Proc. 8th International Workshop on Interactive Distributed Multimedia Systems
(IDMS’2001), Lancaster, UK, 4-7 Sep 2001,
Springer LNCS 2158, pp. 245-256

Constraint-Based Configuration of Proxylets for
Programmable Networks

Krish T. Krishnakumar, Morris Sloman

Department of Computing, Imperial College,
London SW7 2BZ, UK
{tkkumar,m.sloman}edoc.ic.ac.uk

Abstract. Applications such as multimedia streaming for mobile users, or video
conferencing, require support within the network for transcoding, compression
etc. Proxylets running on servers within the network may be used to transform
the media flows in order to meet application or QoS requirements. In this paper
we examine the feasibility of performing constraint based configuration of the
required proxylets. A set of constraints can be defined to select the required
proxylets. A second stage is to define constraints relating to the placement of
proxylets on nodes in the network. Eventually we will investigate the use of con-
straints for dynamic re-configuration to accommodate user mobility, or QoS
variation. Some preliminary implementations of the architecture are presented
and we discuss our approach to incorporate dynamic configuration to cater for
load and QoS variations.

1 Introduction

The Alpine project [2] is investigating the use of application-level proxylets which
execute on servers within the network to support the rapid provision of new services,
such as on-demand multi-point video conferencing or multi-media streaming services
for mobile users. A proxylet based system provides many of the advantages of active
or programmable network type of services [1], such as transformation of media encod-
ings, to take place within the network but without the security risks of programming at
the ‘fast-path’ level within networks. However there is the need to be able to configure
the various proxylets required to support particular applications by selecting suitable
proxylets from a database of the those available and deciding on the most appropriate
servers on which these proxylets should be loaded. These configuration management
decisions can be non-trivial when taking into account the various constraints imposed
by the specific application requirements, services which the user may be authorized to
use, physical capabilities of mobile computing devices and available quality of service
(QoS) provided by a wireless network. Typical users will be non-technical and so will
not be capable of making the selections required to support the service they require.
Thus, there is a need to automate the configuration of proxylets, taking into consider-
ation all the above constraints. This will avoid the errors which are often introduced,
even by technically competent users, when configuring complex systems.

This paper describes initial work on the configuration of required proxylets, from an
available collection, in a programmable network infrastructure. We are looking at
applying constraint satisfaction techniques to facilitate automated provisioning of
resources for a particular user/service in accordance with an application request. This

requires integration of constraint based configuration for a dynamically changing net-
work environment. The proposed system would accept user specification of the service
required, derive a preliminary set of proxylet configurations, from the proxylets which
support the required functionality, check for constraint violations of the above set of
configurations and allocate the proxylets to servers, taking into consideration other
constraints such as QoS requirements, available bandwidth, server loading, security
risks or charging for use of servers.

The configuration of software components can be defined by a set of attributes (or
components) whose possible values belong to a finite set and a set of feasibility con-
straints over these attributes which specify their compatible combinations of values.
The problem is to find a feasible product (i.e., to choose a value such as a particular
proxylet or server for each attribute which corresponds to a configuration variable) that
satisfies not only the feasibility constraints but also some user requirements (such as
QoS policy). Real-world problems in computer vision, planning, scheduling, configu-
ration and diagnosing can be viewed as Constraint Satisfaction Problems (CSP) [4].
We are using Daniel Jackson’s Alloy/ALCOA [15] to express and analyse the con-
straints. Eventually we would like to extend this approach to cater for dynamic re-con-
figuration of proxylets in which the proxylets may have to move to new nodes to
support user mobility, or variations in actual QoS within the network.

This paper describes the prototype implementation of a simple scenario using con-
straint based configuration of proxylets and indicates how we intend to extend the
work to cater for dynamic reconfiguration of proxylets. Section 2 of the paper outlines
the Application Level Active Network (ALAN) proxylet approach being used in the
Alpine project. In Section 3, we formally define constraint based satisfaction in terms
of configuration spaces, and introduce constraint variables and values for the ALAN
mechanism. The derivation of proxylet configuration and constraint checks are also
presented in section 3 with the customer service requirements. The overall architecture
of our approach and the current progress in the implementation are described in section
4. In Section 5, we provide a discussion of future work followed by a discussion of
related work in section 6.

