
Proc. 3rd IEEE Workshop on Policies for Distributed Systems and Networks (Policy 2002), Monterey, California,
June 2002, pp147-158

An Adaptive Policy Based Management Framework for Differentiated Services
Networks

Leonidas Lymberopoulos, Emil Lupu and Morris Sloman

Imperial College, Department of Computing, 180 Queen’s Gate, SW7 2BZ, London, UK
{llymber, e.c.lupu, mss}@doc.ic.ac.uk

Abstract

This paper presents a framework for specifying
policies for the management of Differentiated Services
(DiffServ) networks. Although policy-based
management has been the subject of intensifying
research efforts, proposed solutions are often restricted
to condition-action rules where conditions are matched
against incoming traffic flows. This results in static
policy configurations where manual intervention is
required to cater for configuration changes and to
enable policy deployment. The framework presented in
this paper supports automated policy deployment and
flexible event triggers to permit dynamic policy
configuration. Whilst current research focuses mostly
on rules for low-level device configuration, significant
challenges remain to be addressed in order to: a)
provide policy specification and adaptation across
different abstraction layers and b) provide tools and
services for the engineering of policy-driven systems. In
particular, this paper focuses on solutions for dynamic
adaptation of policy in DiffServ networks according to
changes in requirements. Policy adaptation includes
both dynamically changing policy parameters and
reconfiguring the policy objects.

1. Introduction

Network applications commonly require more
bandwidth than networks can provide, leading to
congestion and variable performance in terms of
throughput, latency variations (jitter), propagation
delay, etc. Traditional IP networks provide a “best-
effort” service which treats all applications equally
when competing for network resources, irrespective of
how critical they are. To address this issue, research and
industrial efforts have focused on the development of
Quality of Service (QoS) enabled networks which
provide mechanisms to allow network applications to
request and receive predictable performance levels.

Two approaches have been proposed for providing
QoS in IP networks. Integrated Services (IntServ) [1]
uses the Resource ReSerVation Protocol (RSVP) [2] to
provide per-flow QoS support by dynamically reserving

resources on RSVP-enabled routers. Each flow is
identified by the destination IP address, the transport
protocol and the port number used by the application.
This approach has significant scalability problems as
routers must maintain a lot of information about the
application flows and their reservations and must
process a large number of messages for each reserved
flow.

Differentiated Services (DiffServ) is a much simpler
alternative to IntServ/RSVP. The QoS information is
encoded in the Type of Service (ToS) byte in the IP
header to identify different classes of service. Only edge
routers in the DiffServ architecture need to perform the
classification of traffic flows into classes of service. The
core routers queue and schedule packets according to
the value of the ToS field. This ensures that DiffServ
has significantly better scalability characteristics and is
therefore becoming more popular with network
providers.

The IETF DiffServ working group [3] has defined an
architecture for DiffServ (RFC 2475) and standard Per
Hop Behaviors (RFCs 2474, 2597 and 2598). In
addition, a model for representing DiffServ routers
(DSMODEL) is also proposed [4]. Ongoing work
includes the definition of a DiffServ Management
Information Base (MIB) and Policy Information Base
(PIB) to provide standards for managing DiffServ
mechanisms using existing management protocols, such
as the Simple Network Management Protocol (SNMP)
and the Common Policy Service Protocol (COPS).
Furthermore, various research groups are investigating
the automation and the simplification of the
management process using rules that can dynamically
change the behaviour of a DiffServ-enabled network.
This approach is known as policy-based management.
We have identified the following requirements for
policy-based management of DiffServ networks:
• The management system must have the flexibility

and necessary abstractions to manage a variety of
device types, with different capabilities and
limitations, from different vendors. The system
architecture should be sufficiently flexible to allow
adding new device types with minimal updates and
recording of existing components.

2

• To cater for large-scale networks, the management
system must be able to apply policy rules on sets of
devices rather than individual ones. When adding a
new device to a set, relevant policies should be
automatically deployed and enforced on it.

• The management system must be able to adapt to
events such as failures or QoS violations within the
system. In addition to adapting the behaviour of
managed devices, the management system should
also adapt its own behaviour, if necessary.

• Managed entities can be either applications or
network elements. Thus, there is the need to specify
policy at both the application and the network level.
Policies at one level may need to exchange
information, notifications or trigger the execution of
policy actions in another level.

This paper presents a flexible, expressive and
extensible framework to cover the wide range of
requirements identified above for the management of
Differentiated Services. Ponder [5], a declarative,
object-oriented language for specifying security and
management policies in distributed systems, is used as
the policy specification language.

The rest of the paper is organized as follows: section
2 explains the IETF DiffServ architecture and device
representation mode. Section 3, presents our approach
for the management of the functional components of
DiffServ-enabled devices and illustrates the
enforcement architecture for the proposed policy-driven
system. Section 4 analyses the use of policy adaptation
and gives an outline implementation of an adaptive
policy system for DiffServ. In section 5 we briefly
present and compare our approach with related work
and we outline conclusions and directions for future
work in section 6.

2. DiffServ Architecture

According to the DiffServ Architecture [6], traffic
entering a network is classified and possibly
conditioned at the network boundary, and assigned to
different behaviour aggregates identified by DiffServ
CodePoints (DSCPs). A DSCP is encoded in the most
significant 6 bits of the ToS byte contained in the IP
header of both Ipv4 and Ipv6. In the core network,
routers forward incoming packets to the next hop
according to the Per-Hop Behaviour (PHB) associated
with the packet’s DSCP. The IETF DiffServ working
group has defined a number of standard PHBs – Class-
Selector, Assured Forwarding (AF), Expedited
Forwarding (EF), and Default [7], [8], [9]. A DiffServ-
enabled node typically uses several components [4], to
implement a PHB.

The DSMODEL [4] represents the various functional
building blocks defined in the DiffServ Architecture to
implement the PHB. It includes abstract definitions for
Traffic Classification Elements, Metering Functions,
Actions of Marking, Absolute Dropping, Counting and
Multiplexing, and Queuing elements. The latter include
capabilities for algorithmic dropping and scheduling.
Combinations of the above functional datapath elements
form higher-level blocks known as Traffic Conditioning
Blocks (TCBs). Figure 1 shows a TCB comprising six
components from the DiffServ architecture.

