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Abstract 

Policy-based management has emerged as a promising solution for the management of 

large-scale and heterogeneous networks. This approach has been adopted in several 

network management areas, such as in the areas of Quality of Service (QoS) and security 

management. However, although policy-based management has been the subject of 

considerable research, proposed solutions are often restricted to static condition-action 

rules where conditions determine when actions should be performed on the managed 

entities. The static policy configurations require manual intervention to cater for 

configuration changes and to enable policy deployment. However, changes in the system 

such as QoS violations, network failures or denial of service attacks in a secured network 

may require adaptation of existing policies to new circumstances. Thus, policies 

themselves need to be managed and adapted.  

 

Policies define management strategies for network devices, access control systems or 

internet services. However, little work has been done on validating whether the policies 

will lead to a feasible implementation for the specific environment to which they apply. 

Validation requires checking that the policy is consistent with the functional or resource 

constraints within the target environment. For example, one can check whether the 

policies assume functionality or specific operations, which do not exist in target devices, 

or bandwidth in excess of the capacity of data links. Where possible, static checking 

should be done prior to policy deployment in order to detect invalid policies at design 

time, but there are some policies, related to resource allocation, that depend on the current 

state of the system, and require constraints, specified within the policy rules themselves, 

that must be checked dynamically at execution time.  
 

This thesis introduces a novel framework to address the problems identified above. Our 

framework supports automated policy deployment and dynamic adaptation of policy in 

response to changes within the managed environment. It implements a flexible 

architecture where policy adaptation is specified and enforced by other policies, specified 

in the same Ponder policy notation. Policy adaptation includes both dynamically changing 

policy parameters and selecting which policies should be selected from a set of predefined 

ones to be enforced within the network. Furthermore, using the Common Information 

Model (CIM) as the modelling framework for managed entities, we provide solutions for 

validating policies with respect to the capabilities of the target network environment. 
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1. Chapter 1
Introduction 

Policy based network management has recently emerged as a promising solution for the 

management of networks and distributed systems.  In this new management approach, 

policies are defined as rules governing the choices in behaviour of a system. Policy based 

management addresses the requirement for providing dynamic and flexible management 

in order to deal with the increasing size and the complexity of the systems being 

managed. Support for distribution, automation and dynamic adaptation of the behaviour 

of the managed system is achieved by using policies. As stated in [Damianou 2002], the 

main benefits from using policy are improved scalability and flexibility for the 

management system. Scalability is improved by uniformly applying the same policy to 

large sets of devices and objects, while flexibility is achieved by separating the policy 

from the implementation of the managed system. Policy can be changed dynamically, 

thus changing the behaviour and strategy of a system, without modifying its 

implementation or interrupting its operation. Policy-based management is widely adopted 

by organisations such as the Internet Engineering Task Force (IETF) and the Distributed 

Management Task Force (DMTF), as well as many network equipment vendors.  

 

However, although the Internet community has shown considerable interest in policy-

based techniques, and policy-based management has been the subject of considerable 

research, proposed solutions are often restricted to condition-action rules where 

conditions determine when actions should be performed on the managed entities. This 

results in static policy configurations where manual intervention is required to cater for 

configuration changes and to enable policy deployment. Whilst current research focuses 

mostly on rules for low-level device configuration, significant challenges remain to be 

addressed in order to: a) provide dynamic adaptation of policy in response to changes 

within the managed environment, and b) ensure, prior to deployment, that policies will 

lead to a feasible implementation for the specific environment where they apply. 

 

In this thesis, we propose a novel policy based management framework that provides 

solutions to these research issues. This chapter will discuss the motivation behind the 

ideas presented in this thesis, will identify the requirements for a policy management 

framework, and will conclude by highlighting our contribution and presenting an outline 

of the structure of the thesis. 
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1.1. Motivation   

 

The benefits of the policy-based management approach − improved scalability and 

flexibility within the management system − have attracted the Internet community to 

focus on the implementation of policy-based techniques for Quality of Service (QoS), 

caching, persistence and security management to support modern multimedia 

applications, mobility and ubiquitous computing. Service providers deploy policies 

within their networks and systems to satisfy customers requirements, defined within 

Service Level Agreements (SLAs).  

 

Many current approaches to specifying Service Level Agreements, particularly for 

network services, concentrate on specifying QoS parameters such as delay, throughput, 

error rates and availability. The specification of the service is essentially static in that it 

often assumes a single type of service is provided at all times but many clients require 

services which vary according to date or time.  In addition, ‘fallback’ classes of services 

should be provided under failure conditions when the primary class of service cannot be 

provided – service adaptation may take place either as a result of failures within the 

network or to accommodate changes in client application requirements.  For example, a 

collaborative design application may switch from an audio phase to a phase needing 

video services, so the client application must be able to trigger changes to the underlying 

communication service. 

 

Consider as an example a typical network of a large enterprise which consists of several 

local area networks (LANs) interconnected with a wide area network (WAN) through one 

or more access routers. The IT department of the enterprise is responsible for operating 

the network so as to satisfy the SLA established in the enterprise. Following the policy 

based management approach, the administrator will deploy network policy rules and the 

management system will automatically distribute the rules to the network devices. The 

enforcement of the policy rules will provide the network service with certain QoS 

guarantees to the applications using the service. For example, if the established SLA in 

the enterprise states that “A video application between clients in Site A and a video server 

in Site B should receive Gold Service”, where “Gold Service” is defined as the network 

service with the lowest delay and the lowest packet loss, and Differentiated Services 

architecture [Carlson et al. 1998] is deployed in the network, then the administrator 

should probably deploy a policy rule that instructs the network to forward the packets that 

belong to the video application according to the Expedited Per Hop Behaviour [Jacobson 

et al. 1999], which guarantees traffic with the lowest values of delay and packet loss. 
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Similar configuration policies can be deployed within networks implementing other QoS 

architectures, such as MPLS [Cucchiara et al. 2001] or Integrated Services [Braden et al. 

1994], in order to guarantee the “Gold Service” to the video application. 

     

Monitoring and
Event Service

Management  System

Managed network

Policy Rules
Database

Policy Enforcement

 

Figure 1.1 SLA management with a policy-based management system 

 

However, in addition to performing the mapping of policy to network configuration, the 

management system should also be able to react to changes that require modification of 

the existing network configuration. Figure 1.1 outlines some typical cases where the 

management system should change the existing network configuration – these include: 

 

• A new user or an application requests changes to the provided QoS. For example, 

clients in site A may request more network resources for a running session, in 

order to receive better video quality from the video server located at Site B. 

Adaptive applications, which tailor their behaviour according to the available 

network resources, can change their QoS requirements at run-time. This implies 

that network policy attributes must be changed at run-time to support the new 

user or application requirements. 

 

• Performance measurements from a monitoring service may indicate performance 

degradation, thus requiring changes in the service network configuration or even 

the selection of a new service to cater for the client application. This, in turn, may 

require attribute changes in the deployed network policy rules or even the 

selection of a different network policy to cater for the application. For example, 

if a deployed network policy that handles the video application packets can no 

longer guarantee low packet loss due to high congestion, then a different network 
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policy rule which can guarantee low packet loss should be chosen for the video 

application. 

 

• Events indicating network failures or time events may trigger changes. For 

example, a network policy deployed only along a specific path of routers in the 

managed network may not be suitable for the video application when the routing 

path inside the managed domain changes. In this case, a new network policy, 

which can be applied to the new path, must be automatically configured and 

distributed in order to handle the video application packets.  

 

Similar requirements for adaptation of policies exist in different applications of policy 

based management systems, such as in network security management, where policy 

should be adapted to change firewall and router packet filtering rules upon certain events, 

eg. the detection of denial-of-service attacks.  Adaptation within a ubiquitous computing 

environment is also required in several cases in order to adapt policy with respect to 

changes in the current context of the user, e.g. when a user enters a new location or 

changes his activity, etc.   

  

Another problem that service providers experience with policy-based systems, is that 

deployment of policy in complex network environments can become error-prone. In a 

real networking scenario, multiple policies apply to network elements in order to support 

the requirements of different applications, different users and cooperating but distinct 

administrative domains. Since the shared resource that the network represents is itself 

composed of different elements with varying capabilities and interfaces, it is essential to 

ensure that the network elements have the capability to implement the policy.  This will 

prevent the management overhead and the potential problems that may arise when trying 

to enforce policies that are not feasible in the given network environment. 

 

The management system must therefore implement mechanisms to check that the devices 

to which the policies apply support the required functionality, i.e. the policy invokes an 

operation actually implemented by the device; the device has the required resources 

needed to satisfy the policy action or the policy satisfies any application specific 

constraints or restrictions imposed by the existing managed environment.  
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1.2. Requirements 

 

The framework proposed in this thesis strives to deliver an integrated solution to the 

problems identified in the previous section.  We have identified the following 

requirements for providing policy adaptation and validation of policy in large-scale and 

heterogeneous networking environments: 

 

• The management system must have the flexibility and necessary abstractions to 

manage a variety of device types, with different capabilities and limitations, from 

different vendors. The system architecture should be sufficiently flexible to allow 

adding new device types with minimal updates and recoding of existing 

components. To cater for large-scale networks, the management system must be 

able to apply policy rules to sets of devices rather than individual ones. When 

adding a new device to a set, relevant policies should be automatically deployed 

and enforced on it. 

 

• The management system must be able to adapt to changes in user requirements or 

to changes within the managed network environment. In addition to adapting the 

behaviour of managed devices, the management system should also adapt its own 

behaviour, if necessary. Consequently, the management system must implement 

mechanisms to modify network behaviour by dynamically changing policies 

relating to the configuration of managed devices and dynamically selecting 

which policy should be enforced within the network in order to modify the 

management strategy.  

 

• The management system should ensure that the policy is consistent with the 

functional or resource constraints within the target environment. Static checking 

should be performed, where possible, prior to deployment, in order to detect 

invalid policies at design time. Furthermore, policy constraints that must be 

checked at execution time are required for policies related to resource allocation 

that depend on the current state of the system. 

1.3. Contribution  

 
This thesis introduces a novel policy based management framework to address the 

requirements identified above.  Ponder [Damianou et al. 2001], a declarative, object-
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oriented language for specifying security and management policies in networks and 

distributed systems, is used as the policy specification language. The ideas that this thesis 

introduces for event-based configuration of networking mechanisms, adaptation of policy 

in respect of changes within the managed environment and validation of policy in respect 

of the capabilities of the network elements implementing the policy, form the 

contribution of this thesis.  

 
In particular, the framework presented in this thesis specifies network management policy 

as event-based Ponder obligation rules, which explicitly identify their policy targets and 

allow grouping of targets into domains to cater for large-scale networks. It provides the 

administrator the flexibility to specify policies at different levels of abstraction and 

implements a generic enforcement architecture for policy deployment, independent of the 

lower level management protocols.  

 
This thesis also presents a novel approach for adaptive network management. Adaptive 

management is realised through dynamic adaptation of policy in response to changes 

within the managed networking environment. A flexible architecture is implemented 

where policy adaptation is specified and enforced by other policies, specified in the same 

Ponder policy notation. Policy adaptation includes both dynamically changing policy 

parameters and selecting policies from a set of predefined ones to be enforced within the 

network.  

 
Furthermore, this thesis presents novel ideas that provide solutions for validating policies 

with respect to the capabilities of the target network environment implementing the 

policy. This enables our framework to support both static checking, prior to deployment, 

in order to detect invalid policies at design time, and dynamic checking of policies related 

to resource allocation that depend on the current state of the system.   

 
Although this thesis focuses on solutions for a policy based framework for management 

of networking mechanisms, such as Quality of Service and security, the same ideas can 

also be applied to other areas of management, eg. storage, distributed file systems and 

pervasive systems management. Our ideas on policy enforcement, adaptation and 

validation are not restricted to specific management protocols, mechanisms or 

information models; they can be implemented using available protocols, mechanisms or 

information models, other than these described in this thesis. 
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1.4. Structure 

 

This thesis is structured as follows. Chapter 2 will present the background basis of this 

thesis and an account of related work. The latter will cover the most important work on 

policy-based management for networks, an account of QoS adaptation techniques and 

proposed approaches for policy adaptation and policy validation.   

 
Chapter 3 will present our approach for policy-based configuration of network 

mechanisms, using Differentiated Services as an example of a managed network 

mechanism. It will present how device-independent Ponder policies can be specified 

using the DMTF’s Common Information Model (CIM) [DMTF 2004] modelling 

framework for representing network mechanisms, and will describe a generic architecture 

for mapping Ponder rules into device configuration. An example implementation of 

policy enforcement for Linux DiffServ routers will also be described. 

 
Chapter 4 will present how policy adaptation can be realised within the Ponder policy 

framework. A generic policy adaptation enforcement architecture and a prototype 

implementation of this architecture, targeted for adapting policies that apply to a 

Differentiated Services network environment, will also be presented.  

 
Chapter 5 will present how Ponder policy can be validated, using CIM as the modelling 

framework of the capabilities of the networking elements implementing the policy. A 

generic policy validation architecture, and as a proof of concept, an implementation of 

the proposed architecture for validation of network policy that applies to a Differentiated 

Services environment, will also be discussed.  

 
Chapter 6 will present a critical evaluation of the overall work achieved and Chapter 7 

will give conclusions and directions for future work. 

 

 

 



  

  

2. Chapter 2
Background and Related Work 

The framework we propose for the management of network services is built upon the 

Ponder Policy Based Management Framework, developed at Imperial College over the 

past 10 years. This chapter will provide an overview of the Ponder Policy Framework and 

an account of related work, which we have categorised in several areas. Figure 2.1 

presents the related work areas that will be covered in this chapter. Note that much of the 

related work discussed in this chapter was carried out concurrently with the work 

presented in this thesis. 

 

 

Figure 2.1 Related work coverage 

2.1 Ponder Policy framework 

 

Substantial research in the area of Policy Based Management has been carried out by 

Imperial College during the past years. The new ideas that the IC policy framework 

introduced − the definition of domains for the purpose of specifying policies for groups of 

objects, the concepts of authorisation and obligation policies for the management of 

distributed systems, etc. − have resulted in the development of the Ponder language for 

policy specification. 

 

Obligation policies defined in Ponder [Damianou et al. 2001] specify the actions that 

managers must perform when certain events occur, and provide the ability to respond to 
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changing circumstances. Obligations are event-triggered condition-action rules, which 

explicitly identify the subjects (i.e., managers or configuration agents) that are responsible 

for performing the management actions on target objects. The syntax of obligation 

policies is shown in Figure 2.2.  

 

inst oblig policyName { 

on event-specification ; 

subject [<type>] domain-Scope-Expression ; 

[ target [<type>] domain-Scope-Expression ;] 

do obligation-action-list ; 

[ catch  exception-specification ; ] 

[ when constraint-Expression ; ] } 

Figure 2.2 Obligation policy syntax 

Both subject and target objects are specified in terms of Ponder domains, which are a 

means of grouping objects to which policies apply [Sloman et al. 1994]. For example, in 

order to logically group a number of Cisco routers, the administrator could define the 

Ponder domain /Devices/Routers/CiscoRouters, following the syntax shown in Figure 2.2. 

Scalability, with respect to the number of policy rules that need to be specified and 

deployed for large sets of devices is achieved this way, as the same policy can be applied 

to many devices in the Ponder domain, rather than having to define a separate policy rule 

for each individual device. 

 

Events can be internal, e.g. a timer event, or external events, which are collected and 

distributed by a monitoring service. Composite events can be specified using the event 

composition operators that the language supports.  

 
Actions can be operations defined in the management interface of the target object or 

internal operations of the management agent. In the latter case, the target element of a 

policy is optional. Concurrency operators specify whether actions should be executed 

sequentially or in parallel and are used to separate actions in an obligation policy. 

Constraints follow the when clause in the policy specification and are used to limit the 

execution of the policy only when the constraint expression evaluates to true. The 

optional catch-clause specifies an exception that is executed if the execution of the policy 

actions fails for some reason. The above syntax is used for declaring a policy instance. 

The language provides reuse by supporting the definition of policy types, which can be 

instantiated for each specific environment. Figure 2.3 shows the syntax for declaring 

obligation policy types and instantiations. 

 



Chapter 2 Background and Related Work 21
 

 

type oblig policyType (formalParameters ) { { obligation-policy-parts } } 

inst oblig policyName = policyType ( actualParameters ) ; 

Figure 2.3 Obligation Types and Instantiations 

 

Ponder also includes support for access control, which is implemented by access 

controllers running on the target objects whose behaviour is controlled by authorisation 

policies. These specify what actions subjects can perform on the target objects. Actions 

are operations defined in the management interface of the target object. A positive 

authorisation policy defines the actions that subjects are permitted to perform on target 

objects. A negative authorisation policy specifies the actions that subjects are forbidden to 

perform on target objects. The syntax of an authorisation policy is presented in Figure 2.4. 

 
inst ( auth+ | auth– ) policyName { 

subject [<type>] domain-Scope-Expression ; 

target [<type>] domain-Scope-Expression ; 

action action-list ; 

[when constraint-Expression ; ] } 

Figure 2.4 Authorisation Policy Syntax 

 
Ponder also supports grouping of policies into roles related to positions in organisations 

or the set of policies applying to a particular network component [Sloman et al. 1999]. 

Management structures can be defined as configurations of roles with policies applying to 

relationships between roles for organisational units such as departments or buildings. 

Meta-policies specify constraints over a set of policies, with respect to the permitted types 

of policies or the elements within the policies. We have given a very brief overview of 

Ponder. More details on event composition, composite policies, roles, relationships and 

constraints can be found in [Damianou et al. 2001]. 

 

Apart from the Ponder language specification, the Policy Framework at Imperial College 

has introduced an object-oriented model for the deployment of Ponder policies [Dulay et 

al. 2001]. The model defines objects for policies, for domains, and for policy enforcement 

agents. Each policy type is compiled into a policy class by the Ponder compiler and is 

represented by a policy object at runtime, after the instantiation of the class.  Policy 

objects entrust the enforcement of policies to one or more enforcement agents: for 

authorisation policies to each target’s access controller (AC), and for obligation policies 

to each subject’s policy management agent (PMA).  
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Access controllers enforce all the authorisation policies for one or more target objects. 

When an action is “intercepted” by an access controller, it checks whether the access 

should be permitted. The access controller will check, for example, that the subject of the 

action is in the subject set of the policy, that the target of the action is in the target set of 

the policy and that the action is a valid action for the target.  

 

Policy Management Agents interpret and enforce the obligation policies that are relevant 

to them. Each PMA registers with an event service to receive the relevant events which 

will trigger the policies it holds. Policy actions are executed on the target domain objects 

when the triggering event is received by the PMA. Events may pass parameters to the 

PMA and the policy actions may also have parameters. 

 

A set of management tools [Damianou et al. 2002] have been implemented following the 

ideas presented above. This set of tools includes a policy editor, a domain browser, and a 

management console.  The policy administrator uses the policy editor to edit and compile 

policies. The policy editor tool is integrated with the policy compiler. Code generators 

added to the compiler framework, are accessible and can be enabled from within the 

editor to select the type of code to be generated. Policies in the current implementation 

are compiled into Java objects and are stored in the domain service. The latter uses LDAP 

[Wahl et al. 1997] as its access protocol and stores policy objects, subject/target objects 

and policy enforcement objects. The domain browser is a graphical tool that displays the 

objects stored in the domain service and provides a common user interface for all 

management interactions with objects stored in the domain service. Finally, the 

management console tool is used to distribute policies to their enforcement agents and 

manage their lifecycle. A policy object can be loaded into its enforcement components, 

and once loaded, it can be enabled, disabled or unloaded from its enforcement 

components. Unloaded (i.e. dormant) policies can be either re-loaded or deleted. More 

information about the use of the Ponder tools can be found in [Damianou et al. 2002]. 

 

Apart from the Ponder language specification and the tools for deploying Ponder policies, 

work has been carried out at Imperial College on conflict detection and resolution in 

[Lupu et al. 1999]. Recent work [Bandara et al. 2003] investigates techniques for rule 

refinement, conflict and consistency analysis of policies adopting a formal approach 

towards analysis and refinement by translating Ponder policies into event calculus. A 

number of new research projects at Imperial College [Aedus 2004], [Amuse 2004] are 

investigating if and how the Ponder framework can be used for delivering management 

solutions for ubiquitous environments.  
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2.2 Differentiated Services  

Network applications commonly compete for bandwidth, leading to congestion and 

variable performance in terms of throughput, latency variations (jitter), propagation delay, 

etc. Traditional IP networks provide a “best-effort” service which treats all applications 

equally when competing for network resources, irrespective of how critical they are. To 

address this issue, research and industrial efforts have focused on the development of 

Quality of Service (QoS) enabled networks which provide mechanisms to allow network 

applications to request and receive predictable performance levels.  

 

Two approaches have been proposed for providing QoS in IP networks. Integrated 

Services (IntServ) [Braden et al. 1994] uses the Resource ReSerVation Protocol (RSVP) 

[Braden et al. 1997] to provide per-flow QoS support by dynamically reserving resources 

on RSVP-enabled routers. Each flow is identified by the destination IP address, the 

transport protocol and the port number used by the application. As discussed in [A. 

Mankin et al 1997], this approach has significant scalability problems as routers must 

maintain a lot of information about the application flows and their reservations as well as 

processing a large number of messages for each reserved flow. 

 

Differentiated Services (DiffServ) is a much simpler alternative to IntServ/RSVP. The 

QoS information is encoded within the DiffServ Code Point (DSCP), which is the most 

significant 6 bits of the Type of Service (ToS) byte contained in the IP header. Only edge 

routers in the DiffServ architecture need to perform the classification of traffic flows into 

classes of service. The core routers queue and schedule packets according to the value of 

the ToS field.  

 
Throughout this thesis, we will use Differentiated Services as the mechanism for 

providing network services due to the fact that it scales well in large networks and is 

therefore becoming more popular with network providers. However, our proposed policy-

based framework is designed at a fairly high-level of abstraction; it uses the abstractions 

of the underlying QoS mechanisms. This enables us to use our framework for configuring 

other types of QoS enabled networks, such as Multiprotocol Label Switching (MPLS) [E. 

Rosen et al. 2001] networks.  
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2.2.1 Differentiated Services Architecture 

 
Figure 2.5 shows an example DiffServ network. 

 

 

 
 

Figure 2.5 Differentiated Services Architecture 

According to the DiffServ Architecture [Carlson et al. 1998], at the boundaries of the 

DiffServ domain, edge (or access) routers classify and possibly condition the incoming 

traffic. Each incoming flow is assigned to a specific behaviour aggregate, identified by 

the 6 bit DSCP within the IP header, allowing 64 different classes of service to be defined 

in a DiffServ network.  

 

Within the core network, routers examine only the DSCP field of the incoming packet and 

forward it according to the Per-Hop Behaviour (PHB) associated with that DSCP. PHB 

defines how a packet should be processed within the router, before being transmitted to 

the next hop. The IETF DiffServ working group has defined a number of standard PHB’s 

– Class-Selector, Assured Forwarding, Expedited Forwarding, and Default [Nichols et al. 

1998; Heinanen et al. 1999; Jacobson et al. 1999]. 

 

In order to implement a PHB, a DiffServ-enabled node has several components for which 

a model is presented in [Bernet et al. 2002]. The proposed model (DSMODEL) represents 

the mechanisms defined in the DiffServ Architecture as components that form building 

blocks. The model includes abstract definitions for Traffic Classification Elements, 

Metering Functions, Actions of Marking, Absolute Dropping, Counting and Multiplexing, 

and Queuing elements. The latter include capabilities for algorithmic dropping and 

scheduling. Certain combinations of the above functional datapath elements form higher-

Core network
Network 1  Network 2  
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level blocks known as Traffic Conditioning Blocks (TCBs). Figure 2.6 shows a TCB 

comprising of six components of the DiffServ architecture.  

