Conflict*/

Appendix E. Template of Conflicts and Ambiguities

245

tr_conflict(Result) :-
 query([T, NR], (pos_trust(T), neg_rec(NR), subject(Rr,T), subject(Rr, NR),
 target(Re,T), target(Re, NR), commonAS(T, NR)
), Result).

/* Source Positive Recommendation - Distrust Conflict */
p_rd_conflict(Result) :-
 query([PR, D], (p_pos_rec(PR), p_neg_trust(D), p_subject(Rr,PR),
 p_subject(Rr, D), p_target(Re,PR), p_target(Re, D),
 p_commonAS(PR, D)
), Result).

/* Scenario Positive Recommendation - Distrust Conflict */
rd_conflict(Result) :-
 query([PR, D], (pos_rec(PR), neg_trust(D), subject(Rr,PR), subject(Rr, D),
 target(Re,PR), target(Re, D), commonAS(PR, D)
), Result).

/* Trust Ambiguity - occurs when two trust rules relate to the same subject, target, */
/* actionset with the levels having the same polarity, but different values. */

/* Source Positive Trust Ambiguity */
p_tt_ambiguity(Result) :-
 query([T1,T2], (p_pos_trust(T1), p_pos_trust(T2), T1 \== T2, p_trustor(Tr,T1),
 p_trustor(Tr, T2), p_trustee(Te,T1), p_trustee(Te, T2),
 p_commonAS(T1, T2), p_level(L1, T1), p_level(L2, T2),
 L1 =\= L2
), Result).

/* Scenario Positive Trust Ambiguity */
tt_ambiguity(Result) :-
 query([T1,T2], (pos_trust(T1), pos_trust(T2), T1 \== T2, trustor(Tr,T1),
 trustor(Tr, T2), trustee(Te,T1), trustee(Te, T2),
 commonAS(T1, T2), level(L1, T1), level(L2, T2), L1 =\= L2
), Result).

/* Source Negative Trust Ambiguity */
p_dd_ambiguity(Result) :-
 query([T1,T2], (p_neg_trust(T1), p_neg_trust(T2), T1 \== T2,
 p_trustor(Tr,T1), p_trustor(Tr, T2), p_trustee(Te,T1),
 p_trustee(Te, T2), p_commonAS(T1, T2), p_level(L1, T1),
 p_level(L2, T2), L1 =\= L2
), Result).

/* Scenario Negative Trust Ambiguity */
dd_ambiguity(Result) :-
 query([T1,T2], (neg_trust(T1), neg_trust(T2), T1 \== T2, trustor(Tr,T1),
 trustor(Tr, T2), trustee(Te,T1), trustee(Te, T2),
 commonAS(T1, T2), level(L1, T1), level(L2, T2), L1 =\= L2
), Result).

/* Recommend Ambiguity - occurs when two recommendations related to the same */
/* subject, target, actionset with the levels having the same polarity, but different values. */

/* Source Positive Recommend Conflict */
p_rr_ambiguity(Result) :-
 query([R1,R2], (p_pos_rec(R1), p_pos_rec(R2), R1 \== R2, p_subject(Rr,R1),
 p_subject(Rr, R2), p_target(Re,R1), p_target(Re, R2),
 p_commonAS(R1, R2), p_level(L1, R1), p_level(L2, R2), L1 =\= L2
), Result).

Appendix E. Template of Conflicts and Ambiguities

246

/* Scenario Positive Recommend Conflict */
rr_ambiguity(Result) :-
 query([R1,R2], (pos_rec(R1), pos_rec(R2), R1 \== R2,
 subject(Tr,R1), subject(Tr, R2), target(Te,R1),
 target(Te, R2), commonAS(R1, R2), level(L1, R1),
 level(L2, R2), L1 =\= L2
), Result).

/* Source Negative Recommend Conflict */
p_nrnr_ambiguity(Result) :-
 query([R1,R2], (p_neg_rec(R1), p_neg_rec(R2), R1 \== R2,
 p_subject(Rr,R1), p_subject(Rr, R2), p_target(Re,R1),
 p_target(Re, R2), p_commonAS(R1, R2),
 p_level(L1, R1), p_level(L2, R2), L1 =\= L2
), Result).