Classifier Meter

Counter

Queue

Absolute
Dropper

SchedulerInput A

Packet
Out

Packet
In

Input B

Figure 1 Example of a Traffic Conditioning

Block

According to [4], a DiffServ-enabled device consists
of a interconnected set of TCBs, a routing component
and a configuration and management module as shown
in Figure 2.

Ingress Interface
classify,
meter,
action,

queueing

Egress Interface
classify,
meter,
action,

queueing

Routing
Core

DiffServ Configuration
and Management

Interface

Data
In

Data
Out

Management
COPS, SNMP, etc.

Figure 2 Model of a DiffServ-enabled device

The management of the individual functional

elements and TCB’s in a DiffServ device, is realized
through the Configuration and Management Interface
via one or more management protocols, such as SNMP
or COPS, or through other configuration tools such as
serial terminal or telnet consoles. Our work aims at
providing a Policy-based DiffServ Management system
using policy rules that govern the behaviour of each
node within a DiffServ network. Our policy system
communicates with each managed node through the
configuration and management interface that the node
provides.

3

3. Using Ponder for Management of
DiffServ Networks

Ponder [5] is an object-oriented, declarative language

developed at Imperial College for specifying
management and security policies. This paper focuses
on the use of obligation policies, which specify the
actions that managers must perform when certain events
occur, and provide the ability to respond to changing
circumstances. Obligations are event-triggered
condition-action rules, which explicitly identify the
subjects (i.e., managers or configuration agents) that are
responsible for performing the management actions on
target objects. Both subject and target objects are
specified in terms of domains, which are a means of
grouping objects to which policies apply [10]. Events
can be internal, e.g. a timer event, or external events,
which are collected and distributed by a monitoring
service. Composite events can be specified using the
event composition operators that the language supports.
The syntax of obligation policies is shown in Figure 3.

inst oblig policyName “{”
 subject [<type>] domain-Scope-Expression ;
 [target [<type>] domain-Scope-Expression ;]
 on event-specification ;
 do obligation-action-list ;
 [catch exception-specification ;]
 [when constraint-Expression ;] “}”

Figure 3 Obligation Policy Syntax

Actions can be operations defined in the management
interface of the target object or internal operation of the
management agent. In the latter case, the target element
of a policy is optional. Concurrency operators specify
whether actions should be executed sequentially or in
parallel and are used to separate actions in an obligation
policy. The optional catch-clause specifies an exception
that is executed if the execution of the policy actions
fails for some reason. The above syntax is used for the
declaring a policy instance. The language provides reuse
by supporting definition of policy types, which can be
instantiated for each specific environment. Figure 4
shows the syntax for declaring obligation policy types
and instantiations.

type oblig policyType “(” formalParameters “)” “{”
 { obligation-policy-parts } “}”
inst oblig policyName = policyType “(” actualParameters “)” ;

Figure 4 Obligation Types and Instantiations

Policies are automatically deployed into the relevant
Policy Management Agents (PMA) specified by the
subject of the policy. The PMA interprets and enforces
the obligation policies on a domain of target devices. In

the current Ponder prototype implementation [12], an
obligation policy enforcement object is implemented as
a Java program downloaded to a PMA. The PMA
registers with the monitoring service to receive the
relevant events which will trigger the policies it holds.
Policy actions are executed on the target managed QoS-
enabled devices when the triggering event is received by
the PMA. Events may pass parameters to the PMA and
the policy actions may also have parameters, which
typically correspond to the QoS configuration
parameters (managed object attributes) of a target
device.

We have given a very brief overview of Ponder.
More details on event composition, composite policies
and constraints can be found in [5] and a discussion on
conflict detection and resolution in [13]. In the
following sections we describe how Ponder policies can
be used to manage a DiffServ enabled device.

3.1. Policy Rules for Configuring DiffServ

Functional Elements

Although in this paper we use the abstractions of
DiffServ provided in [4], the implementation will use
the more detailed formal model proposed by the IETF
Policy working group for describing the QoS datapath
elements for DiffServ [11].

In our framework, functional elements of a DiffServ
device are represented as objects, which belong to the
following classes (derived from [4]): Class Classifier,
Class Meter, Class Marker, Class AbsoluteDropper,
Class Counter, Class Multiplexer, Class Queue, Class
AlgorithmicDropper, and Class Scheduler. These
fundamental classes can be extended (as shown in [11]),
to define more specific functional elements. For
example, the Class Meter may have five subclasses:
Average Rate Meter, Exponential Weighted Moving
Average (EWMA) Meter, Two-Parameter Token
Bucket Meter, Multi-Stage Token Bucket Meter, and
Null Meter. Furthermore, each fundamental class
contains a field that points to the next functional
element along the datapath, as explained in section 2.

This approach provides the administrator the
flexibility to define generic policy types, which can
apply to any type of DiffServ device, and can be
instantiated with device specific parameters. For
example, the following policy type can be written to
insert a Meter (i.e., any subclass of MeterT) on a router.

4

Example 1 Policy type that configures any Meter type
in any DiffServ device

type oblig insertMeter (target router, MeterT meter) {
subject DiffServManager;
on addMeterRequest();
do router.addMeter(meter);}

The parameter meter used in this policy type is an

object of class MeterT. The Policy Management Agent
can detect the actual subclass, which may correspond to
one of those identified above, and if necessary, take
specific actions for this particular subclass. The same
insertMeter type can be instantiated multiple times in
order to create specific rules, which apply to specific
devices within the DiffServ domain. For example, the
administrator may want to apply the
AverageRateMeterA on the edge routerA and the
TwoParameterTokenBucketMeterB on the core routerB.
Two policy instances should be created for that purpose,
as shown in Example 2.