2 ALAN System Overview

The ALAN system [3] assumes clients access remote servers across the internet using
the HTTP protocol. Protocol entities called Proxylets can be dynamically loaded onto
intermediate Dynamic Proxy Servers (DPS) within the network, to perform applica-
tion-specific functions such as compression / decompression, protocol transforma-
tions, multicast reflecting, etc. The proxylet is dynamic code in a single jar file which
is downloaded and run on a DPS. The proxylet can be referenced via a URL, and if not
already on the DPS, it is loaded from a proxylet repository. The DPS is an application
layer active network node which accepts requests and creates an environment for the
execution of proxylets. The DPSs are selected at optimal distance for an end-to-end
path between client and end-server (Figure 1). We are also using proxylets to perform
the configuration management tasks such as proxylet selection and allocation to opti-

Client S
Dynamic Proxy @ _r
Server (DPS)

P 1
roxylet
Proxyletl
I Xy
Server Proxylet2

Fig. 1. Application Level Active Networking Architecture

mal DPS servers. The reason is that configuration may be instigated by a mobile user
with very limited processing resources, although our architecture does allow for a DPS
server to be based on a more powerful mobile device such as a laptop computer.

3 A Simple Scenario

3.1 Example Description

Typical real applications involve hundreds of constraints and values for each variable,
but we have focused on a very simplified example based on a user accessing remote
media streams from a wireless (wl) or wired device to illustrate the approach. There
are three different classes of users, Gold, Silver and Economy which relate to the QoS
they will receive as well as whether they can use wireless connections etc. We give
some constraint variables for the scenario (see Figure 2):

Browsers: Access to multi media streams from either wireless or wired devices.
Mode: Real time mode (to transcode the video/audio stream as it is being downloaded)
and download mode (to first download the compressed media stream, decompress it
and then start playing the stream using a suitable media tool).

Proxylet: 1t has been assumed that multiple proxylets are available for modifying the
content presentation to be more suitable for the client device. We assume proxylets are
available to cater for WAP phones, compression, decompression, real-time trancoding,
a RealPlayer and DPS location selection.

DPS Location: This is the location of the DPS in relation to the browser/server. For
simplicity, this parameter is assumed to have values as such nearer to the browser,
intermediate (within the network), nearer to the server.

Cache: This is to indicate whether data can be cached at a local server.

Payload Type: The multi media payload packets may contain video, audio or data
streams.

QoS package: There are 3 classes of users - Gold, Silver or Economy which relate to
the class of Qos they will receive.

QoSPackage
Gold Cdecondb>

Silver
Economy

L

Wired or wireless
browser

Real-time / Download
or
ulticast / Unicast

server
Fig. 2. Simplified ALAN scenario

3.2 Constraint Specification

A constraint is simply a logical relation among several unknowns (or variables), each
taking a value in a given domain. For example X+Y > 5 defines a constraint on permit-
ted values of X and Y and (P V Q) A (=P V —S) is a constraint on the permitted values
of the booleans P, Q and S. The specification of a configuration in terms of assembling
the parts into a required system, involve two distinct phases. One is domain knowledge
to describe the objects of an application and the relationships among them. The other is
a specification of the desired product which defines requirements that must be satisfied
by the product and the structure or topology of the product.

A Constraint Satisfaction Problem (CSP) is defined as P= <V, Dv, Cv>, where
* A set of variables V representing all the variables that may potentially become
active and appear in a configuration. V' = {V,....,V,}.
* D, is the set of domains, with val; representing the set of all possible values for
variable V;

* A set of constraints (Cv) to restrict the value assignment of some variables or
configure the components according to their behavioral models.