 

Classifier Meter

Counter

Queue

Scheduler

Absolute
Dropper

Packet
Out

Scheduler

Input B

Input A

 

Figure 2.6 Example of a Traffic Conditioning Block 

 

According to DSMODEL, a Classifier element takes a single traffic stream as input and 

generates N logically separate traffic streams as output. Packets from the input stream are 

sorted into various output streams by filters, which match the contents of the packet or 

possibly match other attributes associated with the packet. Meters are logically 1:N (fan-

out) devices. Meters are parameterized by a temporal profile and by conformance levels, 

each of which is associated with a meter's output. Each output can be connected to 

another functional element. A Counter element updates a packet count and also an octet 

count for every packet that passes through it. An Absolute Dropper simply discards all 

packets arriving at its input. A Queue element is a First In First Out (FIFO) data structure, 

which at any time may contain zero or more packets. Furthermore, it may have one or 

more thresholds associated with it. It must support an enqueue operation to add a packet 

to the tail of the queue and a dequeue operation to remove a packet from the head of the 

queue. Packets must be dequeued in the order in which they were enqueued. A Scheduler 

is an element which gates the departure of each packet that arrives at one of its inputs, 

based on a service discipline, i.e. a scheduling algorithm. It has one or more inputs and 

exactly one output. Each input has an upstream element to which it is connected, and a set 

of parameters that affects the scheduling of packets received at that input. More 

information about the functionality of the DiffServ elements can be found in [Bernet et al. 

2002]. 

 

We mentioned earlier that the functional components of a DiffServ device form higher-

level blocks, the TCBs. According to [Bernet et al. 2002], a DiffServ-enabled device 

consists of a set of TCBs, a routing component, and a Configuration and Management 

Module. Their interconnection is presented in Figure 2.7. 
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Figure 2.7 Conceptual model of a DiffServ-enabled device 

 

The management of a Diffserv device, i.e. the management of the individual functional 

elements and TCBs it contains, is realized through the Configuration and Management 

Interface via one or more management protocols. The following section will present the 

different protocols that are available within the Differentiated Services framework for 

managing DiffServ-enabled devices.  

2.2.2 Management Protocols for Differentiated Services 
 

Simple Network Management Protocol (SNMP)  

 

The Differentiated Services Management Information Base (MIB) [Baker et al. 2001] is 

designed according to the abstractions provided by [Bernet et al. 2002]. This MIB models 

the individual functional elements that constitute the Traffic Conditioning Blocks (TCBs). 

These elements are stored as table entries and are interconnected through the “Next” 

attribute that each entry contains. The description of the tables that are defined in the 

DiffServ MIB  is given below. 

Table 2.1 DiffServ MIB tables 

Data Path Table Defines the starting points of DiffServ data paths  

Classifier and Filter Tables Enumerate all the classifier and filter elements  

Meter Tables Enclose entries representing DiffServ meter elements 

Action Tables Action tables are used to represent elements that perform 

Marking, Counting and Absolute Dropping actions 

Queue, Scheduler and 

Algorithmic Dropper Tables 

Contain elements that correspond to queuing, scheduling 

and algorithmic dropping mechanisms  
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The configuration of the DiffServ MIB table entries is realized through SNMP set-request 

messages sent by the SNMP manager to the agent holding the MIB. For Policy Based 

configuration, the SNMP manager must be a component of the management system. 

What is needed is the translation of policy rules to the corresponding SNMP messages.   

  

Common Open Policy Service (COPS) protocol with Provisioning extensions (COPS-

PR) 

 

The COPS [D. Durham et al. 2000] protocol has been defined by the IETF Resource 

Allocation Protocol (RAP) working group as a scalable protocol that allows policy 

servers to communicate policy decisions to network devices. The standard COPS protocol 

was for use within the context of admission control with signalling protocols such as 

RSVP. However, the IETF RAP working group proposed modifications to the protocol 

(COPS-PR) that allow a policy server to send provisioning information to the policy 

enforcement device. Provisioning policies are generic and can be used for both QoS and 

Security management, i.e. IPSec. 

 

 The data carried by COPS-PR [Chan et al. 2001] is a set of policy data. The protocol 

assumes a named data structure, known as Policy Information Base (PIB), to identify the 

type of policy provisioning information that is communicated from the Policy Decision 

Point (PDP) to the Policy Enforcement Point (PEP). The PIB can be described as a 

conceptual tree namespace where the branches of the tree represent structures of data or 

Provisioning Classes (RPC’s), while the leaves represent various instantiations of 

Provisioning Instances (PRI’s).  

 

The IETF Differv working group has defined a PIB for Differentiated Services [Fine et al. 

2001]. Like the SNMP DiffServ MIB, the DiffServ PIB models the individual elements 

that constitute the TCBs. In addition, it includes classes describing the capabilities and 

limitations of the device. This information is reported by the PEP to the PDP, so that the 

PDP can apply the correct configuration to the PEP. The provisioning classes for DiffServ 

are represented as tables. Here is a description of PIB tables defined in [Fine et al. 2001].  
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Table 2.2 DiffServ PIB tables 

Data Path Table Defines the starting points of DiffServ data paths within a 

single device 

Classifier Tables Specify a group of filters used for traffic classification  

Meter Tables Enclose entries representing DiffServ meter elements 

Action Tables Action tables are used to represent elements that perform 

Marking, Counting and Absolute Dropping actions 

Queue, Scheduler and 

Algorithmic Dropper Tables 

Contain elements that correspond to queuing, scheduling 

and algorithmic dropping mechanisms  

Capabilities Tables Define the capabilities and limitations of the elements 

listed above 

 

The semantic information and the relationship among different PIB tables are very similar 

to these in the MIB model. The difference is the syntax used to represent the various 

entries and the protocol used to download the tables to the devices. In the case of COPS, 

all the PIB tables are downloaded to the device in a single operation over a TCP 

connection. In the case of SNMP, the MIB tables are written one element at a time over 

UDP. 

2.2.3 Differentiated Services support on Linux  
 

Support for DiffServ on Linux is part of the more general Traffic Control Architecture 

[Almesberger 1999]. This architecture is comprised of the following major conceptual 

components: Queuing disciplines, Classes (within queuing disciplines) and Filters. 

 

A Queuing discipline is an algorithm that manages the queue (ingress or egress) of a 

device. A simple queuing discipline may consist of a single queue which operates in a 

First In First Out mode, i.e. all packets are stored in the order in which they have been 

enqueued, and the queue is emptied as fast as the respective device can send.  

 

Queuing disciplines are categorized as Classless or Classful. Classless Queuing 

disciplines do not contain internal subdivisions. Supported Classless Queuing disciplines 

are the following: pfifo_last, which operates in a FIFO mode, Token Bucket Filter (TBF) 

that transmits only packets arriving at a rate which is not exceeding some administratively 

set rate, but with the possibility of allowing short bursts in excess of this rate and 

Stochastic Fair Queing (SFQ), which is a simple implementation of the fair queueing 

algorithms family. 
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 Classful Queuing disciplines may contain one or more Class components. Classes 

represent different kinds of traffic which should receive differing treatment by the 

algorithm that the queuing discipline implements. Classes may contain further Queuing 

disciplines. An example is the Priority (PRIO) Queuing discipline, which contains 

Classes that are assigned different priority. Packets enqueued within Classes with higher 

priority are always dequeued before packets within lower priority Classes. Other 

supported Classful Queuing disciplines are: Class Based Queuing (CBQ) and 

Hierarchical Token Bucket (HTB). For information about the functionality of the 

Queuing disciplines supported by the Linux kernel refer to [Linux Advanced Routing & 

Traffic Control HOWTO 2002]. In addition to the above traffic control Queuing 

disciplines, a special Queuing discipline has been implemented in the Linux kernel: 

DSMARK. This queueing discipline allows changing (marking) the DSCP of the packets it 

receives.  

 

Filters are consulted to determine which class packets need to be sent when entering a 

Queuing discipline. For this purpose, filters match a packet’s attributes such as the DSCP, 

source/destination address, source/destination port, ip protocol etc. and then decide which 

class the packet should be forwarded to. Filters can also be used to police incoming 

traffic. If the incoming traffic rate exceeds a configured rate, the filter can be configured 

to drop the traffic in excess, reclassify it or check if another filter will match it. 

 

 

Figure 2.8 Relationship between DiffServ and Linux Traffic Control 
Architecture (from [Almesberger 1999]) 
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Figure 2.8 from [Almesberger 1999] presents how Linux traffic control components relate 

to the Differentiated Services [Carlson et al. 1998] architectural components.  

 2.3 Policy Based Network  Management  

 
This section will provide an account of policy based management frameworks that strive 

to deliver solutions for management of networks implementing QoS mechanisms.  

2.3.1 IETF Policy Workgroup 
 

One of the most important ongoing research activities on policy specification is carried 

out by the IETF Policy working group [IETF Policy Working Group]. They do not use a 

language for specifying policies, but they represent policy with an object-oriented 

information model [Moore et al. 2001]. This model is an extension of the Common 

Information Model (CIM) that is developed by the Distributed Management Task Force 

(DMTF).  A policy rule is modelled as an aggregation of policy conditions and policy 

actions. According to that representation, a policy rule expresses the statement: if (set of 

conditions) then execute a set of actions. 

 

Policy rules, conditions and actions are represented as object classes and their 

associations are modelled with association object classes. For example, a PolicyCondition 

instance is linked to a PolicyRule instance with the association 

PolicyConditionInPolicyRule and a PolicyAction instance is linked to the same rule with 

the  association PolicyActionInPolicyRule. 

 

PolicyRule

PolicyCondition PolicyAction

0..n 0..n

 
 

Network QoS policies within the IETF Policy framework are represented according to the 

information model defined in [Snir et al. 2001]. This model extends the PCIM model with 

QoS related policy actions, values and variables in order to add QoS specific semantics to 

the framework defined by [Moore et al. 2001]. Policy actions defined in QPIM are 

management actions for Differentiated Services (DiffServ) and Integrated Services 

(IntServ) networks.  



Chapter 2 Background and Related Work 31
 

 

An example of a policy rule defined in QPIM for establishing an EF Per Hop behaviour 

(EF-PHB) on a DiffServ node is the following: 

  

 If (traffic belongs to EF aggregate) then do EF-actions 

 

The condition is used to identify and classify the traffic that enters the node. The action 

for providing a PHB is an instance of the class QosPolicyBandwidthAction. This class is 

used to control the bandwidth, the delay, and the forwarding behaviour for the flow where 

this action applies. For the above rule, this action instance can be described as following: 

 

This action will configure the scheduler of the 

node to provide to the EF traffic aggregate 

maximum bandwidth of 50% of the total link 

bandwidth.  

 

Apart from providing an information model for representing policies, the IETF 

framework has defined a schema for storing policies in a directory which uses the LDAP 

as its access protocol. This has been done for the classes defined in PCIM [Strassner et al. 

2001]. Storing policies in a central directory is a key component of the Policy Based 

Management framework. This follows the concepts of Directory Enabled Networking 

[Strassner] which has been accepted as a powerful technology for the management of 

large networks.  

 

The architecture the IETF has proposed for the enforcement of policies is presented in 

Figure 2.9. 

   QosPolicyBandwidthAction  EF:   

p ForwardingPriority: 1 

p BandwidthUnits: % 

 pMaxBandwidth:  50% 
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Figure 2.9 IETF policy enforcement architecture 

 

In this architecture, each Policy Decision Point (PDP) is responsible for managing one or 

more Policy Enforcement Points (PEPs). The PDP is responsible for translating a policy 

into a form that the device can understand. The PEP tells the PDP what actions is capable 

of performing and how it wants its policy to be specified (for example, the particular form 

of conditions and actions that are transmitted to it). This may be communicated by several 

means, including dedicated policy protocols like COPS [D. Durham et al. 2000].  

 

 In the IETF architecture, directories are used for storing policies but not for grouping 

subjects and targets. They do not have the concepts of subject and target that can be used 

to determine to which components a policy applies, so the mapping of policies to 

components has to be done by other means (i.e., interface roles). Furthermore, they do not 

support policy rules that can be dynamically triggered by events to reconfigure the 

managed system according to changing circumstances. The policy work in the IETF 

seems to be focused only in the network layer and they have not considered the 

interaction between application and network policy. 

2.3.2 Commercial Products  
 

A number of vendors are marketing policy toolkits. The majority of these commercial 

tools are specific to quality of service management, but many also include access control 
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configuration. Here we will overview a number of major commercial products that are 

specific to QoS management. It should be noted that the information presented here is 

based on public-domain documentation, available at the time of writing, from the 

vendors’ websites and industry surveys.  

 

Cisco QoS Policy Manager (v3.0) [Cisco Systems Inc.] 

 

QPM supports a broad range of Cisco devices, including routers and switches. Following 

the IETF policy representation, a QoS policy rule consists of a set of conditions and a set 

of actions. Policy actions (actions for classification, limiting, shaping and queuing traffic) 

are applied on a traffic flow if the flow matches the filters (conditions) defined in the 

policy. Filters define traffic characteristics.  

 

QPM provides a web-based interface to define QoS policies and translates the policies 

into device-specific Command Line Interface (CLI) commands. Since policies do not 

specify their target elements, the administrator, prior to deployment, manually assigns 

through the management console a set of devices to each implemented policy rule. 

Policies are stored in the manager’s QoS database, which  is vendor’s specific; policies 

are not stored according to a directory schema that follows a standard information model. 

 

HP PolicyXpert [HP Policy Expert] 

 

HP PolicyXpert defines policy as a combination of one or more sets of rules. Policy rules 

consist of a single action and one or more condition lists. These are constructed from one 

or more conditions, which match against time/date or packet/traffic characteristics. Policy 

actions are used to manage DiffServ and RSVP mechanisms. The product offers support 

for management of devices from a number of vendors. It also offers an Agent Software 

Development Kit (SDK). This SDK enables vendors to develop support for specific 

Quality of Service mechanisms on their devices.  

 

Allot Communications NetPolicy [Allot Communications] 

 

This product also follows the IETF ideas. A policy rule consists of conditions and actions. 

Conditions are used for matching IP addresses, protocols, application data, type of service 

(ToS) settings and time of the day. The administrator can group devices together in 

domains and manually enforce a set of policy rules to an existing domain. The COPS 

protocol is used only when NetPolicy uses the NetEnforcer device as enforcement point. 

The communication with other devices is realized through the Command Line Interface 
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(CLI) or SNMP. Directories are used not for storing policies, but for retrieving users and 

applications information.   

 

In addition to the tools considered here, there are products from a number of companies 

that provide similar features. Lucent’s RealNet Rules, Nortel’s Optivity, Extreme 

Networks’s ExtremeWare, Gold Wire Technology’s Formulator and Dorado Software’s 

Redcell Suite are some examples of these. Based on our investigation of the different 

tools available, we can summarise their features as follows. 

 

Most of the tools specify the policies in the form of if <condition> then <action> rules. 

Target elements are assigned to policies either manually through the administrator 

console or using a role-based model. The different products allow the specification of 

varying degrees of conditions in policy rules including a number of time attributes, source 

or destination IP addresses, IP ToS, TCP and UDP port numbers, as well as higher-level 

user-defined data, and allow the user to permit or deny traffic based on those conditions. 

None of the presented toolkits supports a policy specification language and none of the 

tools appears to have considered the automation of the policy lifecycle and how to adapt 

the configuration of the target network elements when conditions change within the 

managed network. New configurations need to be imposed manually by the administrator 

through the management console.  

2.3.3 Other network management policy approaches 
 

 In [Verma et al. 2001], a policy-based management system is proposed for managing 

Service Level Agreements within DiffServ networks. These SLAs are specified in terms 

of the application response time that occurs when a specific client accesses an application. 

The user-defined high-level policies will map each usage scenario, a client accessing an 

application on a server, to a service class. The service class has specific performance 

objectives associated with it.  

 

A set of six tables is used in this framework, described in detail in [Verma 2001], to 

represent these policies, as shown in Figure 2.10. A table of users provides the mapping 

of users to the different subnets and IP addresses. A table of applications provides 

information about the port numbers that applications will use. A table of routers and a 

table of servers provide information about the different policy enforcement points that 

exist in the network, and whose configuration needs to be generated. The fifth table 

provides information about the different service levels that are defined within the 

network. The entries in the tables of users, applications, servers, routers and service 



Chapter 2 Background and Related Work 35
 

 

classes are tied together with entries in the table of policies, which maps the different 

application flows to different classes of service. 

Applications 
   -  Name 
   -  Port range 
   -  Protocol 

Users 
   -  Name 
   -  Subnet 
    

Servers 
   -  Name 
   -  IP addresses 
    

Routers 
   -  Name 

   -  Interfaces 
   -  Subnet masks 

Policy 
-  User names 
-  Application names 
-  Server names 
-  Class of service 
-  Time of day 
-   

Class of Service 
   -  Response time 
   -  Evaluation period 
    

 

 

Figure 2.10 Set of tables for representing Enterprise SLAs 

 

A translation process within the proposed management system is used to derive low-level 

policies from the high-level policies described above. In order to perform this high-level 

to low-level translation, they propose a representation of the low-level policy that would 

be required at each policy enforcement point (or policy target) within the network. For 

DiffServ, they use the low-level policy presented in Figure 2.11. For each device within 

the network, two tables are defined – one defining a set of classification policies and the 

other defining the different network levels supported at the device. A classification policy 

contains the five tuples that describe an IP packet flow (source and destination address, 

source and destination port and protocol) and a mapping to the network level. The 

network-level definition contains DiffServ-specific details, such as the appropriate 

marking within the IP header, and the rates that are appropriate for each of the network 

levels. The translation process maps the representation specified in terms of Figure 2.10 

to the representation in terms of Figure 2.11.  
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Figure 2.11 Low-level policy representation of DiffServ 

 

The translation consists of four steps: name mapping, in which the high-level constructs 

like names of applications or users are mapped to header fields like IP addresses and port 

numbers; Class of Service (CoS) mapping, in which the definition of high-level classes of 

service (e.g. Precedence) is changed into technology-specific classes of service (e.g. EF-

PHB for DiffServ); PHB’s relevance determination, where the relevancy of a policy to a 

device or a set of devices is examined (i.e. to determine the set of devices that are affected 

by each of the defined policies); and grouping, wherein devices which have identical sets 

of applicable policies are grouped together in a common structure (this is done to 

determine automatically devices’ roles). Note that in each of these steps, predefined 

mapping tables are used to derive the low-level representation of elements from the high-

level representation. For example, for the CoS mapping process, this work assumes that 

an expert user has preconfigured the mapping from classes of service to the different 

network levels by defining a mapping table like Table 2.3. 

 

Table 2.3 Mapping CoS to Network Level classes for DiffServ  

 

Class of Service Network Level Rate Limit  Overflow 

Precedence Expedited Forwarding 10 Mbps Best Effort 

Preferred Expedited Forwarding 12 Mbps Best Effort 

Default Best Effort 50 Mbps Drop 

 

Rather than providing a policy-based management system for managing the 

characteristics of DiffServ devices, the proposed system only maps application flows into 

predefined and already implemented PHBs. Moreover, this system can only communicate 

Device Group 
- Set of Devices 
- List of Policies 
- List of Network levels 

Policy 
- Source Address 
- Destination Address 
- Source Port 
- Destination Port 
- Network Level Reference 

Network Level 
- ToS Marking 
- Rate Limits 
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policies to the enforcement devices during the configuration process, initiated by the 

administrator. Configuration cannot be changed dynamically at run-time to reflect 

changes in the managed environment. In addition, the scope of this approach is 

specifically aimed at a management system for a DiffServ network, whereas our work is 

applicable to a wide range of management areas.  
 

 Another approach to network policy specification is the path-based policy language 

(PPL) described in [Stone et al. 2001]. This language is designed to support both the 

DiffServ and the IntServ network mechanisms and is based on the idea of providing better 

control over the network traffic by constraining the path the traffic must take. The rules of 

the language have the following format:  

 
policyID <userID> @{paths} {target} {conditions} [{action_items}] 

action_items =[{condition}:] {actions} 

 

Action_items in a PPL rule correspond to the if condition-then-action of the IETF 

approach. In PPL, “policyID created by <userID> dictates that a particular target class 

of traffic may use {paths} only if {conditions} is true after {action_items} are performed”  

The following is an example of a PPL rule from [Stone et al. 2001]: 

 
Policy 1 <net_manager> @ {<1,2,5>} {class={faculty}} {*} {priority :=1} 

 

In this example, Policy1 states that the path starting at node 1, traversing to node 2 and 

ending at node 5 will provide high priority to faculty users. The language has the same 

limitations with the IETF approach, as rules statically configure the managed elements. 

Moreover, PPL rules apply only to the network level, while our approach can apply to 

different levels of abstraction within the managed system.  

 

The framework defined in [Martinez et al. 2002] combines IETF’s Script MIB [Levi et al. 

1999] and IETF’s PDP/PEP architectures into a single architecture. Script MIB provides 

capabilities to transfer management scripts to distributed agents and to initiate and 

terminate the execution of the scripts. Since Script MIB can accept any form of 

management scripts, it provides support for arbitrary programming languages and 

multiple execution environments. 

 

Script MIB is used to communicate policies to Script MIB agents, which implement PDP 

functionality. The authors propose two solutions for deployment of policies within the 

proposed architecture. The first solution defines policies as programs. These are 
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downloaded as scripts to the Script MIB agents and then executed by a common Script 

MIB runtime engine inside the agent. This runtime engine acts as a PDP and sends the 

corresponding low-level policy configuration to a local or remote PEP.  A prototype 

implementation is provided for management of DiffServ Linux routers. Policies are 

implemented as Java programs; their actions involve creating and configuring Java 

objects that represent the DiffServ mechanisms of the routers according to the DiffServ 

MIB [Baker et al. 2001] data model. A driver has been implemented for translating the 

Java DiffServ objects to Linux traffic control [Linux Advanced Routing & Traffic 

Control HOWTO 2002] commands. The second solution represents policies according to 

IETF’s PCIM information model. Policies in this case are not defined as programs, but as 

groups of PCIM objects. These policy objects are downloaded directly to the managed 

nodes. Within each managed node, a policy interpreter implements PDP functionality to 

translate the PCIM policy objects to their corresponding low-level configuration 

commands. 

  

The system proposed in [Brunner et al. 2001] for the management of QoS in Multi-

Protocol Label Switching (MPLS) networks, also follows the IETF Policy working group 

approach. They have extended the Common Information Model (CIM) policy model with 

MPLS specific classes. This system has the same limitations as the IETF framework.  In 

[Bearden et al. 2001], IETF’s PCIM is extended, to provide support for goal specification. 

Service-level goals can be specified to enforce QoS on a per-user, per-application basis. 

Monitored data is used to evaluate whether the specified goals are satisfied. These 

service-level goals can be expressed in our framework as higher-level obligation policy 

rules.   

2.3.4 Policy based frameworks  for other management  areas  

 
We have presented an account of the most important policy-driven frameworks for QoS 

management. As we have discussed, the policy based management approach is adopted in 

other management areas, such as in security and ubiquitous systems management. This 

section will provide a brief account of policy-driven frameworks used in the emerging 

area of ubiquitous systems management. A detailed survey on policy management 

approaches for security management can be found in [Damianou et al. 2002b]. 

 

A policy language (Rei) for a pervasive computing environment has been proposed in [L. 

Kagal et al. 2003]. Rei defines three types of constructs: policy objects, meta-policies and 

speech acts. Policy objects specify rights, prohibitions, obligations and dispensations 

(acting as deferred obligations). Rights are permissions that an entity has to perform an 
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action. Obligations are actions that an entity must perform and are triggered when a 

certain set of conditions evaluate to true. Prohibitions are negative authorisations, while 

dispensations define the actions that an entity is no longer required to perform, acting as 

waivers for existing obligations.  

 

The language has been implemented in the Prolog language. Figure 2.12 presents how 

rights and obligations are specified in Rei.  Note that the construct has is used in the Rei 

specification to associate policy objects with their corresponding entities.  

 

Rights 

An entity, abc, can perform the action actionABC if the following rule evaluates to true:  

 

- has (abc, right(actionABC,  Conditions) and abc satisfies Conditions 

 

Obligations 

An entity, abc, is obliged to perform the action actionABC if the following rule evaluates 

to true: 

 

- has (abc, obligation(actionABC, Conditions) and abc satisfies conditions.  