Example 2 Instantiation of the insertMeter policy type
for different devices

inst Configuration1 =
 insertMeter(/Routers/EdgeRouters/RouterA,
 AverageRateMeterA);
inst Configuration2 =
 insertMeter(/Routers/CoreRouters/RouterB,
 TwoParameterTokenBucketMeterB);

3.2. Policy Rules for the Management of a Set

of Devices

Since subjects and targets are explicitly specified in
the Ponder policies in terms of domains, the same policy
can be easily applied to a large set of devices. For
example, an administrator may want to impose the same
classification rules on all edge routers in a domain, in
order to provide a common set of DiffServ codepoints.
The solution provided by our approach is a policy rule
whose scope is not a particular device, but all devices
within the defined domain.

Example 3 Policy that adds the same classifier entry to
all devices within DomainA of edge routers

inst oblig insertClassifierToDomainA {
subject DiffServManager;
target r = /Routers/EdgeRouters/DomainA;
on AddClassifierEntryRequest(classifierEntry);
do r.addEntryToClassifier(classifierEntry);}

When an AddClassifierEntryRequest event occurs
(this event is usually triggered through the management
console), this rule will insert the same entry in the

classifier elements of all routers that belong to the
domain /Routers/EdgeRouters/DomainA. Moreover, if a
new device is later added to that domain, the
corresponding Policy Management Agent
DiffServManager will be notified and will apply the
policy to the newly added device automatically.

3.3. Policy Rules for Implementing DiffServ Per

Hop Behaviours

Per-Hop Behaviour specifies the treatment packets
should receive on a DiffServ node, as they are
traversing a sequence of functional datapath elements.
The implementation of both standard and vendor
specific PHBs can be provided by using more complex
policy rules, whose specification can be easily altered to
provide varying PHBs.

In Example 4, we present a policy which will
configure a set of routers within the DS domain to
implement the required EF PHB. In this example, traffic
above the configured maximum input rate is counted
and discarded. Figure 1 shows the functional elements
to be configured on each device to provide the requested
PHB.

Example 4 Policy rule for providing EF PHB.

inst oblig EFConfigurationPolicy {
subject DiffServManager;
target r = /DomainA/Routers/CoreRouters;
on EFConfigRequest(DS,max_input_rate,min_output_rate);
do /* DS: The Diffserv codepoint for EF: 101110 */
 r.addEntryToClassifier(DS)->
 meter = newAverageRateMeter(max_input_rate)->
 r.addMeter(meter)->r.addQueue(queue)->
 schedulerEntry=newSchEntry(WRR,min_output_rate)->
 r.addEntryToScheduler(schedulerEntry)->
 r.addCounter(counter)-> r.addDropper(dropper);
when max_input_rate <= min_output_rate;
 /* Property that EF traffic must satisfy */ }

This example assumes that a Weighted Round
Robin scheduling algorithm is used. The weight for
this class of traffic must be calculated from the
parameter min_output_rate as : weight =
min_output_rate / total_output_rate, where
total_output_rate is the egress interface’s
bandwitdh.

The EFConfigurationPolicy is triggered by the

administrator’s request EFConfigRequest and will
configure all routers within the target domain.

Note that it is possible to define more complex policy
actions as scripts within the PMA, using a suitable
scripting language, which may include conditional
statements, atomic transactions, etc. For example, all the
actions in Example 4 could be combined in a single
script action:
applyEFPHB(DS, max_input_rate, min_output_rate).

5

In our framework, a policy rule is always active,
unless it has explicitly been disabled by the
administrator. PMAs can receive events (other that
configuration requests) relating to changes in the system
and then enforce the relevant policies. This means that
the policy rule EFConfigurationPolicy can also be
triggered in other circumstances. For example, when the
monitoring service detects a high drop rate of the EF
traffic class, it can raise an EFConfigRequest with a
higher maximum input rate value. This dynamic
triggering of policies is one of the mechanisms used for
adaptive management in our framework, as explained in
section 4.

3.4. Enforcement Architecture

The enforcement of rules that can be defined in our
framework require the execution of low-level actions,
e.g., addMeter(meter). These provide a uniform way to
represent management and configuration actions and
abstract the protocols used for communication between
a management agent and the managed device. The
proposed architecture is shown in Figure 5.

Policy Management Agent

Device BDevice A Device C

COPS SNMP CLI

Event Service

LDAPPolicy
rules

repository

Figure 5 Enforcement Architecture

Multiple PMAs can co-exist within the system. The
management responsibility can be divided amongst
them according to several criteria: each PMA is
responsible for the enforcement of a different set of
policies or responsible for managing a different set of
devices. The management actions specified in the
policies may need to be implemented by lower-level
device specific commands which are downloaded to the
device using:

• Command Line Interface (CLI): the policy actions
are translated into the corresponding CLI commands,
which are downloaded to the device using a script
that performs a telnet session between the PMA and
the device.

• SNMP: the SMIv2 MIB for Differentiated Services
[14] supports the abstractions defined in [4]. Thus,

once the functional elements are created by the
PMA, SNMP can be used to configure the
corresponding entries into the device’s MIB.

• COPS-PR: this is a protocol for policy provisioning
[15], which can be used with the Differentiated
Services PIB [16], which also follows the
abstractions provided by [4]. The PMA creates
Provisioning Instances (PRI’s) and downloads the
policy information to the device using COPS-PR.

The architecture presented in this paper can use any
of these low-level protocols for communicating the
policy information between the PMA and the managed
devices. In the future, it is possible that more
sophisticated network devices will be capable of
downloading and directly interpreting Ponder policies
from a repository. That is, the network device will
incorporate a PMA and receive policy triggering events.

4. Policy Adaptation

When applying policies to DiffServ elements, the
policy actions are those provided by the management
interface of the datapath elements determining the PHB.
Thus, the “level of abstraction” of the policies is
determined by the available implementation. However,
changes in the system such as failures or QoS violations
may require adaptation of existing policies to new
circumstances. Thus, policies themselves need to be
managed and adapted. In this paper, we identify
different adaptation requirements and show how policy
adaptation can itself be specified and enforced by other
policies, specified in the same Ponder policy notation.

We use the term “Policy Adaptation” to describe the
ability of the policy-based management system to
modify network behavior in one of the following ways:
• Adaptation by dynamically changing the parameters

of a QoS policy to specify new attribute values for
the run-time configuration of managed objects.

• Adaptation by selecting and enabling/disabling a
policy from a set of pre-defined QoS policies at
run-time. The parameters of the selected network
QoS policy are set at run-time.

