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Abstract 
 

This paper presents a framework for specifying 
policies for the management of Differentiated Services 
(DiffServ) networks. Although policy-based 
management has been the subject of intensifying 
research efforts, proposed solutions are often restricted 
to condition-action rules where conditions are matched 
against incoming traffic flows. This results in static 
policy configurations where manual intervention is 
required to cater for configuration changes and to 
enable policy deployment. The framework presented in 
this paper supports automated policy deployment and 
flexible event triggers to permit dynamic policy 
configuration. Whilst current research focuses mostly 
on rules for low-level device configuration, significant 
challenges remain to be addressed in order to: a) 
provide policy specification and adaptation across 
different abstraction layers and b) provide tools and 
services for the engineering of policy-driven systems. In 
particular, this paper focuses on solutions for dynamic 
adaptation of policy in DiffServ networks according to 
changes in requirements. Policy adaptation includes 
both dynamically changing policy parameters and 
reconfiguring the policy objects.     
 
1. Introduction 
 

Network applications commonly require more 
bandwidth than networks can provide, leading to 
congestion and variable performance in terms of 
throughput, latency variations (jitter), propagation 
delay, etc. Traditional IP networks provide a “best-
effort” service which treats all applications equally 
when competing for network resources, irrespective of 
how critical they are. To address this issue, research and 
industrial efforts have focused on the development of 
Quality of Service (QoS) enabled networks which 
provide mechanisms to allow network applications to 
request and receive predictable performance levels.  

Two approaches have been proposed for providing 
QoS in IP networks. Integrated Services (IntServ) [1] 
uses the Resource ReSerVation Protocol (RSVP) [2] to 
provide per-flow QoS support by dynamically reserving 

resources on RSVP-enabled routers. Each flow is 
identified by the destination IP address, the transport 
protocol and the port number used by the application. 
This approach has significant scalability problems as 
routers must maintain a lot of information about the 
application flows and their reservations and must 
process a large number of messages for each reserved 
flow. 

Differentiated Services (DiffServ) is a much simpler 
alternative to IntServ/RSVP. The QoS information is 
encoded in the Type of Service (ToS) byte in the IP 
header to identify different classes of service. Only edge 
routers in the DiffServ architecture need to perform the 
classification of traffic flows into classes of service. The 
core routers queue and schedule packets according to 
the value of the ToS field. This ensures that DiffServ 
has significantly better scalability characteristics and is 
therefore becoming more popular with network 
providers. 

The IETF DiffServ working group [3] has defined an 
architecture for DiffServ (RFC 2475) and standard Per 
Hop Behaviors (RFCs 2474, 2597 and 2598). In 
addition, a model for representing DiffServ routers 
(DSMODEL) is also proposed [4]. Ongoing work 
includes the definition of a DiffServ Management 
Information Base (MIB) and Policy Information Base 
(PIB) to provide standards for managing DiffServ 
mechanisms using existing management protocols, such 
as the Simple Network Management Protocol (SNMP) 
and the Common Policy Service Protocol (COPS). 
Furthermore, various research groups are investigating 
the automation and the simplification of the 
management process using rules that can dynamically 
change the behaviour of a DiffServ-enabled network. 
This approach is known as policy-based management. 
We have identified the following requirements for 
policy-based management of DiffServ networks: 
• The management system must have the flexibility 

and necessary abstractions to manage a variety of 
device types, with different capabilities and 
limitations, from different vendors. The system 
architecture should be sufficiently flexible to allow 
adding new device types with minimal updates and 
recording of existing components.  



2 

• To cater for large-scale networks, the management 
system must be able to apply policy rules on sets of 
devices rather than individual ones. When adding a 
new device to a set, relevant policies should be 
automatically deployed and enforced on it.  

• The management system must be able to adapt to 
events such as failures or QoS violations within the 
system. In addition to adapting the behaviour of 
managed devices, the management system should 
also adapt its own behaviour, if necessary. 

• Managed entities can be either applications or 
network elements. Thus, there is the need to specify 
policy at both the application and the network level. 
Policies at one level may need to exchange 
information, notifications or trigger the execution of 
policy actions in another level.  