 
Figure 2.12 Rights and Obligations in Rei 

 

Meta-policies defined in Rei are used to resolve policy conflicts. This is realised by 

setting the modality preference (negative over positive and vice versa) or stating the 

priority between policy rules. To provide decentralised control of policies, Rei introduces 

the speech acts constructs. Supported speech acts are: delegations, requests, cancellations 

and revocations. A delegation speech act allows an entity to give a right to another entity 

or a group of entities. A revoke speech act is used to remove a right and acts as a 

prohibition. An entity can use a request speech act to request for an action or a right on 

one hand, while it can use a cancel speech act to cancel any request it has sent on the 

other. For more information about the use of speech acts refer to [L. Kagal et al. 2003]  

 

The concepts of rights and prohibitions are similar to those of positive and negative 

authorisations in Ponder. Obligations are also similar to Ponder obligation rules. 

However, Rei focuses mainly on security management of ubiquitous systems. Policy 

defined in Rei is static; the proposed framework does not cater for adaptation of policy in 

response to changes in the managed pervasive environment.  
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There are available additional languages for management of ubiquitous systems, eg. the 

language presented in [Bertino et al. 2003] for specifying message filtering and routing 

policies for the UCS-Router, a policy engine for message dispatching in a pervasive 

environment. Like Rei, the main limitation of these approaches is that the policy rules that 

the administrator defines remain static during their lifecycle. Policy adaptation 

mechanisms are not provided in order to adapt the management strategy in response to 

changes in the dynamic pervasive environment  

2.4 Service Level Specification and Service Management 

 

Policies are deployed within the network in order to guarantee the Service Level 

Agreements (SLAs) established within the organisation. Service Level Objectives (SLOs) 

constitute the technical part of an SLA and are defined formally with Service Level 

Specifications (SLSs). 

 

Work on Service Level Specification for DiffServ is carried out by the Tequila Project 

[TEQUILA 2002]. In this work, a Service Level Specification is a protocol independent 

representation of a set of technical parameters and their associated semantics that describe 

the service a flow is to receive over the transport domain, between ingress and egress 

interfaces. A Service Level Objective is a protocol dependent instantiation of a SLS, i.e. it 

contains the SLS parameters and their values. [D. Goderis et al. 2001] lists and presents 

the semantics of a set of basic SLS parameters. Table 2.4 presents a brief description of 

the proposed SLS parameters.  

 

Apart from the SLS specification and semantics, Tequila in [Trimitzios 2001] proposes an 

architectural model for providing QoS in DiffServ networks. This architecture is 

composed of three main parts: an SLS management module, a Traffic Engineering (TE) 

module and a Policy management module. 
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Table 2.4 Tequila’s SLS parameters   

 

Scope Uniquely identifies the geographical / topological region over 

which the QoS of the IP service is to be enforced. Scope is 

expressed by a couple of ingress and egress interfaces, i.e. 

Scope=(ingress, egress). 

Flow Description  Identifies the packet flow for which the QoS guarantees need 

to be enforced. Packet characteristics such as DSCP, 

source/destination information, application information, etc. 

can be used to identify the packet flow.  

Traffic envelope and Traffic 

conformance (TC) 

It is a combination of TC parameters and the TC algorithm. 

TC parameters describe the reference values that the traffic 

has to comply with. The TC algorithm is the mechanism used 

to unambiguously identify all the “in” and “out” of profile 

packets based on the conformance parameters. An example is 

the token bucket algorithm based on the token bucket 

parameters (b,r). 

Excess treatment Describes how excess traffic (out-of-profile) will be 

processed, e.g. drop, shape, remark.  

Performance parameters Describe the service guarantees for the identified flow over the 

geographical/topological extent given by the scope. 

Performance parameters are delay, jitter, loss and throughput. 

Service schedule Indicates the start and end time of the service. 

Reliability  Indicates the maximum allowed mean downtime and the 

maximum allowed time to repair. 

 

The SLS management module is responsible for all SLS-related activities and it is 

comprised of two main sub-blocks: SLS Subscription block and SLS Invocation block. 

SLS subscription is the process of customer registration. This concerns the SLA, 

containing prices, terms and conditions and the technical parameters of the SLS. The 

subscription could provide the required authentication information for Authentication, 

Authorization and Accounting (AAA) purposes, when an SLS is eventually invoked.  SLS 

Invocation is the process of dealing with the flow dynamically. It performs admission at 

run-time as requested by the user and delegated the necessary rules to the traffic 

conditioning elements in the same architecture.  

 

The TE module is responsible mainly for obtaining the information needed to compute 

the QoS configuration and for establishing and maintaining the QoS path that has been 
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selected to process the service request. It is composed of several sub-modules (Network 

Dimensioning, Routing, Dynamic Route Management and Dynamic Resource 

Management).  

 

The Policy management module includes functional components such as the Policy 

Management Tool, the Policy Storage Service and the Policy Consumers. It is possible to 

define SLS related policies for the SLS management block, for the dynamic 

resource/route management block, etc. Policy is defined in the Policy Management Tool 

using a high-level language and is then translated to the appropriate object-oriented policy 

representation for each of the functional blocks the policy applies to. Policies are stored in 

the policy repository, i.e. the Policy Storing Service.  Policy Consumers may need to have 

direct communication with a Monitoring Service, in order to obtain information either 

about traffic-based triggering events or about other types of events, generated by some 

specific functional block of the architecture.  

 

An SLS to DiffServ configuration mapping framework is proposed in [Prieto et al. 2001]. 

The Tequila project’s specification is used as the SLS. In their architecture, the 

management system consists of two parts. The first performs both the SLS to PDB 

mapping process and an admission control process. The mapping module uses an N-

dimensional space (e.g. delay, packet loss, and throughput) to classify an input SLS into 

an available intra-domain service, which is offered by an implemented PDB within the 

DiffServ network. The second is the policy-based control part. This controls the SLS 

mapping and the admission control processes. Network policy is used as the device 

configuration mechanism. However, this work does not have any concrete proposals for 

the policy part of the framework. Furthermore, the SLS to PDB mapping process is only 

initiated by the user; no actions are undertaken by the management system to dynamically 

select a new PDB when network conditions change.  

 

[Keller et al. 2002] proposes a contract-based architecture for application-level service 

management. Contracts are used for defining, deploying, monitoring and enforcing SLAs 

in a dynamic e-Business environment. A generic object-oriented model describes the 

various sections of a contract between a client and a service provider. Contracts are 

managed by a Contract Management System, whose main functional components are: a 

measurement component, a violation detection component and a management component. 

The measurement component is responsible for collecting data relevant to a service’s QoS 

parameters. The violation detection component retrieves data from the measurement 

component and evaluates if the guarantees defined in the contract are met. In case of a 

QoS violation, a notification is sent to the management component. The latter, upon 
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reception of a violation notification, initiates corrective measures to remedy the causes of 

the violation. The advantage of our proposed framework for network-level service 

management is the flexibility to implement dynamically new management strategies 

within the service management system. 

 

A Customer Service Management (CSM) architecture is proposed in [Sprenkels et al. 

2000]. This allows delegation of the service management task from the service provider 

to the customer. A CSM module is the basic block of the proposed management system. 

Customers can adjust SLS parameters through a parameter setting function block within 

the CSM module. A SLS mapping function is implemented within the CSM module, to 

derive device configuration from SLS information.  Our framework can provide this 

functionality, by allowing users to trigger the execution of management actions within the 

Service Management Agent.   

2.5 QoS Adaptation 

 

Although the scope of this thesis is limited to the policy aspects of an adaptive QoS 

management framework, we also present a brief overview of some existing frameworks 

and techniques for providing QoS adaptation. The reason is that in many cases, adaptation 

techniques and mechanisms must be used within a generic policy-based management 

framework. 

 
To address the problem of QoS adaptation, a number of adaptation-based frameworks 

have been proposed by researchers in this area. Compared to reservation-based systems 

[Aurrecoechea et al. 1998] that use resource reservation (with mechanisms such as 

[Braden et al. 1997]) and admission control, adaptation-based systems seem to provide a 

more promising solution for providing QoS to network applications. The reason is that 

reservation-based systems may experience scalability problems and may not be suitable 

for networks where the available bandwidth to share among applications is variable (eg. 

in mobile networks). Furthermore, resource reservation must be available end-to-end, 

something that it is not practically achievable in the Internet. 

 

A lot of work on QoS adaptation has also been carried out in the Distributed Systems area 

for developing adaptive middleware systems. Most of this work provides adaptation by 

hard coded adaptive mechanisms in middleware systems for supporting multimedia 

applications. Adaptive systems of this category, such as [Wang; G. Gordon et al. 1997; 

Haahr et al. 2000], do not take into account the changes in user preferences and the 
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application to drive dynamic adaptation. Rather, they work as “black boxes”, 

implementing a specific adaptation mechanism that can not be dynamically changed to 

provide new adaptation functionality.  

 

The framework proposed in [Campbell 1996] presents a QoS Architecture transport 

system for a multicast, multimedia networking environment. In this work, the network 

provides an adaptability mechanism to cope with QoS fluctuations. The application 

passes information to the network about the QoS guarantees it should receive and expects 

that the adaptive mechanisms within the network will provide the requested QoS. It offers 

a QoS configurable API at the transport layer, which enables applications to have control 

over QoS. QoS is specified at the API in terms of a flow specification, which includes 

parameters such as delay, throughput, jitter etc. and a QoS policy.  The QoS policy 

enables users to advise the infrastructure on how to deal with the flow when resource 

availability changes. A distributed QoS adapter interprets the policy and is responsible for 

informing applications when resources become available. A QoS adaptation protocol is 

implemented for the communication between QoS adapters 

 

OpenORB [G. Blair et al. 2000] is a reflective middleware designed at Lancaster 

University. At load time, appropriate components are selected and composed as a 

middleware instance. Using reflection [E. Gamma et al. 1994], components can also be 

changed or loaded at run-time. Every object is associated with a “meta-space” that can be 

accessed through one of the “meta-model” interfaces: “encapsulation”, “composition” and 

“environment”. This system was prototyped using the python programming language. As 

described in [G. Blair et al. 2000], a mechanism for management components can be 

added dynamically to the component graph to both monitor and strategically adapt the 

middleware in a procedural, policy controlled manner. These event-based scripted and 

interpreted adaptation controllers can be dynamically changed to facilitate changing 

context and requirements. However, a high level view of how the system should adapt is 

lacking in this framework.  

 

The framework proposed in [Bhatti et al. 1999] implements adaptation mechanisms at the 

application level. In this work, the adaptation mechanism takes into account information 

about the QoS achieved in the network, the application capabilities and the user 

preferences, in order to dynamically decide which flow-state is more suitable for the 

application. An Application Adaptation Function (AAF) receives information about the 

user preferences, the application flow-states and the network QoS by means of 

QoSReports, summarising the compatibility between the network QoS and the 

application’s flow-states. It then decides which flow-state should be selected for the 
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application in the given instance. The decision can be performed either automatically 

(with no external interaction with the user) or semi-automatically, where the user is given 

the ability to interact with the adaptation module.  

 

As a conclusion, a main disadvantage of QoS adaptation systems is that the techniques 

they implement are usually static, lacking the flexibility to change when changes occur 

within the network or build upon previously gained experiences. A policy-based 

management system can provide the flexibility of dynamically changing, when required, 

the adaptation strategies implemented within the system without the need to recompile the 

components implementing the adaptation mechanisms and stop the system while this is 

being done.  

2.6 Policy Adaptation 

 

The framework proposed in [Yoshihara et al. 2001] adapts policy parameters as a result of 

monitoring the network. A management script includes policies, expressed in the IETF 

representation, and also specifies how the policy life cycle should be managed. The script 

notifies the management system about QoS threshold violations. In this work, a prototype 

implementation is provided for Differentiated Services, where policy parameters, such as 

the peak rate of a traffic profile, its peak burst size and the associated DSCPs, are changed 

dynamically to adapt to system behaviour. The framework we propose for the adaptive 

management of DiffServ can specify, in a uniform way, all the necessary information 

required for enforcement and adaptation of policies using obligation rules. Furthermore, 

in addition to providing adaptation by changing policy parameters, we can also select new 

policies to be enabled upon events other than just QoS violation events.   

 

[Marshall et al. 2001a] presents an architecture for the management of a network offering 

active services. In their architecture, a bacterial algorithm forms the basis for the 

adaptation performed by autonomous controllers. These controllers are programmed (like 

a bacterium) to autonomously replicate policies that improve its performance and de-

activate policies that degrade performance. This way, “useful” policies spread and “poor” 

policies die out. A policy is evaluated through a fitness (revenue-cost) function. In this 

work, each policy is related to one active service; policies control the deployment of 

services (proxylets) in their active services environment. [Marshall et al. 2001b] presents 

an example of this type of adaptation for providing QoS differentiation of active services, 

where the queue length of network servers (DPSs) is adapted to provide either short delay 
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or low loss to service(s), depending on the users QoS requirements. Example of these 

requirements (policies or service genes) can be:  

 “Accept request for service A if DPS < 80% busy” or 

 “Accept request for service C if queue length < 20”.    

In our framework, policies are used in a more generic sense, describing the actions that 

management agents must undertake when receiving different types of requests. We 

provide adaptation, in a more systematic way, by adapting the policy based management 

system itself, either by changing attributes of policies or by removing and adding new 

policies.  

 

[Uttamchandani et al. 2003] proposes a framework for policy-based self-management of 

distributed file systems. Their policy rules extend IETF’s “if–then” policy semantics by 

including in the rule definition the implications of the rule within the system and the 

system’s workload characteristics on which the rule is dependent. “Behaviour 

implications” specify the impact of the rule on the system. This is expressed in terms of 

the observable characteristics of the system, such as throughput, latency, reliability etc.  

Workload characteristics capture the properties of the application accessing the 

distributed file system, such as the read/write ratio, whether the access is sequential or 

random, etc.  

 

The framework uses the behaviour implication specified in the policy to decide which 

combination of rule(s) should be invoked when the managed system’s desired behaviour 

has not been met by the current invocation of policies. This decision is taken by an 

automated decision-making component which uses monitoring information to analyse the 

current system state and determine which rules possess the necessary behaviour 

implication to help the system move to its desired state.  

 

Since the decision making-process depends on the non-static behaviour implication of the 

policy rules, the authors propose a self-learning mechanism in order to approximate the 

dependency function that relates the behaviour implication of a rule and factors such as 

the workload characteristics and the system’s behaviour value when the rule is about to be 

invoked. This means that each time a rule is actually invoked, the changes to the system 

are monitored and feedback information is recorded to refine the function that provides 

the behaviour implication of the rule. The refined behaviour implication function is then 

recorded in the rule repository.  

 

[Lutfiyya et al. 2001] presents a policy-driven framework for QoS management of 

multimedia applications. They specify policy at the application layer using the Ponder 
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language, although they rely on violation of constraints to trigger policy rules instead of 

events. Their QoS policy only provides the QoSHostManager component with a 

notification message; the corrective actions which are enforced upon QoS violation are 

described in other types of rules. No formal specification is discussed for these rules, 

although they could be specified with Ponder’s obligation policies as well. Furthermore, 

they use the term “adaptation” to refer only to the actions, which are taken when a QoS 

violation occurs. We support the type of adaptation provided in their framework, but our 

approach applies to other circumstances other than just  QoS violations. 
 

The work presented in [Ahmed et al. 2002] uses IETF’s PDP/PEP policy architecture to 

dynamically control the way “out of profile traffic” is treated in a DiffServ environment. 

Using information about the bandwidth allocation within the core network, the PDP uses 

an algorithm to decide which policy rule (“accept”, “drop”, “remark”) should be enforced 

on edge routers in order to handle the “out of profile” traffic entering the DiffServ 

domain.  

 

A policy-based management architecture based on intelligent agents has been introduced 

in [Hamada et al. 2000]. Agents are used to represent active policies. The architecture 

uses an  “hyper-knowledge” space, which is a loosely connected set of different agent 

groups which function as a pluggable or dynamically expandable part of the hyper-

knowledge space. Each agent collects and stores network information is a distributed 

manner by walking through the nodes in the network. Active policies, which are agents 

themselves, can communicate with agents in the hyper-knowledge space to implement 

policies and retrieve information from other agents. The architecture takes advantage of 

intelligent agents’ features such as the runtime negotiation of QoS requirements. 

However, an active policy itself has to be created by the administrator and once deployed 

in the network, it remains static through its life-cycle.  

2.7 Policy Validation 

 

Very little work has been done on the problem of policy validation, ie. to ensure that 

policy will lead to a feasible implementation for the target environment where it applies. 

At the time of the writing of this thesis, we are not aware of any policy based 

management framework integrating solutions for policy validation, apart from the policy 

framework for management of Service Level Agreements described in details in [Verma 

2001]. In this policy framework, which uses the tabular representation of policy shown in 

Figure 2.10, two types of policy validation are provided.  
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The first type of policy validation refers to ensuring that the syntax of the policy 

specification is valid. An XML representation of the policy (the XML based 

representation captures the policies defined with the tables shown in Figure 2.10) is 

checked to see whether it conforms to its data type definition (DTD) specifications. 

Syntactic validation depends on the policy specification language; as such, this type of 

validation is provided by the policy compiler [Damianou et al. 2002] within in the Ponder 

management framework.  

 

In the second type of policy validation in [Verma 2001], simple checks are provided to 

ensure that the values specified for each of the attributes within a policy rule is valid. For 

example, an IP address must conform to the requirement of being 4-byte address with a 

subnet prefix of less than 32 bits, whether a percentile attribute should take values 

between 0 and 100. In addition, since which values are legal for one attribute may depend 

on the value of another attribute, the policy validation module checks that all inter-

attribute relations that are required in the policy specification are valid. For example, the 

class of service that is specified in a policy must be a name of a class defined in the table 

of service classes (see Figure 2.10).  

 

Apart from these simple types of policy validation, the work presented in [Verma 2001] 

presents an “offline” method to determine if the QoS goals of policies can be achieved 

within a given network. Since policies deployed in a network reflect the SLAs that are in 

effect for this network, the objective of this method is to determine whether a given set of 

SLA objectives can be achieved within the network. To achieve this, the author models 

the network as a graph and considers the queuing behaviour at each node in the graph. 

The queuing behaviour at different routers is combined to determine the end-to-end 

delays and loss rates in the network. More specifically, the method to validate the QoS 

goals of a policy involves the following steps: 

 

i) Determine a queuing model for each component in the network 

ii) Determine the router path that packets will follow in the network 

iii) Estimate the amount of traffic that will be used on all network flows 

iv) Analyse the queuing network obtained to determine the end-to-end delays 

that will be experienced in the network 

 

More information on how each step can be implemented is provided in [Verma 2001]. 

Note that this offline method for validating policies’ QoS goals, relies on a number of 

assumptions. Thus, this method can only be used to provide an estimate as to whether 

policies’ performance levels within the network will be satisfied. However, it is important 
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to be able to provide the administrator within an offline tool to test the QoS guarantees of 

his network policies, before deploying them in the real network. In this direction, the 

framework proposed in this thesis includes tool support for testing policies on simulated 

networks. This tool will be presented in Chapter 4. 

 



  

  

 

3. Chapter 3
Policy Based Configuration of 
Differentiated Services Networks  

In the previous chapter, we provided an overview of existing policy based management 

frameworks and commercial products for network management and discussed their 

limitations. Based on this discussion, we have identified the following requirements for a 

policy based network management system: 

 

• A policy-based management system must have the flexibility and necessary 

abstractions to manage a variety of device types, with different capabilities and 

limitations, from different vendors. The system architecture should be sufficiently 

flexible to allow adding new device types with minimal updates and recoding of 

existing components.  

• To cater for large-scale networks, the management system must be able to apply 

policy rules on sets of devices rather to each device individually. When adding a 

new device to a set, relevant policies should be automatically deployed and 

enforced on it.  

 

We propose a flexible, expressive and extensible framework to cover the requirements 

identified above. This framework uses Ponder as the policy specification language and the 

Common Information Model (CIM) as the modelling framework for network 

mechanisms. This chapter will present how management policy is specified and enforced 

in our framework, using Differentiated Services networks as an example of a managed 

networking environment. 

3.1 Policy Specification for Differentiated Services 

 

A management system must have the flexibility and necessary abstractions to manage a 

variety of device types, with different capabilities and limitations, from different vendors. 

To meet this requirement, several information models have been proposed by standards 

organisations as a means to represent the abstractions of the managed entities. 

 

For Differentiated Services, an informal model has been proposed by the IETF [Bernet et 

al. 2002] to represent the mechanisms that DiffServ-enabled devices implement to 
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provide different treatment to traffic aggregates. Based on this model, several information 

models have been proposed to meet the needs of different management protocols. In 

particular, work within the IEFT DiffServ framework has resulted in two internet standard 

information models: 

- The Differentiated Services Management Information Base model [Baker et al. 2001] 

that is used by the Simple Network Management Protocol (SNMP)   

 - The Differentiated Services Policy Information Base model [Fine et al. 2001] that is 

used by the Common Open Policy Service (COPS) protocol with Provisioning extensions 

(COPS-PR)  

 

An additional information model for DiffServ is proposed by the Distributed Management 

Task Force (DMTF). This model is part of the standard object-oriented Common 

Information Model (CIM) Schema [DMTF 2004] that DMTF has defined to represent the 

abstractions of a wide range of network and computing elements of a managed system 

and the relationships between them. The CIM Schema is the combination of the Core and 

several Common Models.  The Core model captures notions that are applicable to all 

areas of management, while the Common Models are information models that capture 

notions that are common to particular management areas, but independent of any 

particular technology or implementation.  

 

DiffServ functional elements are represented in CIM's Network Common Model, 

included in [DMTF 2004]. Their representation also follows the abstractions provided by 

[Bernet et al. 2002].  In particular, the CIM Network Commom Model defines the class 

QoSService, which is a subclass of the generic class NetworkService. The QoSService is 

an aggregation of instances of the ConditioningService class, whose subclasses define the 

router's DiffServ mechanisms. Figure 3.1 presents the main DiffServ elements defined in 

the CIM Network Common Model.  

 

The top-level classes (ClassifierService, MeterService, MarkerService, DropperService, 

DropperThresholdService, QueuingService and PacketSchedulingService) represent the 

abstractions of DiffServ mechanisms of the managed device. Each top-level class may 

have subclasses that correspond to specific implementations of a particular mechanism. 

For example, the classes AverageRateMeterService, TokenBucketMeterService and 

EWMAMeterService (Exponentially Weighted Moving Average Meter Service) derive 

from the abstract class MeterService to represent specific DiffServ metering mechanisms.  
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Figure 3.1 ConditioningService Classes in CIM Network Common Model 

 
Our framework uses the CIM representation of the components of the Differentiated 

Services architecture to specify and enforce policy rules that apply to a DiffServ domain. 

Using the CIM representation of DiffServ not only provides our framework the necessary 

abstractions to specify policy independently of the type of the device, but also provides a 

flexible architecture for mapping the policy rules into device configuration independently 

of the communication protocol between the policy system and the managed devices. In 

the following, we will present, with examples, how DiffServ specific policy rules are 

constructed in our framework.  

 

Example 3.1 presents a policy type, which can apply to any type of DiffServ device, and 

can be instantiated with device specific parameters. The administrator specifies this 

policy type to insert any MeterService element  (i.e., any subclass of MeterService) on a 

router.  
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Example 3.1 Policy type that configures any MeterService mechanism in any type  

of DiffServ device  

 
type oblig insertMeter (target router, MeterService meter) { 

subject DiffServManager; 

on addMeterRequest(); 

do router.addDiffServElement (meter);} 

   
The parameter meter used in this policy type is an object of the CIM class MeterService. 

This example assumes that information of the location of this object inside the device’s 

space (this information is specified by the association NextServiceAfterMeter in Figure 

3.1) is kept within the object meter. The Policy Management Agent can detect the actual 

subclass, which may correspond to one of those identified above, and if necessary, take 

specific actions for this particular subclass. The same insertMeter type can be instantiated 

multiple times in order to create specific rules, which apply to specific devices within the 

DiffServ domain. For example, the administrator may want to insert the 

AverageRateMeterServiceA on the edge routerA and the TokenBucketMeterServiceB on 

the core routerB. Two policy instances should be created for that purpose, as shown in 

Example 3.2. 