• Adaptation by learning which are the most suitable
policy configuration strategies from the system’s
behavior. This can be used to select policies or even
generate new ones when needed.

In this paper, we will focus only on the first two
categories of policy adaptation as adaptation by learning
still requires considerable further work.

6

4.1. Run-Time modification of policy
parameters

In the general case, the specification of a network-

level QoS policy follows the following format:

inst oblig NetworkQoSPolicy {
subject NetworkLevelPMA;
target targetSet = TargetDomainofDevices;
on Event(EventParameters[]);
do ActionParameters[] =
 CalculateActionParameters(EventParameters[]) ->
 targetSet.executeAction (ActionParameters[]); }

Figure 5 Generic format for network QoS policy

In this type of network-level QoS policy adaptation,

the parameters of the policy action(s) are dynamically
calculated from the event attributes. For example, in the
EFConfigurationPolicy rule from Example 4, which
provides the EF PHB, the max_input_rate and
min_output_rate configuration parameters are given by
the EFConfigRequest event. Thus, a re-configuration of
the datapath elements can be changed dynamically by
triggering the policy with a new event containing the
new values. A re-configuration may occur in either of
the following cases:
• upon the admission of a new EF traffic flow. The

new portion of EF traffic will be aggregated with the
existing EF traffic via DiffServ’s classification and
marking processes. The monitoring system detects
the new traffic flow and notifies the QoS
management PMA. It calculates new values for
maximum arrival and the minimum departure rates
as the sum of the existing allocation for EF, plus the
requested bandwidth for the admitted new flow. The
PMA then triggers the EFConfigRequest event with
the new parameters and the event triggers the re-
evaluation of the EFConfigurationPolicy rule.

• to provide time-based bandwidth variation for the EF
traffic class. Typically, gold customers in an ISP
require high network usage during peak business
hours. In this case, the rule EFConfigurationPolicy of
the Example 4 will be triggered by a time event, as
shown in Example 5.

Example 5 Policies for time-based bandwidth variation

type oblig EFConfigurationPolicy (String timeOfDay,
 float max_input_rate, float min_output_rate) {
subject DiffServManager;
target r = /Routers/CoreRouters/RelevantRouters;
on timer.At(timeOfDay);
do r.applyEFPHB (DS, max_input_rate,
 min_output_rate);

when time.dayOfWeek() != “sat” ||
 time.dayOfWeek() !=”sun”; }

inst oblig timePolicy1 = EFConfigurationPolicy(
 “08:00:00”,20,20);
inst oblig timePolicy2 = EFConfigurationPolicy(
 “17:00:00”,10,10);

In the above, min_output_rate = max_input_rate,
but in practice, min_output_rate =
k * max_input_rate, where k>=1.03. The rule
timePolicy1 sets the bandwidth for the EF traffic at
20Mbps every weekday at 8am. The rule
timePolicy2 sets the EF’s allocated bandwidth at
10MBps again every weekday (during the
weekend, timePolicy1 or timePolicy2 do not have
to be re-enforced)

• to support adaptive applications, which adapt their

behaviour under changing network conditions, by
increasing/decreasing compression ratio, changing
coding algorithm etc. In our framework network
QoS policy parameters can thus be adapted to the
application’s requirements.

Consider an adaptive multimedia application. The

QoS metrics for a typical video flow would be the
spatial resolution (number of pixels/frame) and the
temporal resolution (number of frames/sec). Using a
mapping technique (for example as defined in [17]),
these application-level QoS metrics are translated into
network-level QoS metrics such as network bandwidth,
which the network must guarantee. However, when the
available bandwidth increases, the application may want
to transmit a better quality of video. Assume the
application receives notification of newly available
bandwidth newBW from the network, calculates new
requirements for adjusted application behaviour via a
call calculate(newBw) and notifies the network of its
new requirements by generating an EFConfigRequest
event with requiredBW as a parameter, (where
requiredBw ≤ newBw). We assume that the application’s
packets are EF treated. This can be realised using an
obligation policy at the application layer as shown in
Example 6. The low-level EFConfigurationPolicy in the
NetworkLevelPMA is triggered by the EFConfigRequest
event with requiredBw as a parameter and resets the
relevant network devices.

Example 6 Policy for providing adaptation to the video
application

inst oblig AdaptationPolicyForVideoApplication {
subject ApplicationLevelQoSManager;
on AvailableBandwidth (newBw);
do requiredBw = calculate (newBw) ->

 EventService.GenerateEvent(EFConfigRequest,
 requiredBw); }

A number of different adaptation strategies could be
adopted for the video application, and so there may be a
need to dynamically change these strategies by
replacing AdaptationPolicyForVideoApplication with a
new version or by enabling/disabling different versions

7

of the policy. Policies provide a more flexible means of
implementing this type of application-level adaptation
than scripts or special purpose code. Note that other
events indicating high delay, high jitter or high packet
loss could trigger policies in the ApplicationLevelQoS
manager. In the following examples, we indicate
adaptation strategies which could be implemented by
Ponder policies similar to Example 6, but omit the
actual policies.
• The monitoring system detects that video packet

delays exceed a threshold so it generates a
HighDelay event received by the application
manager. Corrective actions which may be
performed include: a) Increase the minimum
departure rate of the EF traffic to guarantee that the
video packets (especially large ones) will remain in
the output queue for less time before being
transmitted to the next hop. This is verified from
the measurements provided in [18]. b) Choose a
different application state in which the video
quality is decreased but which requires less
bandwidth and hence less delay.

• Measurements provided by [18] and from
simulations in RFC 2598 show that jitter is not
reduced by increasing the EF service rate, when the
EF aggregate is constructed from a single
microflow. On the contrary, when the EF
aggregation degree increases, jitter increases
rapidly with the number of microflows and with the
EF load. Thus, there are two possible corrective
actions for a HighJitter event: a) Decrease the
number of microflows, by degrading other EF
traffic to a lower PHB. b) Reduce the EF load, by
choosing a lower video quality.