/* Scenario Negative Recommend Conflict */
nrnr_ambiguity(Result) :-
 query([R1,R2], (neg_rec(R1), neg_rec(R2), R1 \== R2,
 subject(Tr,R1), subject(Tr, R2), target(Te,R1),
 target(Te, R2), commonAS(R1, R2), level(L1, R1),
 level(L2, R2), L1 =\= L2
), Result).

/* Conflict of Interest - occurs when an entity is trusted by two (other) competing entities */
/* with respect to the same actionset. */

/* Source Conflict of Interest */
p_conflict_of_interest(Result) :-
 query([T1,T2], (p_pos_trust(T1), p_pos_trust(T2), T1 \== T2,
 p_trustee(Te,T1), p_trustee(Te, T2), p_commonAS(T1,T2)
), Result).

/* Scenario Conflict of Interest */
conflict_of_interest(Result) :-
 query([T1,T2], (pos_trust(T1), pos_trust(T2), T1 \== T2,
 trustee(Te,T1), trustee(Te, T2), commonAS(T1,T2)
), Result).

/* Source Conflict of Interest with Specific Action Set */
p_conflict_of_interest(ActionSet, Result) :-
 query([T1,T2], (p_pos_trust(T1), p_pos_trust(T2), T1 \== T2,
 p_trustee(Te,T1), p_trustee(Te, T2),
 p_commonAS(T1, T2, ActionSet)
), Result).

/* Scenario Conflict of Interest with Specific Action Set */
conflict_of_interest(ActionSet, Result) :-
 query([T1,T2], (pos_trust(T1), pos_trust(T2), T1 \== T2,
 trustee(Te,T1), trustee(Te, T2),
 commonAS(T1, T2, ActionSet)
), Result).

/* Separation of Duties Conflict - occurs when one entity is trusted to perform two or */
/* more actions that conflict (conflict here refers to the adherence to organizational policy). */

/* Source Separation of Duties */
p_separation_of_duties(Entity, ActionSet1, ActionSet2, Result) :-
 query([T1,T2], (p_pos_trust(T1), p_pos_trust(T2), T1 \== T2,
 p_trustee(Entity,T1), p_trustee(Entity, T2),
 p_actions(ActionSet1, T1), p_actions(ActionSet2, T2)
), Result).

Appendix E. Template of Conflicts and Ambiguities

247

/* Scenario Separation of Duties */
separation_of_duties(Entity, ActionSet1, ActionSet2, Result) :-
 query([T1,T2], (pos_trust(T1), pos_trust(T2), T1 \== T2,
 trustee(Entity,T1), trustee(Entity, T2),
 actions(ActionSet1, T1), actions(ActionSet2, T2)
), Result).

 248

Appendix F SULTAN Specifications Modelling Contexts

The trust classification scheme (described in Chapter 2) is a useful and convenient taxonomy for

the contexts in which trust is used. In this Appendix, we discuss how SULTAN may be used to

model these contexts. It must be stated that there is no standard way to model this classification

scheme and there may be examples that fall into one or more of the categories. This implies that

some examples would require composition of the models highlighted below.

Access to Trustor Resources

In this context, the trustor trusts the trustee to access a resource or service that the trustor owns

or controls.

Figure F1: Access to Trustor Resources Trust

From Figure F1, it can be seen that Deandra (highly) trusts Darren to access her printer (
use_printer()). In the SULTAN specification language, this can be written as:

ExA1: trust(Deandra, Darren, use_printer(Deandra), HighTrust);

Figure F1 highlights the fact that when the action is performed on the trustor, we can assume

that a resource access trust is present.

Provision of Service by the Trustee

By definition, the trustor trusts that the trustee will provide a service to him. This service does

not involve access to the trustor’s resources. This may not be true of many services, which may

require access to resources owned by the trustor.

Appendix F. SULTAN Specifications Modelling Contexts

249

Figure F2: Provision of Service by the Trustee Trust

The example in Figure F2 can be expressed in SULTAN as:

ExA2: trust(Runners, Walter, time(Walter, Runners, Times), MediumTrust);

The first parameter of the action is the trustee and this signifies that the action is being

performed on the trustee. This may be viewed as the trustee providing a service to the trustor.