 
Example 3.2 Instantiation of the insertMeter policy type for different devices 
 
inst  Config1 = insertMeter (/Routers/EdgeRouters/RouterA,  AverageRateMeterA); 

inst  Config2 = insertMeter (/Routers/CoreRouters/RouterB,TwoParameterTokenBucketMeterB); 

 

3.1.1 Policy rules for managing a set of devices  
 

Since subjects and targets are explicitly specified in Ponder policies in terms of domains, 

the same policy can apply to sets of devices rather than individual ones. For example, an 

administrator may want to impose the same classification rules on all edge routers in a 

DiffServ domain, in order to provide a common set of DiffServ codepoints (DSCPs). The 

solution provided by our approach is a policy rule whose scope is not a particular device, 

but all devices within the defined domain.  
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Example 3.3 Policy that adds the same classifier entry to all devices within 

DomainA of edge routers 

 
inst oblig insertClassifierToDomainA { 

subject DiffServManager; 

target r = /Routers/EdgeRouters/DomainA; 

on AddClassifierEntryRequest(ClassifierEntry); 

do r.addEntryToClassifierService(ClassifierEntry);} 

 
When an AddClassifierEntryRequest event occurs (this event is usually triggered through 

the management console), this rule will insert the same ClassifierEntry object (this object 

belongs to the CIM Class ClassifierElement) in the ClassifierService elements of all 

routers that belong to the domain /Routers/EdgeRouters/DomainA. Moreover, if a new 

device is later added to that domain, the corresponding Policy Management Agent 

DiffServManager will be notified and will apply the policy to the newly added device 

automatically.  

3.1.2 Policy rules for implementing DiffServ Per Hop Behaviours 
 

Per-Hop Behaviour specifies the treatment packets should receive on a DiffServ node, as 

they are traversing a sequence of functional datapath elements. The implementation of 

both standard and vendor specific PHBs can be provided by using more complex policy 

rules, whose specification can be easily altered to provide varying PHBs.  

 

In Example 3.4, we present a policy, which configures a set of routers within the DS 

domain to implement the EF PHB. In this example, traffic above the configured 

maximum input rate is degraded to receive the Best Effort PHB. The 

EFConfigurationPolicy is triggered by the administrator’s request EFConfigRequest and 

will configure all routers within the target domain.  
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Example 3.4 Policy rule for implementing the EF PHB within a given set of core 

routers 

  
inst oblig EFConfigurationPolicy { 

subject DiffServManager; 

target r = /DomainA/Routers/CoreRouters; 

on EFConfigRequest(DSCP,b,r,p); 

do r.applyEFPHB(DSCP, b,r,p); 

 

/* The first event parameter, DSCP, specifies the DiffServ codepoint for the EF PHB, 

usually 0x2e.The remaining event parameters, b, r and p, will be used to configure the 

metering elements within the core routers so that only traffic conforming to the 

TokenBucket traffic profile with parameters (b,r,p) will be treated with the EF 

behaviour. More specifically, b specifies the size of the bucket, p specifies the peak 

rate of the traffic that the bucket accepts and finally, r, specifies the rate for generating 

tokens. */ 

 
An example of the implementation of the complex policy action applyEFPHB is outlined 

with the pseudocode shown in Figure 3.2, which is technology-specific and assumes that 

the Weighted Round Robin scheduling algorithm can be used. Alternative 

implementations could use a Priority or a Class Based Queueing (CBQ) scheduler. Which 

scheduling algorithm should be used for implementing the EF PHB, is an administrator’s 

decision and must comply with the restrictions imposed by the technology-specific 

implementation of DiffServ within different devices, by different vendors.  
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applyEFPHB(DSCP, b,r,p) :-  

Filter filter = new Filter ( DSCP); 

ClassifierElement cls = new ClassifierElement(); 

cls.addFilter(filter); 

/* b,r and p are the TokenBucket parameters. b is the size of the bucket, p the peak rate of the 

 traffic that the bucket will accept and r the rate for generating tokens*/ 

TokenBucketMeterService tb = new TokenBucketMeterService (b,r,p); 

cls.setNextService (tb);   

/* The value 1 specifies that this class will receive the highest priority from the WRR scheduler, 

 as this will be the EF traffic. The second parameter indicates the rate at which we want the  

traffic to leave the network interface, which must be on average less or equal to the rate at  

which the bucket is filled with new tokens. Therefore, we specify  “r” to be the rate for departing  

the WRR scheduler */ 

WRRSchedulingElement sched = new WRRSchedulingElement ( 1,r );  

tb.setNextService(sched); 

Figure 3.2 Implementation of the applyEFPHB action  

Note that failures of execution of a policy action can be detected by our management 

system, as an optional “catch” clause is supported for this purpose by the policy 

specification itself, see Figure 2.2. An exception raised by a catch clause can be sent to 

the administrator’s console in order to notify him that some action(s) has/have failed to 

execute on a subset of devices within the subject or the target domain. Moreover, the 

exception indicating this type of failure could act as a triggering event for another Ponder 

obligation rule, which the administrator has a priori defined for resolving the possible 

reasons that caused the failure of the policy action. More information about how this can 

be implemented will be discussed in Chapter 5 of this thesis.  

 

Policy actions can be either methods, implemented in a programming language, within 

the Policy Management Agents’ policy engines, or as scripts that are interpreted at run-

time by script engines within the Policy Management Agents. It would be possible to 

perform synchronisation of actions on a set of distributed target objects using two phase 

locking. Similarly, all-or-nothing semantics could be implemented using a two-phase 

commit protocol implemented by a script.  However, this is not recommended for large 

numbers of routers as it is likely that not all of them will be available when the action is 
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executed, so this approach will fail.  A better approach is to use a script which performs 

the action on all target objects which are available and updates a list of objects on which 

the action failed.  The action could be periodically repeated until all target objects are 

updated i.e. the system converges to the required state over time. This assumes that the set 

of objects in the target domain can work normally if the action is performed on some of 

the objects and not others, so the approach to use is application dependent. 

 

Note that in the current implementation of the Ponder toolkit, subject and target policy 

objects are implemented as Java RMI objects, so we implement complex policy actions as 

remote methods within subject/target objects’ engines. 
 

In the examples we have presented, the implementation of the policy action is based on 

the creation of individual CIM objects. The interconnection between CIM objects (ie. 

their place in the CIM agent handling the CIM objects) is provided by the method 

setNextService, which sets the NextService association (refer to Figure 3.1). In the 

following section, we will present how CIM objects that the Ponder policies create are 

downloaded to the target routers.   

 

Also note that in our framework, a policy rule is always active, unless it has been 

explicitly disabled by the administrator. Policy Management Agents can receive events 

(other than configuration requests) relating to changes in the system and then enforce the 

relevant policies. For example, when a monitoring service detects a high drop rate of the 

EF traffic class, it can raise an EFConfigRequest with a higher maximum input rate value. 

This dynamic triggering of policies is one of the mechanisms used for adaptive 

management in our framework, as we will present in Chapter 4 of this thesis. 

3.2 Implementation of Policy Enforcement for DiffServ 
Routers 

 
Ponder policy actions in our framework involve adding, removing or updating DiffServ 

functional elements represented in the CIM Network Common Model.  We have 

implemented a generic enforcement architecture to communicate the policy actions to 

DiffServ-enabled devices. This architecture abstracts the lower-level protocols used for 

communication with the devices’ management interfaces. Figure 3.3 presents the main 

components of our policy enforcement architecture. 



Chapter 3 Policy Based Configuration of Differentiated 
Services Networks 

58

 

 

Device Driver

WBEM Services
CIMOM

Provider A

 Operating System

COPS PIB

SNMP

XML/HTTP or RMI

CIM
Repository

Provider B Provider C

DiffServ
MIB

Vendor
independent

protocol

javax.wbem.client

javax.wbem.provider

COPS-PR

Policy
 Rules

LDAP

Vendor specific
commands

Network Management Station

 
 

Figure 3.3 Policy Enforcement Architecture  

Two main components comprise this enforcement architecture:  

 

• The Network Management System, where Ponder policies are edited, compiled 

and distributed to their corresponding Policy Management Agents (PMAs). The 

Ponder deployment model [Dulay et al. 2001] is used for the distribution of 

policies to the PMAs. We extended the functionality of PMAs and Target Policy 

Objects with the capability to act as CIM clients to allow these components to 

add/update/remove CIM objects.  

 

• A CIM Object Manager (CIMOM) that handles requests from the Ponder CIM 

clients for adding/updating/removing of CIM objects. A set of Provider 

components are attached to the CIMOM to communicate CIM objects to a 

specific DiffServ device using an available management protocol, eg. a vendor 

specific protocol, SNMP or COPS-PR, as we indicate in Figure 3.3.  

 

In the prototype implementation of the policy enforcement architecture, the DiffServ 

classes of the CIM Network Common Model are implemented within the CIM Object 
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Manager (CIMOM) from the WBEM Services project [WBEM Services Project 2003]. It 

provides a Java implementation of a CIMOM with two communication interfaces as 

shown in Figure 3.3. These are: 

• The javax.wbem.client interface, used by Ponder clients for transferring CIM 

objects to and from the CIMOM. This communication can be realised either 

through HTTP (where CIM operations are defined in XML) or through Java RMI.  

• The javax.wbem.provider interface, which providers attached to the CIMOM use 

to communicate with the CIMOM. Providers are implemented as Java classes and 

each Provider is responsible for handling a number of CIM classes. 

 

We have implemented a Provider (Provider A in Figure 3.2) specific for Linux systems. 

This Provider downloads CIM objects through the Java RMI interface to a Linux Driver, 

namely CIM2TCDriver, which we have designed and implemented in Java. The CIM2TC 

Linux Driver is used to translate CIM classes specified in the CIM Network Common 

Model to traffic control commands [Linux Advanced Routing & Traffic Control HOWTO 

2002] for configuring the available DiffServ mechanisms of a Linux router, which we 

presented in section 2.1.3.  

 

Note that the management system does not communicate directly with the 

CIM2TCDriver, but via the CIMOM. This provides support for using the management 

system and the same Provider to enforce policies that apply to other types of DiffServ 

devices other than Linux routers. This would only require the implementation of 

alternative device drivers. It is also possible to use SNMP or COPS-PR to configure the 

Linux device, as indicated by Providers B and C in Figure 3.2, which could issue SNMP 

set requests to set MIB variables within the DiffServ MIB (as described in [Kim et al. 

2000] or COPS-PR messages to transfer information to a DiffServ PIB respectively. 

However, we were unable to find a complete SNMP or COPS-PR implementation for 

Linux, so we have not implemented this. 

 
As mentioned earlier, our prototype implementation uses the CIM2TC driver to configure 

a Linux router using traffic control (“tc”) commands. This approach is similar to that of 

[Martinez et al. 2002], in which a driver component is used to translate classes that follow 

the DiffServ MIB object model [Baker et al. 2001] to Linux traffic control commands. 

However, this prototype implementation used a translation algorithm with limitations in 

terms of the types of low level mechanisms it can configure, but we have used the “jtc” 

package from this implementation to represent the traffic control mechanisms of the 
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Linux DiffServ router which is indicated as the LinuxDiffServ.LinuxDriver.tc package in 

our implementation, as shown in Figure 3.4.  
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Figure 3.4 Object Model used by the CIM2TC Driver component   

Our implementation uses a new algorithm for translating the DiffServ classes of the CIM 

Network sub-model to the correct low-level “tc” objects, as indicated in the pseudocode 

outline for the CIM2TCDriver in Figure 3.5. 
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foreach tcb in tcbs[] { 

// create policing filters at the ingress interface 

if (tcb.interfaceDirection == “ingress”) then { 

foreach MeterService in tcb create policing filters;} 

else { // Create tc qdiscs and classes at the egress interface  

if (deviceIsNotConfigured) then outerQdisc = new DSMarkQdisc(); 

schedulingElement = tcb.getSchedulingElement(); 

filters[] = tcb.getFilters(); 

if (schedulingElement is a WRRSchedulingElement) then { 

   innerQdisc = new CBQdisc( … ); 

   DiffServClass = new CBQClass( …); } 

else // other types of schedulers  

 if (schedulingElement is a PrioritySchedulingElement) then { 

innerQDisc = new PrioQdisc( …);  

   DiffServClass = new PrioClass( … );} 

else  

if (schedulingElement is a BoundedPrioritySchedulingElement) then {..}  

        } //end of if clause for interface direction 

 

// Create metering, marking and dropping classes and qdiscs  

 

foreach element in tcb after ClassifierElement and before SchedulingElement { 

 if (element is a DSCPMarkerService) then add new DSMarkQdisc ( … ) ; 

 if (element is a TokenBucketMeterService) then add new TBFQdisc (…) ; 

if (element is a REDDropperService) then add new REDQdisc(…); } 

// Create the filters that will direct the packets to the DiffServ class 

createTCFilters (filters[]); } 

Figure 3.5 Pseudocode for the CIM2TC Driver component  

 

The CIM2TCDriver takes as input a set of instances of the Traffic Control Block (TCB) 

class. We extended the CIM network sub-model with the TCB class, whose scope is 

described in [Carlson et al. 1998], in order to represent higher-level blocks constituted by 

combinations of ConditioningService CIM objects. A TCB object uses the association 

FirstConditioningServiceInTCB to hold the first ConditioningService; the other 

ConditioningServices are retrieved using the association NextService already defined in 

CIM. The TCB objects are downloaded to the CIM2TCDriver from Provider A shown in 

Figure 3.2, which handles CIM requests for objects whose classes belong to the package 

Linux.DiffServ.LinuxDriver, presented in Figure 3.4. The CIM2TCDriver parses each 

TCB chain using the translation algorithm outlined above in order to derive the set of “tc” 

objects that correspond to the input TCB. Figure 3.6 gives an outline of the mapping of 
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CIM DiffServ functional elements to Linux traffic control structures (i.e. qdiscs, classes 

and filters described in [Linux Advanced Routing & Traffic Control HOWTO 2002]). 

 

 

Figure 3.6 Mapping of CIM objects to Linux traffic control structures 

 

A usage example of the CIM2TCDriver is presented in Figure 3.7, which shows a 

Graphical User Interface [Zelu 2003]1, developed for using the driver to configure Linux 

routers.  

 

 

Figure 3.7 DiffServ configuration GUI 

 

Note that one limitation of the mapping of CIM objects to Linux traffic control 

commands is that it is not possible to use our algorithm, in order to communicate any 

arbitrary chain of CIM DiffServ objects to a Linux router. This is due to the limitations of 

                                                 
1 This MSc thesis was carried out under my supervision. The GUI uses the CIM Network Common Model to represent 
DiffServ functional elements and interfaces with the CIM2TCDriver to send the “tc” configuration to the device.  
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the Linux traffic control architecture [Almesberger 1999], presented in section 2.1.3. 

More specifically, it is not possible to communicate a chain consisting of more than one 

TokenBucketMeterService or more than one REDDropperMeterService CIM objects. The 

same applies when there exist together one or more TokenBucketMeterService and one or 

more REDDropperMeterService objects in the chain. This happens due to the fact that the 

corresponding Queuing disciplines (TBFQDisc and REDQDisc) are classless, i.e. it is not 

possible to use within them another Queuing discipline or another Class components. 

Furthermore, one feature that we have not implemented is handling of recursive Traffic 

Control Block (TCB) structures. Our algorithm takes as input simple TCB structures, i.e. 

TCBs that are of the form of a linked list of CIM objects. However, since multiple 

schedulers may be used for the implementation of compound TCBs, the latter can be 

recursive structures, ie. complex TCBs that consist of simpler TCBs. This could be 

implemented as future work.  

3.3 Usage Example of Policy Enforcement for Linux 
Routers  

 

In the following, we will provide an example of usage our prototype implementation on a 

testbed DiffServ network of Linux routers. The network topology we set up for our 

experiments is presented in Figure 3.8. 
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Figure 3.8 Network topology of testbed DiffServ network   
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The core routers in our testbed DiffServ network are the Linux machines Athena and 

Odysseus. The objective of this example is to enforce a policy rule similar to the one 

presented in Example 3.4 for implementing the EF PHB within all the core routers within 

the DiffServ domain.  The administrator uses the Editor tool of the Ponder Toolkit (shown 

in Figure 3.8) to edit and compile the policy rule EFConfigurationPolicy. Figure 3.9 

displays the policy objects stored in the LDAP directory server, which the Ponder Toolkit 

uses for storing policies, policy subjects and policy targets. 
 

 

 

Figure 3.9 Ponder Editor 
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Figure 3.10 Ponder Domain Browser 

 

The policy EFConfigurationPolicy uses the complex action applyEFPHB_WRR, which 

constructs the TCB shown graphically in Figure 3.7. In our current implementation, this 

policy action is implemented as a Java method within the Policy’s Target Object, which is 

implemented as a Java RMI object, representing the managed device within the Ponder 

toolkit. The functionality of the action applyEFPHB_WRR is outlined by the following 

Java code.  

 
public void applyEFPHB_WRR (String interfaceName, int DSCP, double classRate) 
{ 
 
 TCB tcb = new TCB(interfaceName); 
 EgressFilter filter = new EgressFilter ((byte)DSCP); 
 

// Creates a ClassifierElement object 
 ClassifierElement cls = new ClassifierElement(); 
  
 cls.addFilter(filter); 
 

// Creates a EWMAMeterService object  
 EWMAMeterService tb = new EWMAMeterService(classRate); 
  
 cls.setNextService (tb); 
  
 // Creates a WRRSchedulingElement object with the highest scheduling priority: 1   
 WRRSchedulingElement sched = new WRRSchedulingElement(1,classRate); 
  
 tb.setNextService(sched); 
  
 // Creates the TCB  
 tcb.setStart(cls); 
 
 // Communicates the TCB to the CIMOM 
 CIMOM.sendTCB(tcb); 

} 
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Note that further implementation work could integrate the Ponder Editor with the 

Graphical User Interface shown in Figure 3.7, so that the administrator is able to 

graphically specify policy actions that involve CIM classes to add/update/delete TCBs 

within the managed devices. 
 

The policy rule EFConfigurationPolicy is enforced by the management agent 

NetworkPMA. The NetworkPMA receives the obligation event EFPHBRequest with 

parameters indicating the network interface of the target device where the EF PHB is to 

be implemented, the DSCP associated with this PHB and the bandwidth that will be 

assigned to the EF traffic class. Figure 3.10 displays the “tc” commands that the 

CIM2TCDriver, which is running within the target core router Athena, generated for 

performing the policy action applyEFPHB_WRR, with parameters the list  (”10.0.2.2”, 46, 

10e6) when the action is implemented as the TCB presented in Figure 3.7. It also displays 

statistics about the DiffServ classes implemented in the core router Athena, where the 

policy action applyEFPHB_WRR is enforced. 

 

 

 

 

 

 

 

 

Figure 3.11 Result of enforcement of the rule EFConfigurationPolicy  

 

Since there does not exist an implementation of a Linux command line traffic monitoring 

tool for providing the throughput, round trip delay and packet loss metrics per each 

implemented DiffServ class, we have implemented for this purpose three “probe” 

components with the Perl scripting language. The first probe that we implemented 

(throughput monitoring probe) monitors the traffic within a Linux core router by issuing 

to the kernel periodically traffic control statistics commands (“tc –s” commands). It then 

uses the output of the traffic control statistics commands to provide the throughput of 

each implemented DiffServ class at the egress interfaces of the Linux core router where 

the probe is running. The bandwidth data for the core router Athena shown in Figure 3.10 

 
[root@Athena root]# ./RunDriver.sh  

 tc class  add  dev eth1 classid 2:4 parent 2:0 cbq bandwidth 100Mbit avpkt 1000 rate 10Mbit 
bounded  isolated  weight 1Mbit prio 1 

tc qdisc add dev eth1 parent 2:4 handle 3:0 pfifo  limit 5 
tc filter  add  dev eth1 parent 2:0 protocol ip prio 4 handle 0x2e tcindex  classid 2:4 pass_on 
 

[root@Athena root]# DiffServMonitor & 
ClassID   Queing     Rate     Sent packets       Sent bytes   Dropped Packets  Bandwidth (bps) 
     2:1      cbq    1Mbit             9372         14121152             215            1102192 
     2:2      cbq    2Mbit                   0                0                 0                              0 
     2:3      cbq    2Mbit            10415        15406832            635            2194376 
     2:4      cbq   10Mbit                  0                0                 0                                    0 
 ClassID   Queing     Rate     Sent packets       Sent bytes   Dropped Packets  Bandwidth (bps) 
     2:1      cbq    1Mbit             9558         14401308                 219            1120624 
     2:2      cbq    2Mbit                    0                0                 0                          0 
     2:3      cbq    2Mbit            10754         15917214                647             2041528 
     2:4      cbq   10Mbit              506           762732                  4              3050928 
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is provided by the bandwidth monitoring probe. The second probe (round trip delay 

probe) provides information about the round trip delay between a source host and a 

destination host within the DiffServ domain.  It runs within the source host and monitors 

actively the round trip delay metric between that host and the destination host by issuing 

periodically “ping” requests to the latter host. The administrator can use this probe in 

order to obtain the round trip delay experienced by a particular traffic class. A typical 

usage of this probe is to monitor the round trip delay between an edge router (e.g. 

Achilles in Figure 3.7) and several destination hosts (e.g. Zeus and Menelaos in Figure 

3.7) within the DiffServ network, each one receiving a particular class of service (e.g. if 

Zeus is receiving “gold” service and Menelaos is receiving “bronze” service). The third 

probe (packet loss monitoring probe) operates in a similar way to the bandwidth 

monitoring probe, providing the packet loss experienced by each implemented DiffServ 

class within the network.  

 

To graphically display the metrics provided by our probes within a monitoring station 

(this station must not necessarily be inside the DiffServ network), we have implemented 

with the C++ programming language a graphical tool for generating realtime graphs 

showing the throughput, round trip delay and packet loss per each implemented DiffServ 

class.  An instance of an execution of this tool is shown in Figure 3.12.  
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Figure 3.12 DiffServ Traffic Monitor Tool  

 

The administrator can use the DiffServ Traffic Tool to monitor the results of the 

enforcement of his policy rules within the network. For example, in the scenario shown in 

Figure 3.12, the administrator used the tool to monitor the core router Athena, before and 

after the execution of the policy EFConfigurationPolicy, shown in Figure 3.8. As the 

graphs in Figure 3.12 show, traffic marked with the EF DSCP (0x2e) and received by the 

client host Zeus originally was falling within the Best Effort traffic class, indicated with 

the fuchsia lines in the bandwidth and packet loss graphs. After the enforcement of the 

policy action applyEFPHB_WRR, the new class of traffic was successfully created within 

the router Athena, so that the EF marked packets are treated with higher priority over the 

other implemented traffic classes. Finally, note that although the new class receives 

higher priority, the round trip delay between the edge router Achilles and the client Zeus 

increased after the creation time of the EF traffic class. This is due the large amount of ftp 

traffic that the client Zeus started receiving after the creation of the EF class.  
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3.4 Discussion 

 
This chapter presented a novel policy network management framework which uses the 

Ponder language for specifying policy and CIM as the modelling framework for network 

mechanisms. We presented how device-independent Ponder policies can be specified 

using the CIM representation of network mechanisms, and we described a generic 

architecture for mapping Ponder rules into device configuration independent of the 

communication protocol between the policy-based management system and the managed 

devices.  

 

We presented an example application of our framework for the management of 

Differentiated Services networks. We described how policy rules for configuring 

individual DiffServ mechanisms or more complex policy rules, such as rules for 

establishing either standard (i.e. AF, EF) or used-defined Per-Hop Behaviours in a 

DiffServ domain can be expressed in our framework. It would also be possible to use our 

framework to define policies in terms of Service Level Objectives that the managed 

network must satisfy, eg. a policy rule that guarantees Gold Service  to certain users or 

applications, by using. EF PHB. This would require a policy refinement process, such as 

the one described in [Verma 2001], to derive network-level policies that are expressed in 

terms of PHBs from the higher-level policies, expressed in terms of Service Level 

Objectives. 