• The action for a HighPacketLoss event would be to
increase the maximum arrival rate of the incoming
EF traffic. This will reduce the number of packets
being dropped by the policer at the ingress
interface. Alternatively, as packet loss is
proportional to the aggregation degree, the number
of EF microflows can be reduced, in order to
reduce packet loss in the remaining EF traffic.

4.2. Adaptation by dynamically selecting and

enabling policies from a set of policies

In this approach, higher-level control policies receive
events, which require system adaptation and decide
which lower-level DiffServ policy must be
enabled/disabled to adapt the configuration of the
managed system. The advantage of using policies rather
than a procedural language for selecting and enabling
the appropriate network-level policies is that modifying
the management strategy at this level can be achieved

by dynamically changing the control policy.
Furthermore, the same Ponder deployment framework
can be used to distribute both high-level control policies
and network DiffServ policies [12].

In the general case, a control policy is specified with
the template obligation rule GenericControlPolicy,
presented in Figure 6. In the following sub-section, we
will present specific examples of control policies, which
follow this template.

inst oblig GenericControlPolicy {
subject ControlPMA;
on AdaptationRequest (params[]);
do QoSpolicy = selectPolicy (params[])->
 QoSPolicy.enable() ->
 QoSpolicy’sParams [] =

 calculate (QoSPolicy, params[]) ->
EventService.GenerateEvent (

 QoSPolicy’sObligationEvent,
 QoSpolicy’sParameters []);}

Figure 6 Specification of a generic control
policy

4.2.1. Usage scenarios. In this section, we will consider
a set of Per-Domain-Behavior (PDB) DiffServ policies
from which one must be selected and enabled, in
response to an event requiring system re-configuration.
As defined in [19], a PDB describes the edge-to-edge
behaviour across a DiffServ domain. A particular PHB
(or a set of PHBs) and traffic conditioning requirements
are associated with each PDB. Using PDBs, it is
possible to guarantee that a class of service will receive
guaranteed QoS characteristics when traversing a
DiffServ domain.

In our proposed framework, the QoS guarantees for
PDB policies are specified in a policy database, which is
part of the Policy service. Table 1 shows an example
policy description database.

Typical network-level QoS PDB policies include an
EFConfigurationPolicy for implementing EF behaviour,
an AFConfigurationPolicy for implementing Assured
Forwarding (AF) services, etc. In the following, we will
present usage scenarios of our framework.

• Selection of a PDB policy to provide the required
QoS for a new service to be supported by the DiffServ
network. The QoS needs of the service are stated in its
associated Service Level Specification (SLS). A detailed
description of a SLS can be found in [20]. The Policy
Based Management system must select the PDB policy,
which most closely matches the SLS. A framework for
mapping SLSs to PDBs can be found in [21]. For
example, if the SLS states that the application must be
guaranteed the lowest possible values of delay and jitter,
then the PDB that provides the lowest delay and jitter
must be selected from Table 1. This operation will be

8

performed by a Control PMA, using the policy as in
Example 7.

Example 7 Policy to configure PDB for a new service

inst oblig ServiceConfigurationPolicy {
subject PDBSelectorAgent;
on newServiceRequest (SLS_params[]);
do pdb = selectPDB (SLS_params[]) ->
/* pdb is the reference to the policy object representing the
PDB policy*/
 pdb.enable()->

 pdb_params[]= calculate(SLS_params[]) ->
 EventService.GenerateEvent (pdb’sObligationEvent,
 pdb_params[]);}

• Selection of a new PDB policy in response to link
failures or routing changes. A PDB is usually
associated with a path of routers within the DiffServ
domain (e.g. when using DiffServ over MPLS). When a
link fails or routing changes for a specific flow, the
corresponding PDB may not be appropriate for the
routers in the new path, or it may no longer be suitable.
A new PDB must be selected, that satisfies the QoS
expectations for the flow and that can be applicable to
the new path. This can be implemented using the
following control policy:

Example 8 Policy for configuring DiffServ upon link
failures or routing changes

inst oblig ConfigPolicyUponRoutingChangesOrLinkFailures
 {
 subject PDBSelectorAgent;
 on routeIsChanged (newPath);
 do pdb = selectPDB (SLS_params[], newPath) ->

/* A PDB suitable for the new path must be selected
to cater for the service */

 pdb.enable() ->
 pdb_params[] = calculate(SLS_params[]) ->
 EventService.GenerateEvent(
 pdb’sObligationEvent, pdb_params[]); }

• Selecting a new PDB policy in response to
performance degradation. It is possible that a PDB
cannot deliver its QoS promises, due to congestion on
links or due to a high degree of flow aggregation. This
could be a result of over provisioning if too many PDBs
try to guarantee QoS characteristics. In this case, a flow
or a traffic class will experience performance

degradation when being served by a “violated” PDB. A
solution is to dynamically select a new PDB that will
more closely match the service(s) QoS requirements.

• Time-based selection of PDBs. This usage scenario
is similar to the one presented in section 4.1. A set of
PDBs is chosen taking into account the Time Validity
field of Table 1. Time Events activate the relevant
policies as shown in section 4.1.

4.2.2. Enforcement architecture. In the previous
section, we presented scenarios where a policy is
selected and enabled by the higher-level Policy
Management Agent PDBSelector. In the general case,
this management functionality of the generic Policy
Management Agent ControlPMA is specified with the
obligation rule GenericControlPolicy, presented in
Figure 6.

The ControlPMA must be able to:
a) Select, using a suitable algorithm, the most

appropriate lower-level policy to actually implement
the configuration adaptation, when the event
AdaptationRequest occurs.

b) Calculate the selected policy’s specific parameters.
c) Enable and trigger the selected policy with the

derived parameters.

Policy Service

Event Service

Control PMA

Network Level PMA(s)

Selected
Policy
Object1

2

3

5

6

4

load,
enable,
disable,

etcAdaptation
Request

Figure 7 Enforcement architecture for policy

adaptation
The enforcement architecture is presented in Figure 7.