Figure 3a shows some variables and their related values in the example shown in Fig-
ure 2. These constraints will be specified via a user interface yielding a text file of con-
straint specifications. Using these variables and values, we can derive an initial
constraint model for the configuration. For this scenario, the domain knowledge is
essentially static and it would be possible to find an initial configuration of compo-
nents, for example to support a mobile browser, that satisfies the constraints.

In Figure 3a, constraint (wl =/= video) states that if the browser is a wireless device
then video content delivery is not supported. The (wired = audio) means that the wired
browsers are allowed to download audio clips providing that the constraints between
the other necessary variables are not violated for this audio clip download. Constraint

(wl =/=E) states that a user with Economy QoS Package is prevented from using wire-
less browsers to access the services provided in our system.

Domains (Dy): Variables (V):
DPSnode : local, remote, intermediate n : DPSnode
Proxylet : wap, comp, decomp, deployment, config, pl : Proxylet

rtpRx, rtpTx, realPlayer, handoff b : Browser
Browser : wired, wl p : Payload
Payload : text, audio, video q : QoSPack
QoS Pack: G, S, E m : Mode
Mode : realTime, download c : Cache
Cache : true, false

Constraint (C,):
b, p: (wired = text), (wired = audio), (wired = video), (Wl = text), (wl=/=video)
n, pl : (local = wap), (local = decomp), (local = rtpTx), (local = realPlayer),
b, q: (wired = G), (wired = S), (wired = E), (Wl = G), (wl =S), (wl =/=E)
p> q: (text=G), (text = S), (video = G), (video =/=8), (video =/= E), (audio =/= E)

Fig. 3a. Domain Knowledge - Variables, Values and Compatibility Constraints

In Figure 3b, some of the complete set of constraint based configurations (CBC),
which have been derived from the domain knowledge shown in Figure 3a, are listed.
These configuration setups in XML will be the output of the system presented in sec-
tion 4 of this paper.

CBC_1(Pack=>Gold, payload=>audio) ={ CBC_2 (Pack=Gold, payload=audio) = {
wired-browser, realtime-listening, wirelessbrowser, downloadmode,
dps-local => (decompression-Proxy- dps-local -> (deployment-Proxylet,

let, realtime-audio-player-applet- handoffProxylet, wired-wire-
proxylet, rtpProxylet, deploy- less-converter-proxylet,
ment-Proxylet,), decompression-Proxylet)
dps-remote => (compression-proxy- dps-remote => (compression-
let) } proxylet) }

Fig. 3b. Sample Constraint Based Proxylet Configuration Setups.

The CBC 1 is for the case when the payload is audio and the QoS for the user is
Gold which will lead to a real time listening of the audio stream. In this case, the
required resources to be configured for a wired-browser are a realtime-audio-player-
proxylet, location-proxylet, real-time-protocol (rtp) proxylet to be downloaded on
local DPS and Compression proxylet at the DPS which is optimally located close to
the server.

4 Implementation Approach

Step 1: Constraint Verification using Alcoa / Alloy

We are using “Alcoa / Alloy” constraint analyzer [15] which can perform a deep
semantic analysis of models that incorporate complex textual constraints. Using this
tool, we have checked the consistency of our constraints, generated sample configura-
tions, simulated execution of operations, and checked that operations preserve con-
straints. The Alloy language is used to specify constraints and the Alcoa tool for
analysis of the constraints. We used Alcoa to interactively define the configuration sce-
nario, incorporating constraints, in only 65 lines of Alloy code. However it is not pos-
sible to generate executable Java code from this. We use the Java Constraint Libraries
to program our constraint based configuration of Proxylets similar to the Alcoa
approach, as explained in Step 2 below. The main purpose of using Alloy for initial
checking is to reduce development cycle time by detecting errors prior to implementa-
tion.

We specify the scenario plus relevant constraints relating to the components in Alloy.
Alcoa is a compiler which translates the model definition into a very large boolean for-
mula. This formula then gets solved by the SAT solver in the tool and the solution is
interpreted back into Alloy language for the model. Next, a paragraph or schema (e.g.
a constraint) in the model is selected to be run for verification. Alcoa responds with an
instance or with a message if no instance was found. We may then choose to edit the
model, recompile or run. So, using this tool, we are able to analyze the constraints
more effectively prior to the Java implementation of our constraint based Proxylet con-
figuration framework.