 

We also presented our prototype implementation for policy enforcement for Linux 

DiffServ routers, which uses a Linux driver component for communicating the policy 

actions. This driver implements an algorithm that we designed for translating CIM classes 

to Linux traffic control classes. Management of different network environments, such as 

MPLS can also be realised with our framework by specifying policy in terms of CIM 

represented MPLS mechanisms and using the same enforcement architecture for 

communicating MPLS-specific policy actions, using available management protocols or 

device-specific drivers.   

 

Compared to the policy-based systems used for network management (IETF’s policy 

framework, and commercial policy toolkits), which we presented in section 2.3, our 

policy framework explicitly identifies the policy targets and allows grouping of targets 

into domains, and such, as we already discussed in section 2.1, our framework provides 

scalability with respect to the number of policies that need to be specified and deployed 

within the managed network. We also give the administrator the flexibility to specify 
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policies at different levels of abstraction and uses a generic enforcement architecture for 

policy deployment, independent of the lower level management protocols. Furthermore, 

network management policies defined in our framework are not static. Rather, they can be 

dynamically triggered by events, with different parameters, in order to automatically 

change the configuration of the managed objects under changing circumstances. The 

dynamic configuration of policies forms the basis of the adaptive management our 

framework can provide. 

 

 

 

 



  

  

4. Chapter 4
Policy Adaptation within the 
Ponder Framework  

 

When applying policies to network elements, the policy actions are those provided by the 

management interface of the managed element. Thus, the “level of abstraction” of the 

policies is determined by the available implementation. However, as we discussed in the 

introduction of this thesis, network management with a policy-based management system 

may require adaptation of existing network policies to cater for changes within the 

managed network. Thus, policies themselves need to be managed and adapted. In this 

chapter, we identify different adaptation requirements and show how policy adaptation 

can itself be specified and enforced by other policies, specified in the same Ponder policy 

notation. 

 

We use the term “Policy Adaptation” to describe the ability of the policy-based 

management system to modify network behaviour in one of the following ways: 

• Adaptation by dynamically changing the parameters of a network management 

policy to specify new attribute values for the run-time configuration of managed 

objects.  

• Adaptation by selecting and enabling/disabling a policy from a set of pre-defined 

network management policies at run-time. The parameters of the selected 

network management policy are set at run-time.  

• Adaptation by learning which are the most suitable policy configuration strategies 

from the system behaviour. This can be used to select policies or even generate 

new ones when needed.  

 

In this chapter, we will focus only on the first two categories of policy adaptation as 

adaptation by learning still requires considerable further work. The rest of the chapter is 

organised as follows. Sections 4.1 and 4.2 will present how policy adaptation is realised 

for each of the first two categories outlined above. Section 4.3 will present the 

enforcement architecture for an adaptive policy system which implements our new ideas. 

Sections 4.5, 4.6 and 4.7 will provide usage examples where the proposed adaptive policy 

framework caters to the adaptive management of a Differentiated Services network, in a 

network security scenario and in a ubiquitous environment respectively. A description of 

the implementation of our policy adaptation enforcement architecture in a network 
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simulator will be given in section 4.7, as well as some results from conducted simulations. 

Section 4.8 will conclude the chapter with a discussion of the overall work achieved. 

4.1 Run-Time Modification of Policy Parameters 

 

In the general case, the specification of a network-level management policy used for 

dynamically adapting the managed devices’ configuration (i.e. configuration of DiffServ, 

MPLS or other types of network mechanisms) follows the format shown in Figure 4.1. 
 

inst oblig NetworkPolicy { 

subject NetworkLevelPMA; 

target targetSet = TargetDomainofDevices;  

on Event(EventParameters[]); 

do ActionParameters[] = CalculateActionParameters(EventParameters[]) -> 

     targetSet.executeAction (ActionParameters[]); } 

 

Figure 4.1 Generic format of a network management policy 

 

In Figure 4.1, an event triggers the execution of the policy in one or more subjects, i.e. 

Network-level Policy Management Agents (PMAs). Using the EventParameters, the 

PMA calculates the required policy ActionParameters, by calling the internal method 

CalculateActionParameters, and then it invokes the relevant policy actions on the target 

objects in the TargetDomainofDevices with the new policy parameters.  

 

Policies provide a flexible means for providing this type of adaptation rather than 

components written in a procedural language. New adaptation strategies can be 

incorporated into the management system by adding new policies which react to different 

events using the existing policy actions or by replacing existing policies with new 

versions, which either implement new actions on the managed objects or new actions on 

the Policy Management Agents. With programmable networks, new actions may be 

added, via a management interface in network elements, so the policies can be updated to 

access this new functionality. The code that implements new actions or new calculation 

methods within the Policy Management Agent’s engine can be loaded at run-time either 

through the administration console or by the new policies themselves.  If the functionality 

of the PMA were implemented using a traditional programming language, it would be 

necessary to recompile the code and replace the agent which would require stopping the 

system while this was being done. 
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4.2 Adaptation by Dynamically Selecting and Enabling 
Policies from a Set of Policies  

 

In this approach, obligation policies at the service level (we will use the term service 

management policies for policies defined at the service level) are triggered by events 

indicating changes within the managed environment and determine which lower-level 

network policy must be enabled/disabled to adapt the configuration of the managed 

system. As we discussed in the previous section, the advantage of using policies rather 

than a procedural language for selecting and enabling the appropriate network-level 

policies is that modifying or adding new management strategies at this level can be 

achieved by replacing the service management policy or adding new ones. Furthermore, 

the same Ponder deployment framework can be used to distribute both service 

management policies and network policies [Dulay et al. 2001]. Figure 4.2 presents the 

location and the functionality of service management policies within the network 

management system.  
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Figure 4.2 Service management policies for policy adaptation   
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In the general case, a higher-level service management policy is specified with the 

template obligation rule ServiceManagementPolicy, presented in Figure 4.3.  

 
inst oblig ServiceManagementPolicy { 

subject ServicePMA; 

on AdaptationRequest (params[]); 

do NetworkPolicy = selectPolicy (params[])-> NetworkPolicy.enable(); 

     // The following apply when the network policy is an obligation policy 

    ->NetworkPolicy’sParams [] =  calculate (NetworkPolicy, params[]) ; 

    ->EventService.GenerateEvent( NetworkPolicy’sObligationEvent,  

            NetworkPolicy’sParams []);} 

 

Figure 4.3  Specification of a generic control management policy 

 

Note that in the specification of the generic service management policy, a network policy 

can be either an obligation management policy or an authorisation access control policy. 

This implies that the same mechanism is used to specify how network policy should be 

adapted independently of its application to management of a specific network mechanism. 

 

In the policy shown in Figure 4.3, an AdaptationRequest event (such as new service 

request, network failure, changes in application/user requirement as shown in Figure 4.2) 

triggers the selection of network policies for configuring network elements such as 

routers or firewalls. The ServicePMA first selects the most appropriate network-level 

policy to actually implement the configuration, using the selectPolicy method and then 

the policy is enabled. The network-level obligation policy will be interpreted by either 

one or more Network-level PMAs, while a selected network-level authorisation policy 

will be interpreted by one or more Network-level Access Controllers (ACs).  

 

In case of selection of obligation network-level policies, the parameters related to the 

specific policy are calculated; and, finally an event is sent via the event service to pass 

parameters and trigger the selected obligation policy.  Note that the advantage of 

triggering the network-level obligation policy via the event service is that there may be 

multiple agents managing subsets of the network devices.  These agents will all receive 

the event and configure their respective devices.  
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4.3 Enforcement architecture 

 

In the general case, the management functionality of the generic Policy Management 

Agent ServicePMA is specified with the obligation rule ServiceManagementPolicy, 

presented in Figure 4.3.  
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Figure 4.4 Enforcement architecture for policy adaptation 

 

The enforcement architecture is presented in Figure 4.4.  

 

1. The ServicePMA receives the event AdaptationRequest from the event service. 

As we discussed in section 4.2, the adaptation event could be from a new 

application requiring changes to QoS, performance measurements coming from a 

monitoring service that require changes in the existing network configuration, 

events indicating network failures or time events, security violations, etc.  

2. The ServicePMA queries the current policy database from the policy service. The 

policy database contains references to all implemented network-level policies. 

The behaviour of network policies is described within the policy database with a 

common set of attributes, on which their selection is based. The administrator 

specifies the values of network policy attributes within the policy database. See 

Table 4.1 for example entries within the  policy database. The ServicePMA then 
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invokes a selection algorithm to choose a suitable network policy from the set of 

implemented ones. 

3. The enable() method is called on the selected network policy object, which in 

turn calls the enable() method  on the relevant Network-level PMAs or ACs. At 

this point, the selected policy is activated in the relevant Network-Level ACs or 

in the Network-level PMAs.  Furthermore, an “old” policy can be unloaded or 

disabled from the corresponding PMAs. In case of an obligation network policy, 

enabling the policy means that policy enforcement objects within the PMAs 

register the obligation event with the event service, as described in [Dulay et al. 

2001]. However, the policy needs to be triggered by the obligation event to 

perform the policy actions. Steps 4 and 5 apply only to obligation network 

policies when they need to be triggered immediately after their selection (eg. for 

policies implementing a new class of traffic to handle a new application request). 

In other cases, the selected obligation policies will be triggered later (e.g. with a 

time event), hence steps 4 and 5 are not required.    

4. The obligation event is generated with the network policy calculated parameters 

to trigger the policy.  

5. The event service disseminates the obligation event to all Network-level PMAs 

that are registered to receive the specific event.  

4.4 Adaptive Management of Differentiated Services 
Networks 

  

In our approach, adaptation is enforced by higher-level policies. This section presents a 

usage scenario, where network policy that provides Per Domain Behaviour (PDB) in a 

Differentiated Services environment is adapted by service management policies. Service 

management policies are enforced by Policy Management Agents at the service level. The 

latter are responsible for the management of services that run within the managed 

DiffServ network.   

 

Table 4.1 PDB policies and their QoS characteristics 

  
PDB 

identifier 
Enforcement 

Network Policy 
Assured 

bandwidth 
(Mbps) 

Delay 
(ms) 

Jitter 
(ms) 

Loss 
(%) 

Enforcement 
Routers Path 

Time when 
valid 

PDB1 /Policies/Policy1 10 ≤ 20 ≤ 3 ≤ 1 <r1,…, rN> Every day 
PDB2 /Policies/Policy2 20 ≤ 10 < 1 ≤ 0.1 <r1,…, rM> Working 

hours 
… … … … … … … … 
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The IETF DiffServ working group has proposed in [Nichols et al. 2001] the term Per 

Domain Behaviour (PDB) to describe the behaviour experienced by a particular set of 

packets as they cross a DiffServ domain. A PDB is characterized by specific metrics that 

quantify the treatment a set of packets with a particular DSCP (or set of DSCPs) will 

receive as it crosses a DiffServ domain. A PDB specifies a forwarding path treatment for 

a specific aggregate. A PDB is implemented with one or more Per Hop Behaviours 

(PHBs). A PHB describes the forwarding behaviour that a DiffServ node applies to a 

particular DiffServ behaviour aggregate. PHBs are implemented in nodes by means of 

some buffer management and packet scheduling mechanisms.  Each PDB has measurable 

attributes that can be used to describe what happens to its packets as they enter and cross 

the DiffServ domain. In our framework, each PDB is implemented as a network-level 

policy rule. Each rule guarantees the PDB attributes to the corresponding traffic 

aggregate. Table 4.1 presents examples of QoS guarantees that PDB policies can offer to 

their associated traffic aggregates.  

 

In our framework, PDB policies are specified as Ponder obligation rules. The actual 

implementation of the PDB policy, i.e. the implementation of the PHB (or the set of 

PHBs) that will guarantee the QoS characteristics to the corresponding traffic aggregate, 

is hidden from the customer. The customer (human or automated agent) is offered the 

externally observable PDB QoS attributes. An example of a PDB Ponder policy rule is 

given below. 

 

Example 4.1 Policy rule for providing a specific PDB 
 

inst oblig /Policies/PDBPolicy1 { 

subject /PMAs/DiffServAgent; 

target r = /DiffServDomainA/Routers/CoreRouters; 

on PDB1_ConfigRequest(DSCP, TokenBucketProfile(b,r,p)); 

do r.applyEFPHB(DSCP, TokenBucketProfile(b,r,p)); 

/* The PDB1 is implemented with the EF PHB. The event paramter DSCP, specifies 

the codepoint for the EF PHB, usually 0x2e.The second event parameter is the 

structure TokenBucketProfile and it will be used to configure the metering elements 

within the routers so that only traffic conforming to the TokenBucket traffic profile with 

parameters (b,r,p) will be treated with the EF behaviour*/ 

 

In this example, we assume that the core routers within the DiffServ domain can 

implement the EF PHB, so the PDB policy will configure them accordingly. A possible 

implementation described in [Jacobson et al. 1999] of the applyEFPHB action can use the 

Weighted Round Robin scheduling algorithm to schedule the packets at the egress 
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interface of each core router. Note that the policy rule in this example will configure the 

core routers within the DiffServ domain to implement the EF PHB on the corresponding 

traffic aggregate. An additional policy is needed to provide the necessary configuration to 

the edge routers of the DiffServ domain. When the network-level PMA DiffServAgent 

receives the event PDB1_ConfigRequest, it invokes the applyEFPHB action on all routers 

in the target domain. This way, all core routers within the target domain will guarantee a 

minimum output rate (throughput) to the EF-marked packets, when these packets do not 

exceed the configured maximum input rate at the ingress router interface. An alternative 

implementation of EF could use a priority scheduler at the egress interface of the target 

core routers.  

 

Our current implementation extends the Ponder toolkit [Damianou et al. 2002] with the 

functionality to enforce DiffServ policies. Policies in the Ponder toolkit are Java RMI 

objects. The DiffServ specific policy actions (e.g. applyEFPHB) are methods within the 

policy object that the network-level Policy Management Agents invoke when triggered by 

the configuration request event.  

 

The Per Domain Behaviour policies are enforced by DiffServ enabled Network-level 

PMAs (see Figure 4.4). These policies configure the QoS mechanisms of the managed 

devices within the DiffServ network. However, as we have already discussed, network 

service management requires additional functionality. The required functionality that 

enables dynamic service management is provided in our framework by Service Level 

Policy Management Agents. In the following, we will provide examples of service 

management policies for dynamic service management.  

 

SLS to PDB mapping policy 

 

SLS to PDB mapping can be performed by the ServiceManagementAgent when the 

administrator triggers the policy rule SLSMappingPolicy in Example 4.2 by means of an 

SLS request. 
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Example 4.2 SLS to PDB mapping policy 

 
inst oblig SLSMappingPolicy { 

subject ServiceManagementAgent; 

on SLS_Request  (SLS_parameters[]); 

do pdb_policy = select_using_algorithmA(SLS_parameters[])-> 

     pdb_policy.enable()-> 

     pdb_policy_parameters[] = calculate ( pbd_policy, SLS_parameters[])->  

     EventService.GenerateEvent (pdb_policyObligationEvent,   

             pdb_policy_parameters[]);} 

 

A new SLS request from an application with specific parameters will trigger the 

SLSMappingPolicy.  The ServiceManagementAgent uses the SLS parameters to select a 

suitable PDB policy from the policy database.  The PDB policy is enabled and triggered 

to configure network devices. Note that we use the Tequila project SLS approach for 

DiffServ SLS parameter specification [D. Goderis et al. 2001]. A “parser” component 

within the Ponder management toolkit is used to translate the Tequila external SLS 

specification to pairs of <parameter, value>. These pairs are stored in the structure 

SLS_parameters and are conveyed to the agent with the obligation event SLS_Request. 

Upon the receipt of the SLS_Request, the ServiceManagementAgent will select the 

appropriate PDB policy for this specific service request. An example of a selection 

algorithm is outlined in [Prieto et al. 2001], where the PDB is selected according to the 

triple <delay, loss, throughput>.  

 

Policy to handle service performance degradation  
 

A number of different adaptation strategies could be used for handling service run-time 

performance degradation, notified by the monitoring service, as indicated in Figure 4.2. 

There may be a need to dynamically change these strategies by replacing a policy within 

the ServiceManagementAgent with a new version or by enabling/disabling different 

versions of the policy. Policies provide a more flexible means of implementing this type 

of service-level adaptation than scripts or special purpose code. Events indicating high 

delay or high packet loss could trigger policies in the ServiceManagementAgent. In the 

following examples, we indicate adaptation strategies, which could be implemented by 

Ponder policies for the management of a  video client application within a DiffServ 

network, but we do not define the actual policies. In all the examples, we assume that the 

video application receives the EF network service and that the EF PHB is implemented as 

presented in Example 4.1.  
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The monitoring system detects that the EF service end-to-end delay exceeds a threshold 

so it generates a HighDelay event received by the ServiceManagementAgent. Corrective 

actions which may be performed include: a) Increase the minimum departure rate of the 

EF traffic at the egress of every core router to guarantee that the service packets 

(especially large ones) will remain in the output queue for less time before being 

transmitted to the next hop; and, b) Notify the client application to choose a different 

state, which requires less bandwidth and hence decreases the incoming traffic rate at the 

ingress interface. This way, the EF aggregate will experience less delay. 

 

Measurements provided by [Ferrari et al. 2000] and from simulations in RFC 2598 

[Jacobson et al. 1999] show that jitter is not reduced by increasing the EF service rate, 

when the EF aggregate is constructed from a single microflow. On the contrary, when the 

EF aggregation degree increases, jitter increases rapidly with the number of microflows 

and with the EF load. Thus, there are two possible corrective actions for a HighJitter 

event: a) Decrease the number of microflows, by degrading other EF traffic to receive a 

lower service. b) Reduce the EF load, by reducing resources assigned to the client 

application. 

 

The action for a HighPacketLoss event would be to increase the maximum arrival rate of 

the incoming EF traffic at the ingress interfaces of both the edge and the core routers that 

the EF traffic traverses. This will reduce the number of packets being dropped by the 

policer at the ingress interface. Alternatively, as packet loss is proportional to the 

aggregation degree, the number of EF microflows can be reduced, in order to reduce 

packet loss in the remaining EF traffic. 

 

Policy to support changes in routing or link failures  

 

A PDB is usually associated with a path of routers within the DiffServ domain (e.g. when 

using DiffServ over MPLS). When a link fails or routing changes for a specific class of 

traffic, the corresponding PDB may not be guaranteed by the routers in the new path. A 

new PDB must be selected for this class of traffic that satisfies the network service QoS 

requirements and that can be served by the new path. Which PDB is selected and how, is 

a decision that can be formulated as a service management policy. The following example 

provides a policy that implements this functionality.  
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Example 4.3 Policy for configuring DiffServ upon link failures or routing 

changes 

 
inst oblig RoutingChangePolicy { 

subject ServiceManagementAgent; 

on routeChanged (newPath); 

do pdb = select_using_algorithmA(SLS_params[], newPath) ->  

     /* A PDB suitable for the new path must be selected to cater for the service */ 

     pdb.enable() -> pdb_params[] = calculate(SLS_params[]) -> 

     EventService.GenerateEvent (pdbObligationEvent, pdb_params[]); } 

 

This policy instructs the ServiceManagementAgent to find a suitable PDB for the service 

with SLS parameters (SLS_parameters[]) when the path of routers that transports the 

service packets has changed. Information about the new path is conveyed to the 

ServiceManagementAgent with the routeChanged event. This event could be triggered by 

a component which is responsible for detecting and reporting routing changes. The new 

PDB is selected by the selection algorithm A. As in Example 4.2, the selection of the PDB 

can be adapted by replacing the existing policy with one using a different selection 

algorithm.  

 

Policy to reflect changes in application or user requirements 

 

The user/application may request different QoS guarantees at run-time by updating SLS 

parameters. As a consequence, network policy attributes must be changed to support the 

new user/application requirements. A policy example, which enables the 

ServiceManagementAgent to provide this type of service adaptation is given below. 

 

Example 4.4 Policy for re-configuring DiffServ when SLS parameters change at 

run-time 

 
inst oblig SLSRenegotiationPolicy { 

subject ServiceManagementAgent; 

on SLS_Request (new_SLS_parameters[], service_id); 

do pdb_policy = policyService.lookup (service_id) -> 

     new_pdb_policy_parameters[]=calculate ( pbd_policy,new_SLS_parameters[]) -> 

     EventService.GenerateEvent (pdb_policyObligationEvent, 

             new_pdb_policy_parameters[]);} 

In this policy example, the event SLS_Request carries both the new SLS parameters that 

the application/user requires and a unique identifier of the client application that requires 
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its SLS renegotiation (this identifier could be the Flow Description parameter [D. Goderis 

et al. 2001] of the Tequila SLS). The PDB policy reference that is responsible for this 

specific service is obtained via a lookup() operation on the Policy service, assuming that a 

table containing the service identifiers and their PDBs is updated when the initial request 

for SLS to PDB mapping has been succesful. Alternatively, the PDB that will guarantee 

the new service requirements could be selected at run-time among the set of implemented 

PDBs, as in the SLSMappingPolicy in the Example 4.2.  

 

4.5 Implementation of a Prototype Adaptive Management 
System  

 

As a proof of concept, we have implemented the enforcement architecture for policy 

adaptation, which we presented in section 4.3, where network policy is specified for 

Differentiated Services networks. The higher-level Service Policy Management Agent 

(Service PMA) and the lower-level Network PMAs are implemented using the Ponder 

toolkit [Damianou et al. 2002]. Ponder service management and DiffServ network 

policies are distributed to their relevant policy management agents using the policy 

deployment model implemented within the Ponder toolkit. The Service PMA implements 

one or more selection algorithms which query a simple policy database to choose a 

suitable DiffServ network policy. We have implemented a simple graphical tool, which 

the administrator uses to select which DiffServ network policies should be included in the 

policy database and to edit the QoS attributes of each selected policy (see Table 4.1). 

Figure 4.7 presents a usage example of the graphical tool. New policies can be included in 

the policy description database at run-time or existing policies can be removed. The 

administrator can also load new selection algorithms in the Service PMA. This allows 

new adaptation strategies to be implemented within the management system at run-time 

by adding new service management policies which use the new selection algorithms.  

 

The applicability of the enforcement architecture for the adaptive management of 

DiffServ networks has been tested on simulated DiffServ networks, using the J-Sim 

[DRCL J-Sim] network simulator, which offers DiffServ functionality. We have extended 

the J-Sim simulator with new components, which allow the communication between the 

simulator and the Policy Management Agents. These components and their interaction 

with the Ponder Policy Management Agents are presented in Figure 4.5.  
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Figure 4.5 Implementation of an adaptive policy based management system 
for simulated DiffServ networks 

 

For our needs, we have extended the J-Sim simulator with Monitoring, Event and Proxy 

PMA components, as shown in Figure 4.5. Monitoring components measure the 

performance characteristics such as throughput, packet loss and end-to-end delay for 

DiffServ traffic classes during a simulation. These measurements are used to display 

performance graphs and by Event components to generate performance degradation 

events when traffic measurements exceed specific thresholds. For example, an event 

indicating packet loss will be created when the packet loss of a specific class of traffic 

exceeds a configured threshold. Simple rules are used to configure the thresholds upon 

which Event components should generate events.   

 

In addition, Event components generate events indicating network failures or new 

user/application QoS requirements. For example, when a host inside the simulated 

network requests certain QoS for a new traffic flow, a QoS request event will be 

generated. All events are dispatched to the management system, where they trigger 

policies, through the Elvin Event Service [Segall et al. 1997], a publish/subscribe 
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messaging system, which we are currently using within the Ponder Toolkit. The policies 

select lower-level network policies to enable/disable or trigger corrective actions on the 

managed devices.  

 

 Ponder Policy Management Agents and the J-Sim simulator run on different hosts. We 

have extended the simulator with Proxy PMA components, which implement an interface 

to the simulator. Each Proxy PMA represents a Network-Level Ponder PMA.  Policy 

actions are communicated from the Ponder PMAs to the simulated nodes through the 

corresponding Proxy PMA components, sending TCP messages. This communication 

uses our proprietary text-based protocol. Proxy PMAs then translate the messages into 

commands that belong to the management interface of the target simulation nodes. Note 

that our policy based management system abstracts the protocols used for communication 

between a management agent and the managed device. Policy actions could be enforced 

by the Ponder management agents using standard policy protocols such as COPS or 

SNMP which would be supported by real network elements.   