Table 1. PDB policies and their QoS characteristics (part of the Policy Service)

PDB
identifier

Enforcement
Network Policy

Assured
bandwidth

(Mbps)

Delay
(ms)

Jitter
(ms)

Loss
(%)

Enforcement
Routers Path

Time when valid

PDB1 /Policies/Policy1 10 ≤ 20 ≤ 3 ≤ 1 <r1,…, rN> Every day
PDB2 /Policies/Policy2 20 ≤ 10 < 1 ≤ 0.1 <r1,…, rM> Working hours
… … … … … … …

9

1. The ControlPMA receives the event
AdaptationRequest from the event service.

2. The ControlPMA invokes a selection algorithm to
choose a suitable policy from the policy description
database in the policy service.

3. The policy service replies with the selected policy
object.

4. The enable() method is called on the selected policy
object, which in turn calls the enable() method on
the relevant PMAs. Enabling the policy means that
policy enforcement objects within the PMAs register
the obligation event with the event service, as
described in [12]. At this point, the selected policy is
activated on its PMAs. In addition, an “old” policy
can be unloaded or disabled from the corresponding
PMA’s.

5. An event is generated with the policy’s calculated
parameters to trigger the policy.

6. The obligation event is sent by the event service to
the registered Policy Enforcement Objects.

The pseudocode for the selectPolicy() method within

the ControlPMA is given below:

PolicyObjectReference selectPolicy (parameters[]) {
/* This method returns the reference of the policy object. In
the current implementation, it is an RMI reference.*/
selectedPolicy = PolicyService.selectPolicy(parameters[]);
/* selectPolicy is the specific implementation of an algorithm
for policy selection within the Policy Service. The user could
provide his/hers selection algorithms*/
return (SelectedPolicy); }

5. Related Work

Various research groups have presented ideas
regarding QoS adaptation in which they have identified
the need for specifying policy in order to adapt system
configuration in response to network changes, but no
acknowledged solutions have emerged. Other research
groups are working on policy specification and
enforcement. Out work aims at bringing together these
areas, by showing how to use the flexibility of a policy
based management framework for the adaptive
management of DiffServ networks.

The IETF Policy working group [22] is defining a
framework for managing QoS within networks, [23].
They do not have a language for specifying policies but
are using the X.500 directory schema. IETF policies are
of the form if <set of conditions> then do <a set of
actions>. Directories are used for storing policies but
not for grouping subjects and targets. They do not have
the concepts of subject and target that can be used to
determine to which components a policy applies, so the
mapping of policies to components has to be done by
other means (i.e., interface roles). Furthermore, they do
not support policy rules that can be dynamically

triggered by events to reconfigure the managed system
according to changing circumstances. The policy work
in the IETF seems to be focused only in the network
layer and they have not considered the interaction
between application and network policy.

 A number of vendors are marketing policy toolkits
for defining policies for DiffServ enabled networks,
e.g., [24], [25]. Most of these are similar to the IETF
ideas. None of them supports a language but they do
have graphical editors that allow the administrator to
define individual policies and then explicitly identify the
enforcement components to which the policies must be
loaded. None of these tools appear to have considered
the automation of the policy lifecycle and how to adapt
the configuration of network elements when conditions
change. New configurations need to be imposed
manually by the administrator through the management
console.

 In [26], a policy-based management system is
proposed for managing Service Level Agreements
within DiffServ networks. They use a tabular
specification (described in detail in [27]) where a policy
table contains entries, which map traffic aggregates into
classes of service. The list of PHBs that different
devices support is obtained by a resource discovery
mechanism. Thus, rather than providing a policy-based
management system for managing the characteristics of
DiffServ devices, the proposed system only maps
application flows into predefined and already
implemented PHBs. Moreover, this system can only
communicate policies to the enforcement devices during
the configuration process, initiated by the administrator.
The scope of this approach is specifically aimed at a
management system for a DiffServ network, whereas
our work is applicable to a wide range of management
areas.

The framework proposed in [28] adapts policy
parameters on monitoring the network. A management
script includes policies, expressed in the IETF
representation, and also specifies how the policy life
cycle should be managed. The script notifies the
management system about QoS threshold violations. In
this work, a prototype implementation is provided for
Differentiated Services, where policy parameters, such
as the peak rate of a traffic profile, its peak burst size
and the associated DSCPs, are changed dynamically to
adapt to system behaviour. The framework we propose
for the adaptive management of DiffServ can specify, in
a uniform way, all the necessary information required
for enforcement and adaptation of policies using
obligation rules. Furthermore, in addition to providing
adaptation by changing policy parameters, we can also
select new policies to be enabled upon events other than
just QoS violation events.

10

The system proposed in [29] for the management of
QoS in Multi-Protocol Label Switching (MPLS)
networks, also follows the IETF Policy working group
approach. They have extended the Common Information
Model (CIM) policy model with MPLS specific classes.
This system has the same limitations as the IETF
framework. In [30], IETF’s Policy Core Information
Model (PCIM) is extended, to provide support for goal
specification. Service-level goals can be specified to
enforce QoS on a per-user, per-application basis.
Monitored data is used to evaluate whether the specified
goals are satisfied. These service-level goals can be
expressed in our framework as higher-level obligation
policy rules.

In [20], an architectural framework is proposed for
providing QoS in DiffServ networks. Although they
identify the need for a policy-driven management plane,
no concrete proposals for its architecture have been
presented yet.

[31] presents an architecture for the management of a
network offering active services. In their architecture, a
bacterial algorithm forms the basis for the adaptation
performed by autonomous controllers. These controllers
are programmed (like a bacterium) to autonomously
replicate policies that improve its performance and de-
activate policies that degrade performance. This way,
“useful” policies spread and “poor” policies die out. A
policy is evaluated though a fitness (revenue-cost)
function. In this work, each policy is related to one
active service; policies control the deployment of
services (proxylets) in their active services environment.
[32] presents an example of this type of adaptation for
providing QoS differentiation of active services, where
the queue length of network servers (DPSs) is adapted
to provide either short delay or low loss to service(s),
depending on the users QoS requirements. Example of
these requirements (policies or service genes) can be:
“Accept request for service A if DPS <80% busy” of
“Accept request for service C if queue length < 20”. In
our framework, policies are used in a more generic
sense, describing the actions that management agents
must undertake when receiving different types of
requests. We provide adaptation, in a more systematic
way, by adapting the policy based management system
itself, either by changing attributes of policies or by
removing and adding new policies.