Figure 4 shows the Alloy specification for the scenario. An invariant (denoted by key
word inv) defines a constraint in the model being defined. For example, inv PLC1 indi-
cates that the wireless browsers does not have the feature of downloading a video
stream. Condition (cond) gives a hint to Alcoa on generating a sample architectural
instance over a given scope.

Step 2: Current Implementation

Initially, all the constraint variables, domain values and compatibility constraints,
which were analyzed using Alcoa, are manually derived from an Alloy model defini-
tion. For example, the wireless browser is constrained by the PLC1 invariant in Alloy.
This invariant is mapped to the format shown in figure 5 for implementation purposes.

The Constraint Solution Mechanism takes in all these parameters and generates par-
tial configuration setups (subset of constraint variables which satisfy all the of the con-
straints within the subset) for the constraint specified. These subsets are stored in
ConstraintDB as initial basic configuration setups (as shown in Figure 6). The Con-
straintDB is currently stored in a text file but a relational database or directory would
be needed for a large scale system with 100s of DPSs and Proxylets. The Java Con-
straint Library has been used to implement the mechanism for populating the Con-
straintDB. The constraint variables, values and the compatibility constraints can be

model ALPINE

domain {browser, proxylet, payload, DPS}

state {

// The following are the subjects or values of the variables and

// their relationships in accordance to the ALOCA syntax.

disjoint wireless, wired : browser

partition text, audio, video: payload

disjoint E, S, G: QoSPack

partition local, remote : DPS

partition wapplet, decompresplet, compresplet, configplet,

requires: browser -> locall!

runs: DPS -> proxylet+

supports: browser -> payload

comp : compresplet -> payload+

decomp: decompresplet -> payload+

inv PLC1 { all b:wireless | b.supports != video }
inv PL1 { sole p:locationplet | p in local.runs }
cond conl {
some DPSl:local|some DPS2: remote|one b:wireless| (DPS1 != DPS2)

Fig. 4. Alloy Specification of Scenario Constraints

specified or modified via the ConstraintDB Ul. When a modification is made to the
constraint specification, the ConstraintDB has to be regenerated to reflect the changes
and possibly new proxylets will have to be downloaded to an appropriate DPS and
executed when there is a request for a HTTP content delivery.

Figure 6 shows the interactions involved. A DPS near the user’s browser is loaded
with the config proxylet, if it is not already running. The user-specific constraint vari-
ables and values are passed to the config proxylet to start selecting a suitable configu-
ration setup (e.g. the parameters required by the config proxylet in the scenario are
type of browser, class of service and the content type to be downloaded). In a real sys-
tem, these parameters could be detected automatically, but in our implementation, they
are entered manually via a user interface.

For a given set of constraint variables and their values, the ConstraintDB is queried
and searched for a set of suitable configuration subsets to be composed to make a com-
plete parameter list. The configuration process also involves identifying a DPS close to
the web server which contains the requested content. During this process, the Proxylet

(b) browser, (p) payload: (wired = text), (wired = audio), (wired = video), (Wl = text),
(wl = audio), (wl =/= video)

Fig. 5. Constraints between Browser and Payload

Store (PIB) is also checked to determine if the required proxylets are available in the
network. The PIB is currently an XML file but could be a database or directory for a
large scale system. If the config proxylet could not find a suitable configuration satisfy-
ing the compatibility constraints e.g. because a particular proxylet cannot be found or a
suitable server is not available, then an error is flagged.

The final configuration is translated into a list of the URLs of the needed proxylets
and their corresponding execution environments in a single XML document and sub-
mitted to the DPS deployment proxylet via the load() method. The deployment proxylet
is started by the config proxylet on the same DPS. The configuration setup is also dis-
played in the GUI in the form shown in Figure 3b. For demonstration purpose, this
GUI also allows the user to select whether the device is wired or wireless; class of
user; video, audio, or text service etc. The config and deployment proxylets can contain
multiple threads each of which is working on a different configuration for multiple
users.