 

A graphical tool [Husein 2003]2 has been implemented using the policy-based extensions 

to the J-Sim simulator. This tool allows the administrator to create a DiffServ network, 

configure the DiffServ mechanisms of each node and visualise and configure the policy-

based components inside the simulator. Figure 4.6 presents a usage example of the 

graphical tool. The execution of policy actions during the simulation is animated with 

growing arrows from the Proxy PMA component to the policy’s targets. The Proxy PMA 

component is the graphical representation of the Protocol Adapter Component, shown in 

Figure 4.6, and communicates with the Ponder Policy Management Agents to receive the 

policy actions to be executed upon a particular event. Events during the simulation are 

also animated with growing arrows from the Event Service component to the Proxy PMA 

component.  

 

We present results of an experiment based on a simulated DiffServ network, with the 

topology indicated in Figure 4.6. Traffic enters the DiffServ network through the edge 

router “Edge” and exits the network from the edge router “n4”. Nodes h3 to h7 are 

constant bit rate traffic sources in this expreriment (node h[i] sending i–2 Mbps of traffic) 

while nodes h8 to h12 receive the transmitted traffic according to the following formula:  

host [i+5] receives traffic from source node host[i]. 

 

                                                 
2 This Msc thesis was supervised by me. The policy based extensions to the simulator and the protocol for communicating 
with the Ponder toolkit have been implemented by me, as well as the design of the GUI. M. Husein has implemented the 
GUI and the animation modules. 
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Figure 4.6 Simulated DiffServ network 

 

We implemented three PDB policies within this network, the GreenPolicy PDB with the 

EF PHB, the YellowPolicy PDB with the AF11 PHB and the RedPolicy PDB with the BE 

PHB. We used priority scheduling at the egress interface of each core router (core routers 

are the nodes n1, n2 and n3 in Figure 4.5). The graphical tool shown in Figure 4.7, was 

used to select which network policies should be included in the policy database, and to 

edit the QoS attributes for each PDB. The tool interfaces with a domain browser to select 

policies from the LDAP directory server, where policy objects are stored. The values 

assigned to QoS attributes represent the attribute upper thresholds, where  -1 indicates 

there is no upper threshold. 
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Figure 4.7 Graphical User Interface to the Policy Service 

In this experiment, we show how our adaptive management system automatically 

performs the SLS to PDB mapping for new SLS requests, implemented with the policy 

SLSMappingPolicy  from Example 4.2. The event’s SLSRequest parameters are the 

address of the node issuing the SLS request and the requested values of delay, packet loss 

and jitter with the selection algorithm choosing the closest PDB according to the triple 

<delay, packetLoss, jitter>. Figure 4.8 indicates the throughput of each individual flow 

that traverses the DiffServ network, whilst Figure 4.9 displays the throughput of the 

DiffServ aggregates, as measuring at the egress interface of the core router n2 inside the 

DiffServ network.  

 

At first, node h3 sends 1Mbps of EF traffic, node h4 sends 2Mbps of AF11 traffic and 

mode h5 sends 3Mbps of BE traffic. At point A in Figure 4.8 and Figure 4.9, node h6 

issues a SLS request for a service of 4Mbps with delay < 80ms, packet loss < 0.3% and 

jitter < 6ms. This SLS request is handled by our management system to adapt 

configuration of the DiffServ network. The ServicePMA chooses the GreenService and 

h6 starts receiving the EF PHB.  At point B, node h7 issues a SLS request for a 5Mbps 

service which guarantees delay < 120.0ms, packet loss < 2% and jitter < 10ms. This time 

the ServicePMA chooses the YellowService for this SLS request and triggers the 

YellowPolicy. As a result of the enforcement of the YellowPolicy, the DiffServ network 

adapts configuration to guarantee the AF11 PHB to the traffic originating from node h7. 

We can observe that after this point the BE class suffers from starvation, since the total 

admitted EF traffic (5Mbps) and AF11 (7Mbps) traffic is greater than 10Mbps which is 

the maximum capacity of the core network.  
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Figure 4.8 Throughput of individual traffic flows (the Y axis shows the 
bandwidth in bps per flow) 

 

 
 

Figure 4.9 Throughput of DiffServ aggregates (the Y axis shows the 
bandwidth in bps per traffic aggregate) 
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In the following, we will present results from another experiment we conducted using the 

topology presented in Figure 4.6. For a second time, we implemented three PDB policies 

within the simulated network. The PDB policies along with their QoS guarantees are 

depicted in Figure 4.7. In this experiment, the ServicePMA implements an adaptation 

strategy for handling PDBs’ performance degradation. The latter is expressed in terms of 

the increased loss rate of the packets that receive a particular PDB. This type of 

adaptation is implemented with the higher-level management policy LossPolicy. The 

specification of this policy is given in Example 4.5.  

 

Example 4.5 Policy for handling increased packet loss rate of network services  

 
inst oblig /Policies/ServiceManagementPolicies/LossPolicy { 

subject /PolicyAgents/HighLevel/ServicePMA; 

on HighLossEvent( DSCP, thresholdValue, inputRate); 

do adjustLoss( DSCP, thresholdValue,maxInputRate); 

target /Routers/EdgeRouters; } 

 

A HighPacketLoss event is generated by the Event Components within the simulator 

when the packet loss rate of the network service identified by the DiffServ codepoint 

DSCP is above the maximum permitted value thresholdValue. The parameter 

maxInputRate carries the maximum arrival rate of the service traffic at the ingress 

interface of the edge routers.  

 

The action adjustLoss reduces the number of packets being dropped by the policer at the 

ingress interfaces of the edge routers. Note that in this implementation of the action 

adjustLoss, we do not handle packet loss due to packets dropped at the queues of the 

network interfaces. More specifically, this action only reconfigures the metering elements 

of the edge routers so that more traffic that belongs to the service can be admitted to the 

DiffServ network.  The new value of the traffic that can be admitted to the network is 

calculated according to the following formula: 

AdmittedTraffic ≥ (100.0 - thresholdValue) *maxInputRate / 100.0 

For example, if the maximum arrival rate of the traffic at the edge of the network is 

1Mbps and the maximum permitted value for packet loss rate is 10%, then the metering 

elements will be reconfigured such that a minimum traffic of 0.9Mbps can be admitted to 

the network. Figure 4.10 presents the adjustment of packet loss rate for the EF and the 

AF11 traffic classes in our simulated DiffServ network. 
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Figure 4.10 Adjustment of network services’ packet loss rate 

 

Initially, the edge router (node Edge in Figure 4.6) is configured to admit 2Mbps of EF 

and 3Mbps of AF11 traffic. In this configuration, host 3 sends 1Mbps of EF traffic and 

host 4 2Mbps of AF11 traffic. In consequence, the packet loss rate of the EF and AF11 

traffic classes is zero. However, at point A, the user at host 6 starts sending 4Mbps of EF 

traffic. This causes an increase of the EF packet loss rate, since the network was a priori 

configured to admit a maximum of 2Mbps of EF traffic. This increase in packet loss for 

the EF PHB is automatically adjusted by the ServicePMA, configuring the edge router to 

accept more EF traffic (the metering element at the edge router is configured to accept EF 

traffic at a minimum rate of (100-0.5)%*5Mbps, where 5Mbps is the new sum of EF 

traffic entering the network) so that the packet loss rate of the EF traffic drops below its 

maximum permitted value, which is 0.5% (see Figure 4.7). Later, at point B, host 7 starts 

sending 5Mbps of AF11 traffic. This time, the ServicePMA adjusts the packet loss rate of 

the AF11 traffic to drop below its maximum permitted value of 3% by instructing the 

edge router to accept AF11 traffic at a minimum rate of (100-3)%*6Mbps, where 6Mbps 

is the rate of the AF11 traffic entering the network.  

  

We presented two experiments showing how our prototype adaptive management system 

can be used to deploy service management policies within various topologies of simulated 

DiffServ networks. A number of different adaptation scenarios can be easily implemented 

and tested within the simulator, eg. adaptation strategies according to changes in routing 
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or in link failures. Adaptation strategies could also be deployed and tested for mobile 

networks that can be simulated within J-Sim, supporting simulation of mobile networks. 

Our prototype provides the policy administrator the ability to easily experiment with his 

adaptation strategies before deploying them into real network environments.  

4.6 Discussion  

 
In this chapter, we presented how policy adaptation can be realised within the Ponder 

policy framework. Adaptation is provided in one of the following ways: a) by 

dynamically changing the parameters of a network policy to specify new attribute values 

for the run-time configuration of managed objects; and, b) by selecting and 

enabling/disabling a policy from a set of pre-defined network policies at run-time. The 

parameters of the selected network policy are calculated and set at run-time.  

 

We presented examples that demonstrate how higher-level management policies cater for 

the dynamic management of services in a Differentiated Services network.  We also 

presented a prototype implementation of an adaptive management system for 

Differentiated Services networks, where network devices are simulated with the J-Sim 

network simulator.  

 

It is important to note that our ideas for policy adaptation are not restricted to some 

specific management area. Rather, they can be used to implement adaptive management 

systems for management of different networking mechanisms (e.g. QoS, security) and for 

several aspects of distributed systems (e.g. distributed ubiquitous systems management).  

Appendix A will present how our ideas could be used for dynamically adapting a 

network’s access control policies and for dynamically adapting policy in a ubiquitous 

environment based on changes in user’s location. Note that we have not actually 

implemented and tested the policies shown in the appendix. However, the fundamental 

idea of our framework is that higher-level policies can be deployed to dynamically select 

which lower-level management policy should be enforced when changes occur within the 

managed environment. The selection is based on a user-defined selection algorithm, 

which can also be dynamically changed as a means to implement new adaptation 

strategies. What is required is to model the behaviour of each low-level policy in a 

common set of attributes. For example, in our prototype implementation, each DiffServ 

policy is associated with the triple < delay, packet loss, jitter>, which indicates the 

behaviour of the policy in terms of the QoS it guarantees. In a general case, a low-level 

management policy will be associated with the tuple <a1, …, aN>, expressing the 
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behaviour of the policy on the managed system. Then, different selection algorithms can 

be used by higher-level policies to select which of the underlying policies will cater for a 

specific request.  

 

Since knowledge of the behaviour of low-level policies is required in order to  deploy an 

adaptive management system, as a future direction for our work, learning techniques (like 

the one presented in [Uttamchandani et al. 2003]) can be investigated to see how the 

behaviour of the low-level polices can be determined based on monitoring and feedback 

information, when the behaviour of the rules is not static. For example, the behaviour of a 

policy in terms of its QoS guarantees, expressed with the triple < delay, packet loss, jitter 

>, may vary according to the traffic entering the network. In this context, a learning 

technique could be used to determine the function that returns the QoS guarantees of a 

policy having as parameter the current network traffic.  

 

One issue that needs to be addressed here is the problems that may arise using an adaptive 

management system rather than manual intervention to adapt network configuration. 

Possible problems are that the management system may oscillate or fail to deliver a 

feasible network configuration. For the first problem, we give the network administrator 

the ability to configure the Event Components of the adaptive management system, to 

filter out frequent events of the same type and to use thresholds to ensure that small 

changes in performance do not generate events to trigger configuration changes. Badly 

programmed policies could possibly introduce instability, as is the case with any incorrect 

program.  We give the administrator the ability to use our prototype implementation of an 

adaptive policy based management system in order to test his adaptation strategies within 

the simulator and thus determine whether his policies will cause any problems in a real 

network. Furthermore, in order to deliver a feasible network configuration, a validation 

process should be implemented within an adaptive policy based management framework. 

This process will ensure that the policy is consistent with the functional or resource 

constraints within the target environment. Chapter 5 will give details on how policy 

validation can be realised within the Ponder policy framework.  

 

Another important issue that needs to be addressed is to enhance the functionality of the 

adaptive management system to initiate corrective actions when the causes of the 

violations are not known a priori. Currently, its task is to adapt the set of underlying 

network policies upon pre-defined conditions. This implies that the administrator knows a 

priori the causes of violations and consequently can enforce the corresponding correcting 

actions when a particular violation is detected. However, corrective measures should be 

undertaken to remedy any causes of violations in the managed environment. This will 
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require the management system to perform root cause analysis, ie.  to discover what is 

really causing the violation, in order to initiate the corresponding corrective actions when 

the violation is detected. 

 



  

  

5. Chapter 5 
Policy Validation within the 
Ponder Framework  

Network management policies are deployed within the network to configure the 

mechanisms of the devices that implement the policies. In the policy-based management 

approach, the specification and deployment models of policies must be device-

independent, i.e. independent of the type of the device and the specific implementation of 

the network mechanisms that vendors have chosen for their products. For this purpose, as 

we have previously discussed in this thesis, several modelling frameworks have been 

proposed by standards organisations to represent the abstractions of the networking 

mechanisms that devices implement. The two most important standard organisations 

focusing on network management, IETF and DMTF, both use object-oriented models to 

represent the different available network mechanisms.  

 

Figure 5.1 presents how CIM Network Common Model [DMTF 2004] represents the 

mechanisms of the DiffServ architecture. Other models to represent the individual 

functional elements which a DiffServ-enabled device supports are described in IETF’s 

DiffServ router model [Bernet et al. 2002] and IETF’s Quality of Service Policy 

Information Model (QPIM) [Fine et al. 2001].  

 

As we can see in Figure 5.1, the DiffServ mechanisms are represented as objects whose 

classes are defined in the model and have specific attributes, as defined in each class (the 

CIM attributes are not shown in diagram). For example, the mechanism to mark packets 

with a particular DiffServ Code Point (DSCP) is represented as an object of the class 

DSCPMarkerService and contains the attribute DSCPValue, which holds the value of the 

DSCP to assign to the associated packets. An example IETF policy rule using the QPIM 

model for configuring the marking mechanism of a DiffServ node could be the following: 

   

If ( sourceIP = 10.0.1.2 AND destinationIP = 10.0.2.3 ) then DSCP=0x43 
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Figure 5.1 DiffServ classes in CIM Network Common Model  

 

The variables sourceIP and destinationIP are defined in QPIM. The semantics of the 

DSCP assignment is encapsulated in the pairing of a DSCP variable and a DSCP value 

within a single SimplePolicyAction instance defined in PCIM [Moore et al. 2001] via the 

appropriate associations. The same semantics are rendered with the following Ponder 

rule, which uses the CIM representation of DiffServ mechanisms. In the Ponder rule, two 

CIM objects are created: a ClassifierElement object which holds the information 

(sourceIP and destinationIP) of the flow to be marked and a DSCPMarkerService object 

that will actually mark the specified flow to the DSCP with value 0x43, carried by the 

event MarkingRequest. 
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Example 5.1 Policy to configure the marker element of a DiffServ meter 

 
inst oblig /Policies/MarkingPolicy { 

subject /PolicyAgents/NetworkPMA; 

target t = /Routers/EdgeRouters; 

on MarkingRequest (sourceIP, destinationIP, dscp); 

do Filter filter = new Filter ( DSCP); 

     ClassifierElement cls = new ClassifierElement(); 

     cls.addFilter(filter)-> 

     DSCPMarker dscp_marker = new DCSPMarker (dscp) -> 

     cls.setNextService (dscp_marker)-> 

     t.addDiffServElement (cls); 

     t.addDiffServElement (dscp_marker); } 

 

The enforcement of both policy rules will result in the execution of the policy action(s), 

which involve configuring the corresponding DiffServ mechanisms of the target devices. 

However, as we have discussed in the introduction of this thesis, it is necessary to ensure 

that the network elements have the capability to implement the policy. Policy validation is 

the process that will check that the device to which the policies apply support the required 

functionality i.e. the policy invokes an operation that is actually implemented by the 

device or the device has the required resources needed to satisfy the policy action. 

Validating policies at compile or configuration time will prevent the management 

overhead and the potential problems that arise when actually trying to enforce policies 

that are not feasible in the given network environment. 

 

As a first step for analysing the process of validation of network policies, we can observe 

that the enforcement of a network-level management policy results in the creation and/or 

configuration of the functional elements which represent the various mechanisms within 

the devices to which the policy applies. Consider a network element that implements 

various functional elements to support DiffServ e.g.  classifiers, meters, schedulers, 

markers, etc.  

 

In this context, a policy is valid in respect to the target device’s capabilities when the 

target device is able to: 

 

a) Create the requested new functional element and/or  

b)  Configure the new or an existing functional element with the requested values.  
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In the following sections, we will provide details of each case of validation and we will 

outline how policy validation can be implemented within the Ponder policy framework 

using CIM as the model for representing the policy target’s mechanisms and capabilities, 

using Differentiated Services as an example of a managed networking environment. 

Similar to the reasons for using the CIM model for policy specification and enforcement 

in our framework, the rationale for using the CIM model for validating policies is that it 

provides a standard device independent information model for the network elements 

which are potential targets for policies. Policies can be specified with respect to generic 

CIM target objects and so can be used for many different network elements. Furthermore, 

mapping of CIM target objects to the mechanisms which are actually implemented by the 

specific device is independent of the communication protocol between a CIM-based 

implementation and the managed devices. 

5.1 Policy Validation with Respect to the Ability of the 
Target Devices to Create Functional Elements 

 
This validation requires checking whether the target device is capable of performing an 

“add” operation for a DiffServ functional element, i.e. 

 

i) Does the device support the requested DiffServ functional element type?  

ii) Does the device have enough resources to create (add) the new functional element?  

 

For the first case, consider the following policy that the administrator specifies for 

providing traffic conditioning on a set of edge routers. 

 

Example 5.2 Network policy rule for creating DiffServ functional elements within 

the target routers 
inst oblig /Policies/TrafficConditioningOnEdge { 

subject /PolicyAgents/NetworkPMA; 

target t = /Routers/EdgeRouters; 

on TrafficConditioningRequest ( meter_rate, dscp); 

do AverageRateMeter avg_meter = new AverageRateMeter (meter_rate) -> 

     t.addDiffServElement (avg_meter) -> 

     DSCPMarker dscp_marker = new DCSPMarker (dscp) ->  

     t.addDiffServElement (dscp_marker); } 

 

The policy TrafficConditioningOnEdge instructs the target edge routers to create two 

functional elements: a meter of type AverageRateMeter and a marker of type 
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DSCPMarker. This policy is valid only if the target devices support the DiffServ 

architecture and in particular the DiffServ metering and marking mechanisms represented 

by the meter type AverageRateMeter and the marker type DSCPMarker respectively. In 

order to perform this type of validation, we must know whether the device supports 

DiffServ and if so, the different types of DiffServ functional elements supported. A 

solution to this would be to query the CIM representation of the device which can indicate 

whether the device supports DiffServ and which types of functional elements a DiffServ-

enabled device implements.  

 

In the general case this type of policy validation can be implemented within the Ponder 

framework by using meta-policies as a means to specify the constraints that network 

policies must satisfy with respect to the DiffServ mechanisms that the targets support. 

The use of meta-policies allows the policies to be checked at specification time, before 

deployment, which is clearly an advantage over checking at policy execution time. Meta-

policies defined in Ponder specify constraints over a set of policies, with respect to the 

permitted types of policies or the elements within the policies. These constraints apply to 

policies within a specific scope and effectively limit the permitted policies in the system. 

The syntax of a meta-policy is based on the OMG Object Constraint Language (OCL) 

[OMG 1999]. The body of the meta-policy specifies the constraint as a series of OCL 

semicolon separated expressions which can be boolean or navigation expressions. If any 

of the boolean expressions evaluates to true, execution stops and the action following the 

raises-clause is executed. Example 5.3 shows a meta-policy specifying constraints over a 

set of network policies with respect to whether DiffServ is supported by the policy 

targets. 

 

Example 5.3 Meta-policy for specifying constraints for DiffServ policies 

 
inst meta DiffServNotSupported raises  
  DiffServNotSupportedException(invalid_policies) { 

 [invalid_policies] = this.policies -> 

  select  (p |  p.action ->  

     exists (a | a.name = “addDiffServElement”   and p.target -> 

         exists(t | t.notSupports(“DiffServ”)))); 

invalid_policies -> notEmpty; } 

 

The body of the meta-policy contains two OCL expressions. The first one selects all 

policies (p) with the following characteristics: the action set of p contains at least one 

action named “addDiffServElement”, and DiffServ is not supported by at least one of the 
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policy’s target devices. The action notSupports on the target device is a look-up operation 

on the CIM representation of the device which returns true if the device does not support 

the DiffServ architecture. The second OCL expression returns true if the variable 

invalid_policies, which is returned from the first OCL exception is not empty. If the result 

of the last expression is true, the DiffServNotSupportedException specified in the raises-

clause is executed with the invalid_policies set as a parameter.  

 

Example 5.4 shows another meta-policy which refines the constraints over a set of 

network policies. Constraints are specified with respect to the specific DiffServ 

mechanisms supported by policy targets. Note that similar meta-policies can be used for 

specifying validation constraints for any underlying technology. 

 

Example 5.4 Meta-policy for specifying constraints for DiffServ mechanisms 
 
inst meta notSupportedElement raises  

  notSupportedElementException(invalid_policies) { 

 [invalid_policies] = this.policies -> 

  select  (p |  p.action ->  

     exists (a | a.name = “addDiffServElement”   and p.target -> 

         exists(t | t.notSupports(a.parameter.oclType)))); 

invalid_policies -> notEmpty; } 

 

The first OCL expression selects all policies (p) with the following characteristics: the 

action set of p contains at least one action named “addDiffServElement”, whose 

parameter type (i.e. the type of the DiffServ element that p wants to add to each of the 

target devices) is not supported by at least one of the policy’s target devices. Note that we 

use the OCL method oclType to obtain the type of the “addDiffServElement” action 

parameter. An obligation policy could be triggered by the exception 

notSupportedElementException to perform corrective actions to resolve invalid policies. 

An example would be to install missing DiffServ mechanisms in a programmable router, 

as shown in Example 5.5. The exception notSupportedElementException from Example 

5.4 triggers the obligation policy PolicyForInvalidDiffServPolicies which installs the 

missing DiffServ mechanisms in the relevant programmable router.  
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Example 5.5 Policy rule for installing the non supported DiffServ mechanisms in 

the appropriate programmable routers 

 
inst oblig PolicyForInvalidDiffServPolicies { 

subject /PolicyAgents/NetworkPMA; 

on notSupportedElementException (Policy p[]) 

/* p is the set of policies that the meta policy in Example 5.4 has returned as not valid*/ 

do  
 foreach pol in [p] { 

       foreach action in [pol.actions]  

         foreach t in [pol.target] {  

          if (action.name = “addDiffServElement” and  

   t.notSupports( (DiffServ_Class) action.parameter)) 

         then  t.installMechanism  ((DiffServ_Class) action.parameter)); }}}  

 

The policy rule PolicyForInvalidDiffServPolicies receives the set of invalid network 

policies with the event notSupportedElementException, which the meta-policy in 

Example 5.4 raises. The pseudocode following the do statement could be implemented as 

a script policy action which finds the pairs < target_device, non-supported mechanism > 

and installs the non-supported mechanisms in the appropriate target devices using the 

method installMechanism.  

 

As mentioned earlier, a policy is not valid when the device does not have the resources to 

create the requested functional element. As an example, consider a DiffServ device that 

can only support a limited number of traffic classes. A policy that tries to create a new 

traffic class within the device will fail if the maximum limit is exceeded. This case of 

policy validation can be implemented using CIM as a means to specify the necessary 

information about the capabilities and the current state of the device – the maximum 

number of traffic classes and the current number of classes respectively. Since the current 

CIM version does not include DiffServ-specific capabilities and state information, we are 

proposing a “DiffServ-metrics” CIM extension to provide this information, which we will 

present in detail in section 5.3. However, unlike the previous case, we cannot decide 

offline whether the policy is valid by checking the CIM representation of the device, since 

the decision depends on device’s current state. This means that the decision must be made 

at the time the policy is to be enforced, which implies that the conditions under which the 

policy is valid must be specified as constraints within the policy specification, as 

indicated in the following example. The policy rule PolicyToAddTrafficClass, in Example 

5.6, will only add a new traffic class when the current number of classes is less than the 

maximum. 
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Example 5.6 Policy rule for creating a new traffic class when the target device supports a 

limited number of traffic classes 

 

inst oblig /Policies/PolicyToAddTrafficClass { 

subject /PolicyAgents/NetworkPMA; 

target t = /Routers/CoreRouters; 

on addTrafficClassRequest (classOfTrafficParams[]); 

do addTrafficClass (( classOfTrafficParams [] ); 

/* The attributes CurrentClassesOfTraffic and MaximumClassesOfTraffic are defined 

in our proposed extension to CIM, see Figure 5.2 */ 

when t.CIM_Get (CurrentClassesOfTraffic) <t.CIM_Get (MaximumClassesOfTraffic); } 

5.2 Policy Validation with Respect to the Permitted Values 
of Variables within the Device  

 

In the second case of policy validation, checking is necessary to ensure that policies can 

set variable values within the device only if the requested values fall within permitted 

ranges with respect to the device capabilities. We can distinguish between variables with 

static bounds and variables with dynamic bounds.  