[33] presents a policy-driven framework for QoS
management of multimedia applications. They specify
policy at the application layer using the Ponder
language, although they rely on violation of constraints
to trigger policy rules instead of events. Their QoS
policy only provides the QoSHostManager component
with a notification message; the corrective actions
which are enforced upon QoS violation are described in
other types of rules. No formal specification is

discussed for these rules, although they could be
specified with Ponder’s obligation policies as well.
Furthermore, they use the term “adaptation” to refer
only to the actions, which are taken when a QoS
violation occurs which corresponds to the actions in a
Ponder obligation policy. Section 4.1 describes how we
would support the type of adaptation provided in [33],
but we consider our approach to be more general than
theirs.

[34] presents a QoS Architecture transport system for
a multicast, multimedia networking environment. It
offers a QoS configurable API at the transport layer,
which enables applications to have control over QoS.
QoS is specified at the API in terms of a flow
specification, which includes parameters such as delay,
throughput, jitter etc. and a QoS policy. The QoS
policy enables users to advise the infrastructure on how
to deal with the flow when resource availability
changes. A distributed QoS adapter interprets the policy
and is responsible for informing applications when
resources become available. A QoS adaptation protocol
is implemented for the communication between QoS
adapters. Our framework can provide this functionality,
but also it may apply adaptive behavior in other
circumstances, as we presented through the examples in
section 4.

A lot of work on QoS adaptation has also been
carried out in the Distributed Systems area, e.g. [35, 36].
Most of this work provides adaptation by hard coded
QoS management and monitoring in middleware
systems for supporting multimedia applications.

6. Conclusions and Future Work

In this paper we have presented a case study of

applying the Ponder policy framework to the adaptive
management of Differentiated Services networks. The
use of parameterised policy types gives applicability to
a wide range of DiffServ-enabled devices while the
policy system communicates with each managed node
through the configuration and management interface
that the node provides. Our approach provides the
administrator with the flexibility to define rules at both
the network and the application level for managing
DiffServ networks and network-aware applications.
More complex policy rules, such as rules for
establishing standard (i.e. AF, EF) or customized Per-
Hop Behaviours in a DiffServ domain can be expressed
in our framework. They can be communicated to the
managed devices by existing protocols, such as SNMP
and COPS-PR, or through the CLI. Network policies
can be dynamically triggered by events, in order to
automatically change the configuration of the managed
objects under changing circumstances. The dynamic

11

configuration of policies forms the basis of the adaptive
management our framework can provide.

We identified the need to manage and adapt policies
themselves and discussed different adaptation
requirements. Furthermore, we showed how policy
adaptation can itself be enforced by other policies,
specified in the same Ponder policy notation. We
presented examples of adaptation by dynamically
changing the parameters of a network QoS policy to
give new values to attributes of the managed objects at
run-time and of adaptation by selecting and enabling a
policy from a set of pre-defined QoS policies Finally,
we proposed an enforcement architecture for our ideas
on policy adaptation.

We are currently implementing Policy Management
Agents that interpret policy actions into configuration
parameters for DiffServ routers, using SNMP for
configuring DiffServ MIB’s within Linux routers [37].
We have done an implementation for policy
enforcement using (CLI–like) commands that the
Network Simulator (NS-2) provides for managing
DiffServ nodes and have experimented with adapting
the DiffServ parameters.

The main issues to resolve are to determine what can
be specified and implemented as policies and where
scripts may be needed to provide the required
adaptability. We intend to experiment with Linux-PC
based routers as well as commercial routers or switches
and to evaluate the performance implications of
executing policies on routers. We are also interested in
investigating particular methods or design patterns for
building policy aware applications and to extend our
framework with other techniques and interfaces for
interaction between policy-based applications and
policy-enabled networks in order to support dynamic
adaptation.

We also intend to use this approach for management
of MPLS networks in the future.

Acknowledgments

We gratefully acknowledge the support of the EPSRC
for research grant GR/M 86019 (Ponds) as well as BT
for support on the Alpine project.

References

[1] Braden, R., Clark, D. & Shenker, D., Integrated Services

in the Internet Architecture: an Overview, RFC 1633,
June 1994.

[2] Braden, R., Zhang, L., Berson, S., Herzog, S. & Jamin,
S., ReSerVation Protocol (RSVP) Version 1 Functional
Specification, RFC 2205, September 1997.

[3] Internet Engineering Task Force, Differentiated Services
Working Group,
http://www.ietf.org/html.charters/diffserv-charter.html

[4] Bernet, Y., Smith, A., Blake, S. & Grossman, D., An
Informal Management Model for DiffServ Routers,
Internet Draft, draft-ietf-diffserv-model-06.txt, February
2001.

[5] Damianou, N., Dulay, N., Lupu, E. & Sloman, M. The
Ponder Policy Specification Language. Proc. Policy
2001: International Workshop on Policies for
Distributed Systems and Networks, Bristol, UK, 29-31
Jan. 2001, Springer-Verlag LNCS 1995, pp. 18-39.

[6] Carlson, M., Weiss, W., Blake, S., Wang, Z., Black, D.
& Davies, E., An Architecture for Differentiated
Services, RFC 2475, December1998.

[7] Nichols, K., Blake, S., Baker, F. & Black, D., Definition
of the Differentiated Services Field (DS Field) in the
IPv4 and IPv6 Headers, RFC 2474, December 1998.

[8] Heinanen, J., Baker, F., Weiss, W. & Wroclawski, J.,
Assured Forwarding PHB Group, RFC 2597, September
1999.

[9] Jacobson, V., Nichols, K. & Poduri, K., An Expedited
Forwarding PHB, RFC2598, September 1999.

[10] Sloman, M. & Twidle, K., Domains: A framework for
Structuring Management Policy. Chapter 16 in
Networks and Distributed Systems Management
(Sloman, 1994ed), 1994a: pp. 433-453.

[11] Strassner, J., Westerinen, A. & Moore, B., Information
Model for Describing Network Device QoS Datapath
Mechanisms, Internet Draft, draft-ietf-policy-qos-
device-info-model-03.txt, May 2001.