Another example is an Internet user (we will refer to her as Ann) who trusts a web-based service

(this entity will be referred to as NewsServer) to deliver the New York Times. This fact may be

represented as:

ExA3: trust(Ann, NewsServer, send(NewsServer, NYTimes, Ann), HighTrust);

Figure F3: Another example of Provision of Service by the Trustee Trust

In reality, service providers often require access to the trustor’s resources. Thus, there may be a

few examples that do not follow this general trend. It should also be noted there are some

scenarios that require both a resource of trustor resources trust and a provision of service by the

trustee trust. For example, Ann may undoubtedly have to trust the NewsServer to access a

particular file or set of files where her New York Times will be stored.

Certification

Trust used in the context of certification is the belief in the trustworthiness of an entity based on

a third party certifying this entity (for a particular purpose). This third party will be referred to

as a certificate authority. To represent certification, the following scenarios must be modelled:

Appendix F. SULTAN Specifications Modelling Contexts

250

1. An entity, _X, trusts any entity _Y to perform _Actions if the certificate authority (_CA)

trusts _Y to perform _Actions.

Cert1: trust (_X, _Y, _Actions, _Arb)
← trust (_CA, _Y, _Actions, _Arb) & _Arb > 0;

This states that _X trusts _Y at trust level _Arb to perform _Actions if _CA trusts _Y at trust

level _Arb to do _Actions and if _Arb is positive. Note that the trust levels need not be

related. They have been arbitrarily assumed equal for this example.

Figure F4: Certification Trust (Phase One)

Figure F4 shows an example of this scenario. ChurchGoer trusts anyone certified by

Church. Expressed in the SULTAN notation, this is:

C1: trust (ChurchGoer, _X, _Actions, HighTrust)
 ← trust (Church, _X, _Actions, _Arb), _Arb > 0;

2. A certificate authority (_CA) certifying an entity, _Y, to perform a particular action
Cert2: trust (_CA, _Y, _Actions, _Arb) ← _Arb > 0;

This states that _CA trusts _Y at trust level _Arb to perform _Actions.

Figure F5: Certification Trust (Phase Two)

The above scenario can be specified as:

C2: trust (Church, FatherThomas, _Actions, HighTrust);

Appendix F. SULTAN Specifications Modelling Contexts

251

Delegation

Delegation is the process in which a trustor trusts the trustee to make decisions on its behalf,

with respect to a resource or service the trustor owns or controls. In order to model delegation,

the following be represented:

1. An entity, _X, delegates his decisions with respect to actions, _DelActions, to another entity,

_Z.

Del1: trust (_X, _Z, _DelActions, MediumTrust)
← trust+(_X, _Y, _DelActions) &
 trust+(_Y,_Z,_DelActions);

This is a situation where •∃ Wcba :,, aTb ∧ bTc ⇒ aTc (the constraint property of the

transitivity rule is true).

Figure F6: Delegation Trust

The above example is expressed as follows:

D1: trust (CEO, UnixCo, _DelActions, MediumTrust)
 ← trust+(CEO, ExecutiveCommitee, _DelActions,) &
 trust+ (ExecutiveCommittee, UnixCo, _DelActions);

For some scenarios, it may be a requirement to have the levels in the trust constraints explicitly

specified as positive.

Appendix F. SULTAN Specifications Modelling Contexts

252

Infrastructure Trust

The trustor trusts the infrastructure that it is based upon. This is often referred to as ‘implicit

trust’ (trust in one’s self). For a distributed environment, it cannot be assumed that all of a

system’s components are automatically initially trusted. Such an assumption can lead to

attackers taking advantage of security holes in one’s platform core. For example, using a

backdoor in the operating system, even tough the higher-level software has been secured.

Figure F7: Infrastructure Trust

In SULTAN, the above example is stated as:

IT1: trust (Theresa, Heart, beat(Heart), HighTrust);

The modelling of Infrastructure Trust is similar to modelling Provision of Service by the

Trustee trust. The only difference lies in the fact that the trustee is assumed to be a sub-domain

(or in the domain/sub-domains) of the trustor (as illustrated in Figure F7). Another example is

that of an ordinary computer, which wil be called MyComputer. If MyComputer trusts the

Windows Operating System (we will refer to this as Windows) to provide a time service, then if

we know that Windows is a part of MyComputer then this represents Infrastructure Trust. We

write this specification as:

ExG6a: trust(MyComputer, Windows, time(Windows), HighTrust);