 

• Variables with static bounds. As an example, the number of classes of traffic a 

device supports is a variable that has a specific upper bound. A policy rule that 

attempts to set this variable greater than its upper bound is invalid. We can detect 

offline if the policy is valid, if we check the CIM representation of the device, 

which includes the capability information of the device (i.e. the maximum classes 

of traffic the device supports).  

 

• Variables with dynamic bounds. In this case, the bounds of the variable to be set 

are not static, but they depend on the state of the device. As an example, the 

maximum bandwidth that can be allocated to a particular class of traffic cannot 

exceed the available free bandwidth that the device can offer, which is calculated 

as: available_free_bw = total_output_bw – current_allocated_bw (for all traffic 

classes) 

 

Assume that CIM can provide the necessary information about the capabilities and the 

current state of the device: the total output bandwidth and current allocated bandwidth to 

all traffic classes respectively. In this case, we cannot decide offline whether the policy is 
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valid so the validity must be specified as constraints in the policy specification, which is 

similar to the policy in Example 5.6 so is not shown here. 

 

To summarise, a CIM based model for representing network devices, can provide two 

types of management information: 

 

i. Information about device’s capabilities (e.g. type of mechanisms it supports, 

bounds on resources, bounds on specific objects’ attributes) 

ii. Information about the current state of the device (e.g. current resource allocation, 

current values of specific objects’ attributes) 

 

We can use this information to support static policy validation with respect to device 

capabilities, which can be performed offline using meta-policies as a means to specify the 

constraints on the permitted DiffServ mechanisms, resources and bounds on object 

attributes. The required information about the capabilities of the devices can be obtained 

from CIM models. Dynamic policy validation with respect to current state of the device 

can only be performed at the time the policy is to be enforced by means of constraints 

which are specified as part of the policy rules to define the conditions under which the 

policy is valid. These constraints can reference information extracted from a 

corresponding CIM model. 

5.3 Implementation of a Policy Validation Architecture 

 

As we have discussed, for the purpose of validating policy against device and network 

capabilities, it is necessary to extract several parameters such as the number of QoS 

classes, the bandwidth allocated to each class, the QoS mechanisms that the managed 

routers support, etc. CIM provides a generic model for representing DiffServ-enabled 

managed devices. In particular, as we have presented in Chapter 3 of this thesis, the CIM 

Network Common Model defines the class QoSService, which is a subclass of the generic 

class NetworkService. The QoSService is an aggregation of instances of the 

ConditioningService class (see Figure 5.1), whose subclasses define the DiffServ 

mechanisms in a DiffServ router. These mechanisms are represented by the following 

CIM classes: ClassifierService, MeterService, MarkerService, DropperService, 

DropThresholdService and PacketSchedulingService. 

 

Our implementation uses the CIM Network Common Model for representing the DiffServ 

elements that a router supports. In addition, since we need statistics related to DiffServ, 
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e.g. number of implemented traffic classes, bandwidth allocated to each class of traffic, 

etc. we have designed a “DiffServ metrics” extension to the current CIM model which 

can provide the management system with this information. The proposed “DiffServ 

metrics” CIM sub-model is presented in Figure 5.2.  

DiffServRouter

 DNSNames : string[]
 DiffServIsEnabled : boolean[]
 Model : string

System (see Core Mode)

DSCPStatistics

 DSCP : uint16
 DSCPDescription : string
 DSCPThroughput : uint32
 DSCPAllocatedBandwidth : uint32
 DSCPPacketsTransmitted : uint64
 DSCPOctetsTransmitted : uint64
 DSCPPacketsDropped : uint64
 DSCPOctetsDropped : uint64

NetworkInterfaceStatistics

 IPAddress : string
 CurrentThroughput : uint32
 TotalOutputRate : uint32
 TotalPacketsTransmitted : uint64
 TotalOctetsTransmitted : uint64
 TotalPacketsDropped : uint64
 TotalOctetsDropped : uint64

DSCPGroupStatistics

 DSCPSet : uint16[]
 DSCPGroupThroughput : unit32
 DSCPGroupDescription : string

  

1 11

*
*

*

**

*

1..N

1..N

DSCPStatsInDSRouter GroupStatsInDSRouter

DSCPStatsInGroupDSCPStats

NetworkIfStatsInDSRouter

 

Figure 5.2 UML Diagram of the DiffServ-metrics CIM extension 

 

The CIM class DiffServRouter is the abstraction of a DiffServ-enabled router and derives 

from the System class in the Core Model and focuses on representing a system that is 

DiffServ-enabled. The classes DSCPStatistics, NetworkInterfaceStatistics and 

GroupDSCPStatistics derive from the CIM class StatisticalData in the Core Model (this 

inheritance is not shown in Figure 5.2?? incorrect number), which is defined as the root 

class for any arbitrary collection of statistical data and/or metrics applicable to one or 

more ManagedElements.    

 

In the spirit of CIM, the association classes DSCPStatsInNetworkIfStats and 

DSCPStatsInGroupDSCPStats derive from the association class RelatedStatisticalData in 

the CIM Core Model. The extension classes DSCPStatistics, NetworkInterfaceStatistics 

and GroupDSCPStatistics derive from StatisticalData. Therefore, their associations  (e.g. 

DSCPGroupStatsInDSRouter) with the DiffServRouter class, which derives from the 

System class (which in turn derives from the ManagedElement class) derive from CIM’s 
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ElementStatisticalData association, which links StatisticalData classes to 

ManagedElement classes.  

 

The NetworkInterfaceStatistics class provides traffic statistics for every network interface 

card that belongs to the router. The DSCPStatistics class caters for statistics per 

implemented DSCP. A DSCPStatistics instance is associated with one or more 

NetworkInterfaceStatistics instances, as a particular DSCP may be implemented in more 

than one network interface on a single router. Finally, the GroupDSCPStatistics class is 

an aggregation of DSCPStatistics classes and provides statistics for a group of DSCPs 

which together define a class of service offered to the corresponding traffic aggregates. 

For example, the “Gold Group” in a router may be constructed from the DSCP offering 

the Expedited Forwarding per hop behaviour (EF PHB) [Jacobson et al. 1999], while the 

“Silver Group” may be constructed from the DSCPs offering the Assured Forwarding per 

hop behaviour (AF PHB) [Heinanen et al. 1999]. A DSCPStatistics instance may belong 

to more than one GroupDSCPStatistics instances. 

 

The architecture for validating Ponder policies with respect to the CIM-represented 

DiffServ mechanisms and capabilities is conceptually the same as the architecture for 

policy enforcement of DiffServ-specific policies, presented in section 3.2 of this thesis. 

Figure 5.3 presents the architecture for policy validation. The functionality of PMAs and 

Target Policy Objects, defined in [Dulay et al. 2001], is extended with the capability to 

act as CIM clients to allow these components to query CIM objects. This allows the 

Ponder components to retrieve variables that belong to CIM classes as a means to 

evaluate policy constraints or metapolicies that contain such variables. The 

communication is realised through the CIM Object Manager (CIMOM) from the WBEM 

Services project [WBEM Services Project 2003].  
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Figure 5.3 Architecture of Policy Validation System 

 

We have implemented a Provider specific for the Linux Operating System to handle the 

DiffServ metrics sub-model classes presented in Figure 5.2 (shown as provider A in 

Figure 5.3). This Provider communicates through the Java RMI interface with the 

CIMMonitor component to get DiffServ variables from the Linux operating system by 

issuing traffic control statistics commands (“tc –s commands”). For example, in order to 

obtain the CIM variable CurrentClassesOfTraffic (from CIM class DiffServRouter), 

Provider A issues a request to the CIMMonitor, which in turn queries the current “tc” 

configuration of the device to get the current number of implemented DiffServ classes.  

An alternative for retrieving DiffServ traffic statistics could be to use SNMP to get 

variables from a DiffServ RMON probe, indicated by Provider B in Figure 5.3, which 

could translate CIM attributes to SNMP get requests for an RMON MIB. However, there 

is not yet an implementation of an RMON probe for DiffServ on Linux, so this has not 

been implemented. 

 

We will now provide an example demonstrating the usage of our implementation. The 

purpose of this example is to enforce the policy validation rule presented in Example 5.6.  
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Example 5.6 Policy rule for creating a new traffic class when the target device 

can provide the requested bandwidth for the new class 

 
inst oblig /Policies/PolicyToAddTrafficClass { 

subject /PolicyAgents/NetworkPMA; 

target t = /Routers/CoreRouters/Athena; 

on addTrafficClassRequest (interface, dscp,  bandwidth); 

do t.addTrafficClass (interface, dscp, bandwidth); 

when t.CIM_GetThroughput(interface) + bandwidth  

         <  t.CIM_GetTotalOutputBandwidth(interface); }  

 

The policy rule PolicyToAddTrafficClass is evaluated at run-time by the management 

agent NetworkPMA. When the constraint following the when clause evaluates to true, the 

target router is instructed to perform locally the addTrafficClassRequest operation.  

Figure 5.4 presents the result of the enforcement of the rule PolicyToAddTrafficClass on 

the target router /Routers/CoreRouters/Athena. The Network PMA receives the obligation 

event addTrafficClassRequest with parameters the network interface on the target where 

the new class is to be added, the DSCP associated to the traffic class and the bandwidth 

that will be assigned to this class. As we can see in Figure 5.4, the policy rule retrieves the 

relevant CIM variables from the target router and the policy constraint evaluates to true 

upon the request addTrafficClassRequest (“10.0.2.2”, 63, 4096). This in  turn means that 

the policy rule is valid at the current network state and therefore is enforced on the 

network. 

 

 

Figure 5.4 Result of enforcement of the policy validation rule 
PolicyToAddTrafficClass 
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Further implementation work is needed to support the enforcement of metapolicies within 

the Ponder toolkit. Future work will integrate our policy validation framework with the 

CISCO Information Model (CIM-CX). This will enable our framework to apply to both 

CISCO and Linux DiffServ routers.  

5.4 Discussion  

 

We have presented an approach for validation of policies with respect to the devices to 

which they apply. This includes validation that target devices support required 

functionality by means of metapolicies (ie. constraints on the allowed policies) or by 

means of constraints within the policy rules that check at run time that the policy does not 

violate resource state constraints within the network.  

 

Further implementation is needed to support meta-policies within the Ponder compiler. 

The Ponder toolkit also needs to be extended to support deployment and enforcement of 

meta-policies. 

 

Further to the implementation of policy validation for Linux DiffServ routers which we 

presented in this chapter, our framework provides tool support for validating that the 

policies actually achieve their objectives in the network.  This can only be realised by 

testing, but testing on a live network may not be practical so it is essential to be able to 

test the results of policy enforcement on large-scale simulated DiffServ networks using 

the policy-based extensions to the J-Sim network simulator, as we presented in Chapter 4. 

This enables policy administrators to check offline the behaviour of their policy rules, 

before applying the rules onto the real network.   

 

Although we presented examples of DiffServ routers, the approach could be applied to 

validation of security management policies or building management policies etc.  A 

representation of the device capabilities using an information model such as CIM is 

essential.   Our approach applies to individual network devices within a domain in which 

the DiffServ based policies apply. The situation becomes much more complex when 

interactions between the policies related to end-to-end flows or different service level 

agreements (SLAs) are considered. This requires determining whether the introduction of 

a new SLA could potentially violate the policies relating to existing SLAs. In the simplest 

situation this could require determining whether the current network topology has the 

resources to support the new SLA which can be done by Traffic Engineering systems. 
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However, when the SLAs cater for dynamic allocation of resources based on time or 

application requests, this becomes more complex to do.  

 

Another issue is that the end-to-end path may not be within the administrative domain of 

a single service provider. This requires interaction between service providers to exchange 

policy information, and current state of the network topology.  

 
 
 
 
 



  

  

6. Chapter 6
Critical Analysis  

The work presented in this thesis has been motivated by the need to provide dynamic 

adaptation of policy in response to changes within the managed environment and 

validation of policy in respect to the capabilities of the network elements implementing 

the policy. In this chapter, we will evaluate our achievements by comparing our work 

against related work and by listing the limitations and deficiencies of our framework. 

Finally, we will provide suggestions for improvement.  

6.1 Comparison with Related Work  

 

Policy-based management has been introduced as a promising solution to the problem of 

management of complex and heterogeneous networks consisting of elements with 

different capabilities. Most of the work carried out in this research area has been focusing 

mostly on solutions for policy specification and policy enforcement architectures for QoS 

and security management. However, considering the dynamic nature of the networks, 

existing policy frameworks, such as the IETF Policy framework [IETF Policy Working 

Group], do not provide mechanisms to react to changes within the managed environment. 

Rather, they can only provide static policy configurations and therefore lack the flexibility 

and are not sufficient to handle changes in the underlying environment where policy 

applies. To address this problem, research efforts have been made towards the 

deployment of adaptive policy based management frameworks.    

 

The frameworks for policy adaptation that we presented in section 2.6 of this thesis, eg. 

[Lutfiyya et al. 2001; Yoshihara et al. 2001; Marshall et al. 2001b; Ahmed et al. 2002] 

either implement mechanisms to adapt policy parameters based on monitoring 

information, or they are tailored for a specific network environment, implementing a 

single adaptation strategy to adapt policies in their systems. Our framework introduces 

higher-level policies as a means to decide which lower-level policy to enable upon a 

particular event indicating the need to adapt the policy configuration in the network. We 

provide the flexibility to implement and use within our management system not a single, 

but multiple adaptation strategies. New service management policies can be deployed at 

runtime within our system, in order to change, when required, the adaptation strategy and 

configure the parameters of the new strategy.  
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In comparison to many approaches for QoS adaptation in the Distributed Systems area, a 

brief account of which we presented in section 2.5 of this thesis, the advantage of our 

approach is that rather than using a single adaptation technique, hard-coded in the system, 

adaptation is implemented within the policy-driven management system itself, providing 

the flexibility to dynamically modify the adaptation strategies by enabling different 

policies which use different adaptation techniques. Futhermore, code implementing a new 

adaptation strategy can be loaded at run-time within the Policy Management Agents and 

policies can be updated to access this new functionality.   

 

A lot of work has been carried out by standards organisations to provide information 

models and management protocols. Using the CIM representation of managed entities, 

not only provides our framework with the necessary abstractions to specify policy 

independently of the type of the device, but also provides a flexible architecture for 

mapping the policy rules into device configuration independent of the communication 

protocol between the policy system and the managed devices.  

 

Our policy-based management framework also complements approaches that concentrate 

on low-level policy specification. Examples include: using compiled or interpreted 

programs to specify policies (e.g. using Java programs as described in [Martinez et al. 

2002]), or using an information modelling approach for QoS policy specification  as 

described by the IETF [Strassner et al. 2001]. Policies can be more conveniently specified 

in Ponder and then mapped to any lower-level specification using automated software 

tools (i.e. backends to the Ponder compiler).  

 

In policy-based networking most of the tool support comes from the industry and is based 

on the IETF policy framework. Unlike the Ponder framework, most of these tools are 

specific to quality of service and bandwidth management with few providing access 

control configuration, while most of this work focuses on managing individual network 

elements. Scalability to enterprise wide management is not obvious as the dissemination 

of policies to specific elements is often performed manually whereas in Ponder this is 

automated based on domain membership of subjects and targets, which are explicitly 

specified in policies. Most of these products are optimised to work on single vendor 

networks and are implemented to manage vendor-specific hardware with only a few 

working towards hardware-independence. The framework we have described in this thesis 

enables the implementation of multi-vendor policy-based management products. 

 

A fundamental problem which remains unsolved in all work on policy-based management 

is the issue of policy validation, i.e. given a policy, can it be instrumented in an existing 
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hardware/software configuration?  We have presented a novel approach for validation of 

policies with respect to the devices to which they apply. This includes validation that 

target devices support required functionality by means of metapolicies or constraints on 

the allowed policies; using constraints within the policy rules to check at run time that the 

policy does not violate resource state constraints within the network. 

6.2 Evaluation of the Framework  

 

In this section we will point out the limitations and deficiencies of the overall work 

achieved. We will start with the work accomplished on the deployment of a policy 

adaptation framework.  

 

The new idea for adaptation of network-level policies is that service management policies 

can be dynamically introduced to select, given an adaptation request, the most suitable 

implemented network policies. New adaptation strategies can be implemented by 

introducing service management policies that use new selection algorithms. We suggested 

a number of adaptation strategies for a DiffServ environment, using selection algorithms 

based on the QoS guarantees of DiffServ network-policies, the policies’ associated path 

of routers and the time period when policies are valid. Additional selection algorithms can 

be investigated, taking into account additional criteria, such as determining which QoS 

class of service should be chosen for an application based on the pricing schemes that 

apply to the available service classes. Another aspect is that in our framework, the 

adaptation strategies that the administrator uses by means of service management 

policies, such as algorithms to select among ‘fallback’ classes of service when the main 

class of service cannot be provided, are hidden from the customers. New work on SLA 

specification could formally define the adaptation strategies that need to be undertaken 

upon network failures, SLA violations, etc. In this case, additional mechanisms would 

need to be implemented to derive service management policies from the “dynamic” part 

of an SLA. Work has been done in this direction in [Zhao 2002], where a new language is 

proposed for specifying XML-based contracts for a SLA management system, based on 

the contract model proposed in [Keller et al. 2002]. The language allows specification of 

the dynamic aspects of a contract, e.g. switching between different service levels 

according to specific conditions such as timer events, system failures, etc. An SLA parser 

component is implemented to derive policies from the contracts specified within the 

system. Derived policies can be deployed within the adaptive management framework 

presented in this thesis.  
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Our policy adaptation framework is distributed in that all objects including network-level 

and service management policies and network and service-level policy management 

agents are distributed across the network. Policies are distributed to their enforcement 

agents (PMAs and ACs) and the policy decision process is performed locally at each 

enforcement agent. However, problems may arise when different service-level 

management agents are trying to enforce adaptation strategies that result in conflicting 

actions on the managed devices. This would require analysis of service management 

policies for conflicts, as discussed in [Bandara et al. 2003]. In our adaptive framework, 

conflict analysis is more complex to perform since the enforcement of service 

management policies results in a set of low-level actions that is not static. Rather, this set 

of policies is determined at run-time by the selection algorithms within the service 

management policies.  

 

We have found that Ponder is well suited for specifying policies for CIM described 

managed objects. Use of the CIM model to provide the underlying semantics for policy 

rules facilitates an improved and consistent environment for policy definition and enables 

mapping of Ponder policies into device configuration independently of the 

communication protocol between the policy-based management system and the managed 

devices.  

 

We acknowledge the existence of available technologies that can be used to implement 

policy management solutions and refrain from specifying new technologies or protocols 

in our management framework. The architecture for policy enforcement and policy 

validation is based on simple ideas and can be implemented using existing protocols. We 

do not define any new protocols for the communication of policy information. Instead, 

depending on the implementation of the architecture, we assume that policy information 

is communicated using existing mechanisms. These can be object-middleware such as 

CORBA, protocols such as the Common Open Policy Service Protocol (COPS) or the 

Internet management architecture’s Simple Network Management Protocol (SNMP).  

 

We found that use of the CIM framework for representing network devices can provide 

two types of management information: a) Information about device’s capabilities, and b) 

Information about the current state of the device. We use this information to support static 

policy validation with respect to device capabilities, which can be performed offline using 

meta-policies as a means to specify the constraints on the permitted DiffServ 

mechanisms, resources and bounds on object attributes. The required information about 

the capabilities of the devices can be obtained from CIM models. Dynamic policy 

validation with respect to current state of the device can only be performed at the time the 
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policy is to be enforced by means of constraints which are specified as part of the policy 

rules to define the conditions under which the policy is valid. These constraints can 

reference information extracted from a corresponding CIM model. 

 

The applicability of the proposed policy validation framework is limited to performing 

checking of policy rules against the capabilities of individual network devices within a 

domain in which the policies apply. The situation becomes much more complex when 

interactions between the policies related to end-to-end flows or different service level 

agreements (SLAs) are considered. This requires determining whether the introduction of 

a new SLA could potentially violate the policies relating to existing SLAs. In the simplest 

situation this could require determining whether the current network topology has the 

resources to support the new SLA which can be done by Traffic Engineering systems. 

However, when the SLAs cater for dynamic allocation of resources based on time or 

application requests, this becomes more complex to do.  

 

Another issue is that the end-to-end path may not be within the administrative domain of 

a single service provider. This requires interaction between service providers to exchange 

policy information, and current state of the network topology. The Ponder compiler can 

generate policies in an XML format to enable easy exchange of policies, but policies 

usually refer to specific domains so may not be transferable. For more information refer 

to the Ponder Policy Group documentation [Ponder Policy Group]. A number of problems 

may arise when using policies for configuration of a service provider’s network. For 

example the forward and return path between two end points may not be symmetrical 

within a network. This implies that there may be needed to define two sets of policies – 

one to cater for the inbound direction and the other for the outbound direction.  

6.3 Evaluation of the Implementation 

6.3.1 Evaluation of the policy enforcement implementation  

 
A limitation of our enforcement implementation is that enforcement of DiffServ policies 

is supported only for policies specified in terms of TCBs, but not for policies specified in 

terms of single CIM objects (eg, a policy that will add/update/remove a single 

MeteringService CIM object). This is due to the fact that one needs to know the location 

of a single CIM object inside the CIMOM’s space. This would require integration of the 

Ponder Editor tool with a Graphical Tool, such as CimNavigator [Cim Navigator], to 

graphically browse CIM objects and their associations within the CIMOM. Use of this 

tool will enable the administrator to select which CIM object to update/remove in/from 
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the CIMOM or alternatively to select the position where a new CIM object should be 

added in the CIMOM.  

 

Ponder Management Agents interpreting DiffServ policies are written in Java and their 

communication with the Java implementation of the WBEM services CIMOM [WBEM 

Services Project 2003] is realised using Java RMI. This leads to a poor performance when 

enforcing obligation policies that involve CIM operations within the CIMOM. In 

addition, the CIM2TCDriver component is also written in Java and communicates with 

the CIMOM with Java RMI leading to an overall poor performance to communicate 

policy actions to Linux routers. The rationale for using the Java platform for deployment 

of the CIM2TC Driver component and its RMI communication with the CIMOM was due 

to compatibility issues. The WBEM services CIMOM, which our implementation uses, is 

implemented in Java. Other available CIMOMs, eg. the CIMOM from the Open Group 

[The Open Group], are also mostly implemented in Java. Other available technologies 

could be used to implement the communication protocol from the CIMOM with the Linux 

device, such as CORBA, COPS or SNMP. In the latter two cases, an additional software 

layer would be required to convert the CIM Network Common Model classes to the 

respective object models used by the management protocols (i.e. DIFFSERV-PIB and 

DIFFSERV-MIB), while COPS or SNMP agents should be running in the Linux device. 

We have not found a COPS or a SNMP agent implementation for Linux, so we have not 

implemented use of COPS and SNMP to perform policy enforcement and evaluate the 

performance of these approaches. However, since the enforcement of DiffServ 

provisioning policies is not a frequent operation, we do not expect that the performance 

overhead of our implementation will increase significantly the management overhead for 

a DiffServ network. The main purpose of the prototype was to evaluate the feasibility of 

implementing the proposed framework, and this was satisfactorily achieved.  