The deployment proxylet running at a local DPS chooses a suitable configuration setup
by checking against its resource capability before downloading the computational
proxylets or requesting the other DPSs to download the computational proxylets to
perform the actual service required by the user. The deployment proxylet will also be
able to determine whether installing a set of proxylets (on one or more DPSs) violate
constraints relating to available resources by checking against the properties of DPSs.

User Interface . ConstraintDB: A text file database
. . Constraint
Constraint Variables Solution c ;
+ Domain Values Mechani onfig Config 2 ... Config n
P cchanism n = local n = local n = remote
+ Compatibility
Constraints pl=wap pl = wap pl = comp
b b=wl b=wl b = wired
a p = text p =text p = audio
q=G q=G q=S
" Resource ! m=realTime m=download m = realTime
| Troperties 2. Checks constraints
Store

Proxylet Store (PIB)
List of available
proxylets

1. Accepts params ;— —
|

0 i 7. Checks
ser specific \\DPS resources

3. Checks
availability

Domain Values

for an HTTP download| _ 5. Prompts to load 4. Outputs the

configuration result

L

8. Starts deploying XML document
containing configuration
proxylets details: e.g.
compressProxylet@DPS1
Proxylets info deocmpressProxylet@DPS2

Fig. 6. Prototype Implementation of Proxylet Configuration Framework

However, this feature is not currently implemented in our experimental model. The
availability of the resources for the constraint based configuration can be reserved. We
intend to extend the deployment proxylet to perform checks on the bandwidth of the
links between the DPS-local and DPS-remote to make sure it can handle the bit-rate
required by the user. The current Framework also has a User Interfaces (UI) for modi-
fying the configuration and specifying constraints.

5 Further Work

We intend to apply constraint specification to resource management so that allocation
of Proxylets to nodes can take into consideration DPS loading, link bandwidth require-
ments etc. This includes routing decisions for choosing a path from source to destina-
tion. Dynamic configuration of an application may take different forms:

* Programs and users may interact with an editable model of the underlying applica-
tion - adding or removing proxylets, changing intermediate-DPS or modifying the
settings of connections. One of the major requirements for a dynamically config-
urable system is that it should allow the possibility of modifying the provisioning
of the components, without requiring an application restart or any changes to the
existing code. In order to integrate a new component to the current topology, the
system needs to perform a series of checks for constraint compatibility.

e User mobility may result in variations of QoS due to fading or loss of radio signal,
which DPS is local to the user etc. Thus the configuration constraints will dynami-
cally change requiring updates to the topology. Connections between DPSs may
have to be rerouted, or a proxylet performing a ‘local’ function may have to be
migrated to a different DPS which is now local to the user. This means that the
topology which was originally adopted has to be reconfigured using a different
CSP.

*« We are also looking into using the Ponder policy specification language [6] to
define authorization policy in terms of what services a user is permitted to access
and QoS policy in terms of what resources such as bandwidth should be allocated
for an application or a user. Our approach is to translate these policy statements
into constraint specifications for the proxylet deployment.

There are several interesting issues emerging from this work that need further inves-
tigation. One of the key issues is Proxylet Migration. It is a mechanism to continue the
execution of a proxylet on another DPS node and it includes the transport of data
stream and execution state of the proxylet. Migration only makes sense under certain
network and resource conditions. So, here the basic motivations for proxylet migration
are, to support user mobility or re-routing the data stream to maintain required QoS.
This may be handled by adopting a constraint based re-routing mechanism.

We are concentrating on the infrastructure support for constraint based configuration,
but in order for this to be useful to non-technical users, a very simple user-interface

(UI) would be needed. We consider that it will be easier to investigate the UI once we
have a clearer idea of the full functionality of the infrastructure support. It may be pos-
sible to make much of the functionality completely transparent to the user. For exam-
ple, the user may not need to select a class of service, but would be allocated one
depending on what service they have signed up for.