[12] Dulay, N., Lupu, E., Sloman, M. & Damianou, N. A
Policy Deployment Model for the Ponder Language.
Proc. IM 2001: 2001 IEEE/IFIP International
Symposium on Intergrated Network Management,
Seattle, USA, 14-18 May 2001, pp. 529-544.

[13] Lupu, E. & Sloman, M., Conflicts in Policy-Based
Distributed Systems Management. IEEE Transactions on
Software Engineering, Special Issue on Inconsistency
Management, 25(6):852-869, Nov./Dec. 1999.

[14] Baker, F., Smith, A. & Chan, K., Differentiated Services
MIB, Internet Draft, draft-ietf-diffserv-mib-09.txt,
March 2001.

[15] Chan, K., Durham, D., Gai, S., Herzog, S., McCloghrie,
K., Reichmeyer, F., Seligson, J., Smith, A. & Yavatkar,
R., COPS Usage for Policy Provisioning, RFC 3084,
March 2001.

[16] Fine, M., McCloghrie, K., Seligson, J., Chan, K., Hahn,
S., Bell, C., Smith, A. & Reichmeyer, F., Differentiated
Services Quality of Service Policy Information Base,
Internet Draft, draft-ietf-diffserv-pib-03.txt, March 2001.

[17] T. Yamazaki: “Adaptive QoS Management for
Multimedia Applications in Heterogeneous
Environments: A Case Study with Video QoS
Mediation”, IEICE Trans. Commun., November 1999.

[18] Ferrari, Τ. & Chimento, F. (2000) A Measurement-based
Analysis of Expedited Forwarding PHB Mechanisms.
Proc. IWQoS 2000, Pittsburgh, PA, June 2000.

[19] K. Nichols, K. & Carpenter, B., Definition of
Differentiated Services Per Domain Behaviors and Rules
for their Specification, RFC 3086, April 2001

12

[20] Trimitzios, P. et al. (2001). An Architectural Framework
for Providing QoS in IP Differentiated Services
Networks. Proc. IM 2001: 2001 IEEE/IFIP International
Symposium on Intergrated Network Management,
Seattle, USA, May 2001, pp. 17-34.

[21] Prieto, A. & Brunner, M. (2001) SLS to DiffServ
configuration mappings, Proc. DSOM 2001: 12th
IFIP/IEEE International Workshop on Distributed
Systems: Operations and Management, Nancy, France,
15-17 Oct. 2001.

[22] Internet Engineering Task Force, Policy Working
Group, http://www.ietf.org/html.charters/policy-
charter.html

[23] Snir, Y., Ramberg, Y., Strassner, J. & Cohen, R., Policy
Framework QoS Information Model, Internet Draft,
draft-ietf-policy-qos-info-model-03.txt, April 2001.

[24] Cisco COPS QoS Policy Manager product
documentation,
htttp://www.cisco.com/univercd/cc/td/doc/product/rtrmg
mt/qos/qpm2_1/index.htm

[25] Allot Communications NetPolicy Policy Based
Management System product documentation,
http://www.allot.com/html/products_netpolicy.shtm

[26] Verma, D., Beigi, M. & Jennings, R. Policy Based SLA
Management in Enterprise Networks. Proc. Policy 2001:
International Workshop on Policies for Distributed
Systems and Networks, Bristol, UK, 29-31 Jan. 2001,
Springer-Verlag LNCS 1995, pp. 137-152.

[27] Verma, D. (2001). Policy-Based Networking,
Architecture and Algorithms. New Riders Publishing.

[28] Yoshihara. K., Isomura M. & Horiuchi, H.(2001)
Distributed Policy-based Management Enabling Policy
Adaptation on Monitoring using Active Network
Technology Proc. DSOM 2001: 12th IFIP/IEEE
International Workshop on Distributed Systems:
Operations and Management, Nancy, France, 15-17 Oct.
2001.

[29] Brunner, M. & Quittek, J. MPLS Management using
Policies. Proc. IM 2001: 2001 IEEE/IFIP International
Symposium on Intergrated Network Management,
Seattle, USA, 14-18 May 2001, pp. 515-528.

[30] Bearden, M., Garg, S. & Lee, W. Integrating Goal
Specification in Policy-Based Management Proc. Policy
2001: International Workshop on Policies for
Distributed Systems and Networks, Bristol, UK, 29-31
Jan. 2001, Springer-Verlag LNCS 1995, pp. 153-170.

[31] Marshall, I., Gharib, H., Hardwicke, H. &.Roadknight
C. (2001). A novel architecture for active service
management. Proc. IM 2001: 2001 IEEE/IFIP
International Symposium on Intergrated Network
Management, Seattle, USA, May 2001, pp. 795-810.

[32] I.W.Marshall and C.M.Roadknight "Provision of quality
of service for active services" Computer Networks, Vol.
36, No. 1, June 2001.

[33] Lutfiyya, H., Molenkamp, G., Katchabaw, M. & Bauer,
M. (2001). Issues in Managing Soft QoS Requirements
in Distributed Systems Using a Policy-Based
Framework. Proc. Policy 2001: International Workshop
on Policies for Distributed Systems and Networks,
Bristol, UK, 29-31 Jan. 2001, Springer-Verlag LNCS
1995, pp. 185-201.

[34] Campbell, A.T., "A Quality of Service Architecture",
PhD Thesis, Lancaster University , UK, January 1996.

[35] Gordon, G. et al.(1997). Adaptive Middleware for
Mobile Multimedia Applications. Proc. NOSSDAV '97:
Network and Operating System Support for Digital
Audio and Video , St Louis, USA 1997.

[36] Wang, N. et al. “Adaptive and Reflective Middleware
for QoS-Enabled CCM Applications”, Distributed
Systems Online (www.computer.org/dsonline)

[37] Kim, J.-Y., Hong, J. W.-K., Ryu, S.-H. & Choi, T.-S.
(2000). Constructing End-to-End Traffic Flows for
Managing Differentiated Services Networks. Proc.
DSOM 2000: 11th IFIP/IEEE International Workshop
on Distributed Systems: Operations and Management,
Austin, TX, USA, 4-6 Dec. 2000, Springer-Verlag
LNCS 1960, pp. 83-94