 

Finally, use of domain-based Ponder specification for network policy provides scalability 

with respect to the number of configuration policies that need to be deployed within the 

network, as the same policy is applied to sets of devices and objects within the managed 

network, rather than being limited to apply only to individual devices. 

6.3.2 Evaluation of the policy adaptation implementation 

 
The experiments conducted with our prototype implementation of the policy adaptation 

architecture for simulated DiffServ networks have proven the feasibility of our approach. 

Use of simulated networks enabled us to experiment in various network scenarios and use 

results as feedback to resolve a range of problems that may arise in an adaptive network 
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management system, such as oscillations that occur when small changes in performance 

generate events to trigger configuration changes. A next step could be to deploy the 

proposed architecture in real test-beds, using available third-party monitoring and fault 

reporting tools to provide measurements and generate events indicating network failures, 

etc.  

 

In the current version of the implementation, the administrator manually edits the QoS 

guarantees of DiffServ Per Domain Behaviour (PDB) policies in the QoS Policy database 

(refer to Figure 4.8 for an example of a policy database instance).  This can lead to 

accurate selection of PDB policies only under the assumption that the expert user has the 

tools to analyse the network in order to predict the QoS guarantees of PDB policies. This 

is due to the fact that the characteristics of a PDB depend on network-specific features, 

eg. maximum number of hops, maximum transit delay of network elements, minimum 

buffer size available for the PDB at a network node, etc. Alternative approaches could be 

adopted in order to predict the QoS guarantees of the PDB policies based on analysis of 

monitored information.  

 

The introduction of service management policies, which implement the selection 

algorithms, increases the management overhead within our adaptive framework, as they 

need to dynamically choose which lower-level network policy must be enabled, given an 

adaptation request. However, the selection algorithm does not require sorting of the 

behaviour attributes of lower-level policies, ie. the policies’ characteristics upon which 

the selection is based. In most cases, as in the examples we presented in Chapter 4, it is 

adequate to perform a search operation to find, given a request, only the closest policy 

attribute value to the request, the minimum, or the maximum value of a policy attribute in 

order to decide which policy to enable. As a consequence, use of service management 

policies scales linearly with the number of deployed low-level policies.    

6.3.3 Evaluation of the policy validation implementation 

 
The implementation of the policy validation architecture uses the same technologies as 

the policy enforcement architecture of CIM-based policies. Queries on attributes of CIM 

objects, modelled in our DiffServ metrics CIM extension, are issued using Java RMI from 

Ponder PMAs to the WBEM services CIMOM, which in turn communicates with a Java 

component CIMMonitor (see Figure 5.3) to get the corresponding variables from the 

Linux operating system. The performance of this implementation is relatively poor, 

compared to other implementations that could use more efficient technologies in terms of 

performance, other than Java and Java RMI.  
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As far as the scalability of the implementation is concerned, runtime checking of policy 

by means of constraints specified in the policy, scales linearly with the number of devices 

within the target domain within which the policy constraint needs to be evaluated. To 

analyse the scalability issues of providing validation by means of meta-policies, consider 

a meta-policy rule for validating N policies. If the maximum number of target elements in 

an arbitrary policy is T, then evaluating the OCL constraint in the meta-policy rule (eg. 

the constraints in examples 5.3 and 5.4) requires checking the static capability of all 

targets within all deployed policies. Hence, the complexity for evaluating the constraint is 

O(N*T), and the implementation may not perform adequately when the number of 

policies and target elements are large. One way to resolve this scalability issue is to group 

devices with the same capabilities under the same target domain. Note that in the Ponder 

policy framework, a target object may belong to one or more domains at the same time. 

Thus, multiple dimensions of domains can be defined for grouping policies’ target 

elements. For example, one domain can be defined for grouping the core routers in a 

DiffServ network, while another domain can be used for grouping the Cisco routers 

within the network. When grouping devices with the same capabilities under the same 

domain, there is no need to evaluate the constraint of the meta-policy against all target 

elements within a policy, but against only one among the same-type targets in the target 

domain (eg. if the target domain contains routers of the same type, connected with 

identical link capabilities). This implies that the implementation will scale with the 

number of target elements in the network.  

 

Finally, the current version of the Ponder compiler does not implement some of the 

features of OCL, so additional work is needed to support syntax checking and 

enforcement of meta-policies within the Ponder toolkit.  

6.4 Conclusions  

 

This chapter provided a critical analysis of the overall work achieved. We compared our 

framework with other approaches for providing adaptation and validation within a policy-

based management framework and discussed how our work complements approaches that 

concentrate on the implementation of adaptive mechanisms and platforms. We also 

discussed how the abstractions provided by our framework cater for use of available 

lower-level management protocols and lower-level policy specification. 

 

We discussed the limitations in terms of functionality and the shortcomings in terms of 

performance and scalability of the proposed policy enforcement, adaptation and 
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validation architectures and their implementation. We identified the implementation 

issues that have been hard to provide, and those that need to be resolved in the future.  

 

The implementation of our novel ideas has proven the feasibility of our approach to 

providing an adaptive policy-based management framework with mechanisms for 

validation of policy.  Note however, that no major efforts were undertaken to optimise the 

performance of the “proof of concept” implementation provided in this thesis. 

Implementation still needs to be provided for some of architectural components of the 

framework. 

 

 

 



  

  

7. Chapter 7 
Conclusions 

This chapter concludes the thesis by providing a summary of the results achieved and 

examines the extent to which our work meets the requirements for a policy based 

management framework that provides solutions to the problems of adaptation and 

validation of network management policy. Based on the critical analysis of our proposed 

framework, which we presented in the previous chapter, we will conclude with a 

summary of directions for future work.   

7.1 Review and Discussion of Achievements 

 
New technologies are being developed to build networks to support the growing demands 

of network applications and the needs of increasing numbers of users. However, although 

the cost of hardware to build faster, more reliable networks has decreased over time, the 

management cost of modern complex network infrastructures does not decrease at a 

similar rate. This is due to the fact that network management still remains a difficult task, 

requiring considerable effort by many competent network administrators. Automation, 

simplification and interoperability of network management solutions are key factors that 

will help administrators perform their tasks more easily and effectively and hence reduce 

the management cost of contemporary networks.  

 

Policy-based management is increasingly gaining attention from industry and from 

academia as a promising solution to automate and simplify the management task. 

However, no standard policy languages exist, the standard policy information models 

from the Internet Engineering Task Force (IETF) and the Distributed Management Task 

Force (DMTF) have limitations and are difficult to use, whilst the commercial policy 

toolkits do not yet support a high degree of automation and full interoperability. The work 

presented in this thesis is motivated by the need to provide solutions to the problems of 

policy adaptation and policy validation that remain unsolved for policy-based 

management of distributed systems. We believe that the proposed ideas will provide a 

solid background for future research, while their implementation will yield more 

automated and effective policy-based network management products.  

 
We presented a survey of policy-based management architectures and platforms, and 

management frameworks implementing policy adaptation techniques. This survey led us 

to the conclusion that significant challenges still need to be addressed in order to provide 



Chapter 7  Conclusions 118
 

 

adaptation of policy in a more systematic and generic way than existing approaches. 

Moreover, we did not find any implementation of a policy based framework that caters 

for validation of policy as a means to ensure that policies can lead to feasible 

configurations in a given existing network environment. The ideas we propose in this 

thesis strive to deliver solutions to the open problems of policy adaptation and policy 

validation. The basis of our work has been Imperial College’s Ponder policy framework, 

which includes the Ponder policy language for specifying security and management 

policies, a generic deployment model for Ponder policies, and an integrated policy toolkit 

[Damianou et al. 2001; Dulay et al. 2001; Damianou et al. 2002]. 

 

First of all, we addressed the requirement for a policy-based management framework to 

cater for complex and large-scale distributed systems. This requirement is the common 

denominator of the set of requirements for deploying any policy-based management 

framework. It is essential that the framework includes the necessary abstractions of the 

managed elements on one hand, and that mechanisms are supported to automate 

distribution of policies to sets of devices rather than individual ones on the other. The 

solution to this requirement was given by extending the Ponder policy framework with 

the CIM modelling framework for representing the managed entities where Ponder 

policies apply. The rationale for choosing Ponder as the policy specification language was 

that Ponder’s object-oriented features allow user-defined types of policies to be specified 

and then instantiated multiple times with different parameters. This provides extensibility 

of the management system. In addition, support for domains as a means of grouping 

objects to which policies apply, facilitates policy specification for large-scale systems. On 

the other hand, use of the CIM modelling framework that represents the abstractions of 

policy target objects, such as logical and physical network elements, services, etc., not 

only provides the Ponder framework with the necessary abstractions and the underlying 

semantics to specify policy independently of the type of the device, but also provides the 

flexibility to allow mapping of the policy rules into device configuration independent of 

the communication protocol between the policy system and the managed devices. 

Interoperability is achieved this way, as standard (eg. SNMP and COPS) or vendor 

specific management protocols can be used to communicate management information to 

different types of devices. 

 

As a proof of concept, we implemented a novel algorithm to map CIM-based DiffServ 

policies to low-level configuration commands for Linux routers. We used this 

implementation to enforce several configuration scenarios on a set of routers within our 

DiffServ testbed network. The results have proven the feasibility of our approach and the 



Chapter 7  Conclusions 119
 

 

practical benefits of using a policy-based management framework: policies simplify 

management of complex network mechanisms.   

 

For the problem of policy adaptation, we first analysed in a systematic way the possible 

types of policy adaptation that are required in a policy-driven management system. In the 

first type, adaptation is carried out by dynamically changing the attributes of network 

policies. In the second type, mechanisms should be implemented to dynamically select 

which of the implemented network policies should cater for a particular event, indicating 

changes within the managed environment. The third and most general type of adaptation 

is to learn from the system behaviour which management strategies are the most suitable. 

This can be used to select among implemented policies or even generate new ones when 

needed.  We have presented ideas on how policy adaptation can be realised within the 

Ponder policy framework for the first two types of adaptation. For the first type, the 

parameters of the policy actions are calculated at run-time, based on the parameters of the 

event triggering the policy. The administrator is given the flexibility to accommodate, 

within the system, a variety of techniques for deriving policy action parameters from 

event parameters  which measure the changes within the managed network. The solution 

to the second type of adaptation was given by introducing higher-level policies within the 

policy based management system. These higher-level policies are used to manage the 

underlying network-level policies, by selecting at run-time which network-policy should 

be enforced for a particular situation. A variety of selection algorithms can be 

implemented within the management system, providing the administrator with the 

flexibility to change the adaptation strategy when required.  

 

We have designed a generic enforcement architecture for policy adaptation within the 

Ponder framework. Policy Management Agents (PMAs) at the service-level interpret 

service-level obligation policies to select which network-level obligation or authorisation 

policies should be enforced upon requests indicating changes in the managed system. The 

applicability of our approach has been tested with a prototype implementation for 

simulated DiffServ networks. However, the applicability of our ideas on policy adaptation 

is not restricted to a DiffServ framework, but the same ideas could be used to implement 

adaptive policy-based management systems for management of different networking 

mechanisms (eg. security) and for several aspects of distributed systems (eg. storage and 

ubiquitous systems management). The results of our experiments have shown the 

feasibility of our approach and have proven that policy adaptation can provide a flexible 

means of dynamically changing the adaptation strategies within policy-enabled networks.   
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One of the reasons that many network administrators do not yet trust policy-based 

management products is the fact that they do not know whether the enforcement of policy 

will ensure feasible configurations of their systems; it is thus important to provide tools to 

validate policies prior to their enforcement. We addressed the requirement of policy 

validation by using the device-independent CIM modelling framework to provide our 

policy-based management system with two types of information: a) information about 

device capabilities (e.g. type of mechanisms it supports, bounds on resources); and, b) 

information about the current state of the device (e.g. current resource allocation, current 

values of specific devices’ variables). We use this information to support two types of 

policy validation: a) static policy validation with respect to device capabilities. We 

perform this type of validation offline, using meta-policies as a means to specify the 

constraints on the permitted mechanisms and resources that policies can use within the 

device; and, b) dynamic policy validation with respect to current state of the device. This 

type of validation is performed at the time the policy is to be enforced by means of 

constraints which are specified as part of the policy rules to define the conditions under 

which the policy is valid. Failure to satisfy the policy constraints prevents the execution 

of the policy. These constraints can reference information extracted from corresponding 

CIM models. 

 

We have implemented an architecture for validating policies that apply to DiffServ 

networks. Target routers’ capabilities are extracted from the CIM Network Common 

Model, while information about the current device configuration (e.g. number of 

implemented classes, bandwidth allocated to each DiffServ class, etc.) is provided by a 

“DiffServ-metrics” extension to CIM that we have designed and implemented within the 

WBEM Services CIMOM for providing DiffServ run-time statistics.  

 

Throughout this thesis we have used examples, mostly related to management of 

Differentiated Services networks, to describe the concepts of the proposed framework. 

The framework is however applicable to a wider range of management areas, such as 

network security, storage and ubiquitous systems management. Our ideas on policy 

enforcement, adaptation and validation are not restricted to specific management 

protocols, mechanisms or information models; the same ideas can be used in different 

management areas using corresponding protocols, mechanisms or information models. 

For example, the Diadem EU project [Diadem Project] will be applying our ideas to 

adaptive management of distributed firewalls.  
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7.2 Future Work 

 
We have identified several issues for further work through the critical evaluation of the 

work in Chapter 6. We list the most important of them in this section and extend them 

with a few additional issues. 

7.2.1 Policy enforcement architecture 
 

We have implemented enforcement of CIM-based DiffServ policies for Linux routers. It 

would be easy to extend the implementation to provide management of commercial 

routers. Future work could also use this approach for management of other QoS 

mechanisms, such as MPLS.  

 

Further work is needed to extend the implementation to use other available management 

protocols for policy enforcement, such as SNMP and COPS and evaluate the limitations 

and the performance implications of each approach for executing policies on target 

routers.  

7.2.2 Policy adaptation framework  
 

The area of policy adaptation still needs further investigation. The ideas presented in this 

thesis provide solutions for adaptation of network-level policies according to changes in 

application requirements and events indicating network failures or problems delivering 

services at the desired levels. The same concepts could be used to cater for policy 

adaptation when policy is defined at the application level. In this case, policy-enabled 

applications interpret policies to tailor their behaviour according to events they receive 

from the network, such as the available bandwidth, or according to requirements of 

specific users, such as what information to filter when bandwidth or device capabilities 

are limited. Policy adaptation techniques such as those described in this thesis can be used 

to adapt policies within applications as a means to dynamically change the adaptation 

strategies at the application-level.  

 

Note that some of the application-specific policies may have to be enforced within the 

network. Thus policy-enabled applications need to be able to transfer policies to the 

network. Conversely, the network may need to pass policies to be interpreted by the 

application for more efficient adaptation, for instance related to caching or monitoring of 

application specific components. It is necessary to develop techniques and interfaces for 
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interaction between policy-based applications and policy-enabled networks in order to 

exchange policy information.  

 

Considerable research is required to investigate use of self-learning mechanisms to find 

out which are the most suitable policy configuration strategies from the system behaviour. 

This can be used to enhance the functionality of the policy adaptation system to select 

policies or generate new ones when needed.  

7.2.3 Policy validation framework  

 
Further implementation is needed to support meta-policies within the Ponder compiler. 

The Ponder toolkit also needs to be extended to support deployment and enforcement of 

meta-policies. 

 

This thesis has only addressed the problem of policy validation in respect to the 

capabilities of the network elements implementing the policy. Additional work is needed 

to validate policies related to end-to-end flows or different service level agreements 

(SLAs). In the latter case, it should be determined whether the introduction of a new SLA 

could potentially violate the policies relating to existing SLAs. 

7.3 Closing Remarks 

 

The work presented in this thesis has been motivated by the need to provide solutions to 

the problems of policy adaptation and validation. The results of our work will benefit the 

network management community at large. Applying Ponder policies to CIM represented 

network elements and services will benefit all those in industry and academia adopting 

the CIM standard.  Our novel ideas on policy adaptation and policy validation can be 

successfully applied to real-life configuration management scenarios and constitute a 

background basis that will help researchers in this area.  
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9. Appendix A 

A1. Adaptive Management of Network Security Mechanisms 

 

Authorisation is often part of a policy-based management system to specify which users 

are permitted to access particular services or functions within the services. Consider a 

scenario where a business organisation provides a certain number of services to users who 

work within the organisation, to clients who have signed a Service Level Agreement with 

the organisation and to internet users. Access control agents should be implemented 

within the policy-based management system of the organisation to interpret authorisation 

policies and control requests related to each offered service. For example, the security 

administrator will define the policy type WebServiceAccessControlPolicy in Example A.1 

to specify that users that belong to the subject domain domainS are not permitted to use 

the web service offered by the organisation’s web servers.  

 

Example A.1 Policy for controlling users’ access to an organisation’s web service 

 
type auth- WebServiceAccessControlPolicy (subject domainS) { 

target  /Servers/WebServers; 

action openHTTPconnection (); }  

 

The policy type WebServiceAccessControlPolicy can be instantiated multiple times with 

different subjects to define access control policies for different sets of users. Example A.2 

presents three policy instances of the type WebServiceAccessControlPolicy. Policy 

policy1 denies access of the web service to internet users, while policies policy2 and 

policy3 deny access to users within the Client A and Client B networks respectively.  

These policy instances, when enabled, will be interpreted by Access Control agents to 

configure the firewall of the organisation to reject web requests from the corresponding 

set of users. 

 

Example A.2 Policy instances of the type WebServiceAccessControlPolicy 
 

inst auth- policy1 = WebServiceAccessControlPolicy (/Users/InternetUsers); 

inst auth- policy2 = WebServiceAccessControlPolicy (/Users/ClientA_Users); 

inst auth- policy3 = WebServiceAccessControlPolicy (/Users/ClientB_Users); 
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Consider now a scenario where a Denial of Service (DoS) attack is detected against the 

web servers of the organisation. This would result in a situation where it is impossible for 

legitimate users to use the web service. In turn, this situation would indicate that the 

existing access control policy deployed within the network is not efficient to prevent the 

DoS attack, but needs to be changed. This adaptation of the access control policy can be 

implemented using the policy shown in Example A.3 which denies access of the web 

service to internet users, assuming that the attack originates from a set of internet users.  

 

Example A.3 Policy for adapting the access control policy for the web service 

 

inst oblig DoSAttackPolicy { 

subject ServiceManagementAgent; 

on DoS(); 

do policy1.enable();  

/*The authorisation policy denying access of internet users must be enabled */  }  

 

Another adaptation strategy that could be implemented in a DoS attack scenario would 

require detecting where the attack originates. In this case, the ServiceManagementAgent 

could only enable an authorisation policy denying access to users of the network where 

the attack comes from. This adaptation strategy could be implemented with the 

management policy presented in Example A.4.  

 

Example A.4 Policy for adapting the access control policy for the web service 

based on information of the DoS attack 

 
inst oblig DoSAttackPolicy { 

subject ServiceManagementAgent; 

on DoS ( networkID ); 

do   
/* the constructor domain takes as input the IP address of the network where the attack  

originates and constructs a subject domain representing the attacker’s domain*/  

domain attackerDomain = new domain ( networkID ); 

/* Instantiate an authorisation policy of the type WebServiceAccessControlPolicy with subject  

the domain attackerDomain*/ 

inst authorisationPolicyForAttacker = WebServiceAccessControlPolicy (attackerDomain ) -> 

/* Enable the new authorisation policy */ 

authorisationPolicyForAttacker.enable (); }  
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A2. Adaptive Management of Ubiquitous Systems 

 

In the future, mobile communicators will be an important means of interacting with an 

intelligent ubiquitous environment in the home, office, hotels, in shopping malls or while 

travelling in order to support commerce, entertainment or navigation. Policies can be 

introduced in such environments to facilitate management of large number of devices 

with different capabilities.  In particular, security policies can be deployed within the 

system to specify which users or devices are permitted to access services or data within 

other devices, while obligation policies can be used to specify the actions that need to be 

undertaken within the system when certain events are generated. For example, an 

obligation policy can be deployed to specify that “all voice messages arriving at the 

mobile device should be converted to text messages” when the user is in a meeting room, 

while another policy can be deployed to specify that “all text messages should be 

converted to voice messages”, when the user is driving his car.  Both policies will be 

triggered by an event indicating that a new message has arrived at the mobile device.  

 

Considering the dynamic nature of a ubiquitous environment, we can perceive that 

adaptive management is required in several circumstances, in order to automatically 

change the management strategies when changes occur within the ubiquitous system. In 

our approach, this can be realised with an adaptive policy based management system, 

which dynamically adapts policy according to changes within the managed system, such 

as changes of user’s current context in terms of his location, activities, device capabilities, 

etc.  

 

Consider as an example a user using a mobile device for receiving voice, email and text 

messages. According to the current context in terms of the activity of the user, certain 

policies can be deployed to specify how incoming messages should be handled by the 

user’s mobile device. Table A.1 presents examples of policies that can be used for 

handling the user’s incoming messages.  

 

Table A.1 Policies in a ubiquitous environment  

User’s Activity Policy 

In a meeting  “Convert voice message to text” 

Driving  “Convert email to voice message” 

At Home “Convert text message to voice message”  
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Policies should be dynamically enabled with respect to changes of the user’s activity. 

Example A.5 presents this type of adaptation can be implemented in our framework.  

 

Example A.5 Policy for adapting policy for a mobile device when the user’s activity 

changes 

 
inst oblig PolicyForMobileDevice { 

subject ServiceManagementAgent; 

on ActivityIsChanged (newActivity) 

do 

  policies[] = select (newActivity) -> 

  for each policy in policies[]  

   policy.enable(); }   

 
A more complicated scenario uses a ubiquitous system similar to the “Easyliving Lab” 

from Microsoft research [EasyLiving Project], a prototype of an architecture and 

technologies for ubiquitous computing. In this scenario, a person is using his mobile 

device within the intelligent environment, where three possibilities are offered: a) When 

the user is near his computer workstation, the display of the mobile device can be moved 

to the monitor of his computer and the user can use the keyboard and mouse of the 

computer, b) When the user is in his office (where the computer station is), the display of 

the mobile device can be moved to the projector; and, c) When the user is anywhere in the 

house, the display of the mobile device can be moved to the wall screen. Policies can be 

introduced within the system to define how the display of the mobile device is handled in 

each location. Table A.2 presents examples of policies for the scenario we described 

above.  

Table A.2 Policies in an “smart” home 

Location Policy 

Computer workstation “Display on the computer monitor” 

Office “Display on the projector” 

Anywhere in the house “Display on the wall screen” 

 

As we can observe, these three policies should not all be enabled for every location as 

they contain conflicting actions; rather policies should be dynamically enabled and 

triggered according to changes of the user’s location. Assume that the user is entering in 

the intelligent environment using his mobile device. How the display of his device should 

be directed should be calculated at runtime, based on the current location of the user in 

the house. For example, if the user enters somewhere near his computer station, all three 
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choices are available. Either policy 1 from Table A.2 could be triggered, or policy 2, since 

the user is in the office, or policy 3, since the user is in the house. The method to calculate 

which policy should be enabled and triggered for the new location, can be implemented 

within a service management policy, as in the policy in Example A.6. 

 

Example A.6 Policy for adapting policy for a mobile device when its location 

changes 

 

inst oblig  PolicyForMobileDevice { 

subject ServiceManagementAgent; 

on locationIsChanged (newLocation) 

do  

  // policies[] is the set of all deployed policies 

  policy = select (policies[], newLocation) -> 

  policy.enable() -> policy.trigger(); }  

 

An event conveying information about the new location of the user will trigger the policy 

PolicyForMobileDevice to invoke the action select, which will calculate which policy 

from Table A.2 should be enabled and triggered. An implementation of the selection 

algorithm can choose the “closest” policy in terms of the closest location of the display in 

the three dimensional space. Figure A.1 shows graphically the use of this selection 

algorithm. Since the user is closest to the center of the desk region, policy 1 will be 

enabled and triggered by the policy PolicyForMobileDevice so that the display is moved to 

the monitor on the computer desk.  
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Figure A.1 Policy selection algorithm in a ubiquitous system  

 