6 Related Work

The programmable network has been identified in [1] as an important research area
from which ALAN has been identified as a key subtopic in [2]. In our current work, we
are attempting to address problems in deploying proxylets and solving issues in
dynamic routing with proxylets for programmable networks. We are also aware of
some of the work done on runtime resource management for advanced network ser-
vices, similar to that in active networking.

Work on constraint satisfaction problem (CSP) has a long history in the field of Arti-
ficial Intelligence (AI) engineering [10]. CSP has been used for a range of applications
such as aircraft maintenance scheduling, route planning for setting up the links for vir-
tual private networks and various monitoring and control applications [11], but we are
unaware of any other applications of CSP to configuration management in a program-
mable or active networks.

Programmable networks is a very active research area, but there is not much work on
configuration of components. In the early work on ALAN [3], a similar application
scenario based on streaming audio was described, but the proxylet configuration was
performed manually. BT Colleagues in the ALAN project are using policy-based adap-
tive control techniques with genetic algorithms to configure proxylets for services [5,
13]. The idea is that the ‘useful” proxylets, e.g. those that generate income for a service
provider, will be replicated and propagated around the network whereas less useful
ones will gradually die out. In our environment this would improve the probability that
a required proxylet is already loaded in an appropriate DPS, but it would still have to
be configured into a specific application. The paper does not address the issue of how
to select a set of distributed proxylets for a particular application or service.

Lancaster University colleagues are working on composing a complete functional
proxylet for a service from predefined set of sub-components specified using XML
[12]. The selection criteria could be based on the characteristics of the specific DPS
platform. Part of our future work activities will be to investigate whether our constraint
approach can be used to automate the composition of proxylet sub-components at run-
time or whether the funtionality of the proxylet can be adapted by means of invoking
management operations with new configuration parameters during runtime.

There is considerable interest in using policies as a means specifying adaptive behav-
iour in programmable networks. Some initial work on policies for both management
and security is described in [7] and work on policy based content delivery in an ALAN
environment is described in [14]. However, none of the above have addressed configu-
ration of proxylets in a policy based AN. In ALAN, an enforcement of management or
authentication policy means systematically making use of functional proxylets in the

10

system. Some of our work will look at how the constraints can be deduced from, for
example, authentication policies.

In our project, we considered a novel approach for the configuration of proxylets in
ALAN with two main domains in mind: constraint based configuration and support for
dynamic routing. This led to the design of new framework for the configuration man-
agement of proxylets. First we targeted the new trend in networking related to “policy
based content delivery”, then we approached the problem of how the proxylets can be
configured without violating any pre-defined constraints. The aim is to produce an
interactive real-time display for immediate diagnosis of configuration problems. There
is not much work currently being done on interactive configuration management sys-
tems for active programmable networks. Our past work on interactive configuration
management of distributed systems [8] inspired us to look at whether any of these
ideas can be applied to proxylet configuration supporting the mobility of users. The
Active Node (DPS) built with our above-mentioned framework can allocate resources
to the various virtual end-to-end networks, undertaking configuration and reconfigura-
tion functions with routing decisions and making the network more responsive to
users’ demands.

7 Summary

In this paper, we described our initial implementation of constraint based configuration
of proxylets. We have shown that it is possible to automate the selection and deploy-
ment of proxylets while satisfying diverse constraints related to a QoS class, what the
users are permitted to do and what types of devices they are using. Although we have
focused on configuration of proxylets in a programmable network environment, this
approach could be used for deployments of software components in any distributed
processing environment.

An ubiquitous computing environment [16] could benefit from our framework. The
mobile users will be able to join in the ALAN network without the need touse pre-con-
figured or resource rich mobile browsers. The on-demand services could be dynami-
cally composed and executed on local or intermediate nodes with the help of
functional proxylets. For example, the user does not have to figure out which system
supports an on-demand service since our framework could deploy the necessary com-
ponents and protocols along the end-to-end path to enable a service to be reached at an
end system.

8 Acknowledgements

We gratefully acknowledge the support of British Telecom for ALPINE research
project as well as comments and suggestions from our colleagues involved in this
project.

11

References

11.

12.

13.

14.

15.

16.

D.L. Tennenhouse and D.J. Wetherall, “Towards the Active Network Architec-
ture”, ACM Computer Comms. Review, vol. 26, no. 2, pp. 5-18, Apr. 1996.
“Alpine: Application Level Programmable Inter-Network Environment”, http://
www.cs.ucl.ac.uk/research/alpine/

M. Fry and A. Ghosh, “Application Layer Active Networking”, Computer Net-
works, 31, 7, pp. 655-667, 1999.

Mittal and Falkenhainer, “Dynamic Constraint Satisfaction Problems”, In pro-
ceedings of the 8th AAAI pages 25-32, 1990

[.W.Marshall and P.Mckee, "A Policy Based Management Architecture for Large
Scale Active Communication Systems" in Policies for Distributed Systems and
Networks, LNCS 1995, ed. Sloman, Lobo and Lupu, Springer-Verlag 2001

N. Damianou, N. Dulay, E. Lupu, and M. Sloman: “The Ponder Specification
Language”, Proc. Policy 2001: Workshop on Policies for Distributed Systems and
Networks, Bristol, UK, 29-31 Jan. 2001, Springer-Verlag LNCS 1995, pp. 18-39.
M. Sloman and E. Lupu, “Policy Specification for Programmable Networks”, In
proc. st Int Working Conference, IWAN’99, Berlin, Germany, June/July 1999,
LNCS 1653, p. 73 ff.

H. Fossa and M. Sloman, “Implementing Interactive Configuration Management
for Distributed System”, Int Conf on Configurable Distributed Systems (ICCDS’
96), Annapolis, Maryland, May 1996, Proceedings pub by IEEE press.

“Java Constraint Library”, http://liawww.epfl.ch/~torrens/Project/JCL/.

. E. Freuder, and A. Mackworth, “Constraint-Based Reasoning”, Artificial Intelli-

gence, 1992, 58.

C. Lecki, “Experience and Trends in Al for Network Monitoring and Diagnosis”,
Proceedings IJCAI-95 Workshop on Al in Distributed Information Networks.

S. Simpson, P. Smith, M. Banfield, and D. Hutchison, “Component Compatibility
for Heterogeneous Active Networking”, Presented at IEE Informatics, Nov. 2000,
London. http://www.activenet.lancs.ac.uk/papers/ieealan2000.pdf

I.W. Marshall and C.M. Roadknight "Adaptive Management of an Active Services
Network" BT Technical Journal special issue on "Biologically Inspired Comput-
ing", 18, 4, pp78-84 Oct. 2000.

G. MacLarty and M. Fry, “Policy-based Content Delivery: an Active Network
Approach”, 5th Int Web Caching and Content Delivery Workshop. http://www.ter-
ena.nl/conf/wcw/Proceedings/S7/S7-2.pdf

D. Jackson, I. Schechter and I. Shlyakhter, “Alcoa: the Alloy Constraint Ana-
lyzer”, Proc. ICSE, Limerick, Ireland, June 2000.

D. Milojicic, A. Messer, P. Bernadat, I. Greenberg and W. Schroder-Preikschat,
“y-Pervasive Services Infrastructure”, HP Labs, Palo Alto, USA, http://
www.hpl.hp.com/techreports/2001/HPL-2001-87.html.

12

	Constraint-Based Configuration of Proxylets for Programmable Networks
	Krish T. Krishnakumar, Morris Sloman
	Abstract. Applications such as multimedia streaming for mobile users, or video conferencing, requ...
	1 Introduction
	2 ALAN System Overview
	3 A Simple Scenario
	3.1 Example Description
	3.2 Constraint Specification

	4 Implementation Approach
	5 Further Work
	6 Related Work
	7 Summary
	8 Acknowledgements

	References