This paper presents a flexible, expressive and 
extensible framework to cover the wide range of 
requirements identified above for the management of 
Differentiated Services. Ponder [5], a declarative, 
object-oriented language for specifying security and 
management policies in distributed systems, is used as 
the policy specification language. 

The rest of the paper is organized as follows: section 
2 explains the IETF DiffServ architecture and device 
representation mode. Section 3, presents our approach 
for the management of the functional components of 
DiffServ-enabled devices and illustrates the 
enforcement architecture for the proposed policy-driven 
system. Section 4 analyses the use of policy adaptation 
and gives an outline implementation of an adaptive 
policy system for DiffServ. In section 5 we briefly 
present and compare our approach with related work 
and we outline conclusions and directions for future 
work in section 6.   
 
2. DiffServ Architecture 
 

According to the DiffServ Architecture [6], traffic 
entering a network is classified and possibly 
conditioned at the network boundary, and assigned to 
different behaviour aggregates identified by DiffServ 
CodePoints (DSCPs). A DSCP is encoded in the most 
significant 6 bits of the ToS byte contained in the IP 
header of both Ipv4 and Ipv6. In the core network, 
routers forward incoming packets to the next hop 
according to the Per-Hop Behaviour (PHB) associated 
with the packet’s DSCP. The IETF DiffServ working 
group has defined a number of standard PHBs – Class-
Selector, Assured Forwarding (AF), Expedited 
Forwarding (EF), and Default [7], [8], [9]. A DiffServ-
enabled node typically uses several components [4], to 
implement a PHB. 

The DSMODEL [4] represents the various functional 
building blocks defined in the DiffServ Architecture to 
implement the PHB. It includes abstract definitions for 
Traffic Classification Elements, Metering Functions, 
Actions of Marking, Absolute Dropping, Counting and 
Multiplexing, and Queuing elements. The latter include 
capabilities for algorithmic dropping and scheduling. 
Combinations of the above functional datapath elements 
form higher-level blocks known as Traffic Conditioning 
Blocks (TCBs). Figure 1 shows a TCB comprising six 
components from the DiffServ architecture.  
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Figure 1 Example of a Traffic Conditioning 

Block 
 

According to [4], a DiffServ-enabled device consists 
of a interconnected set of TCBs, a routing component 
and a configuration and management module as shown 
in Figure 2. 
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Figure 2 Model of a DiffServ-enabled device 

 
The management of the individual functional 

elements and TCB’s in a DiffServ device, is realized 
through the Configuration and Management Interface 
via one or more management protocols, such as SNMP 
or COPS, or through other configuration tools such as 
serial terminal or telnet consoles. Our work aims at 
providing a Policy-based DiffServ Management system 
using policy rules that govern the behaviour of each 
node within a DiffServ network. Our policy system 
communicates with each managed node through the 
configuration and management interface that the node 
provides.  
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3.  Using Ponder for Management of 
DiffServ Networks 

 
Ponder [5] is an object-oriented, declarative language 

developed at Imperial College for specifying 
management and security policies. This paper focuses 
on the use of obligation policies, which specify the 
actions that managers must perform when certain events 
occur, and provide the ability to respond to changing 
circumstances. Obligations are event-triggered 
condition-action rules, which explicitly identify the 
subjects (i.e., managers or configuration agents) that are 
responsible for performing the management actions on 
target objects. Both subject and target objects are 
specified in terms of domains, which are a means of 
grouping objects to which policies apply [10]. Events 
can be internal, e.g. a timer event, or external events, 
which are collected and distributed by a monitoring 
service. Composite events can be specified using the 
event composition operators that the language supports. 
The syntax of obligation policies is shown in Figure 3.  
 
inst oblig policyName “{” 
 subject [<type>] domain-Scope-Expression ; 
 [ target [<type>] domain-Scope-Expression ;] 
 on event-specification ; 
 do obligation-action-list ; 
 [ catch  exception-specification ; ] 
 [ when constraint-Expression ; ] “}” 
 

Figure 3 Obligation Policy Syntax 
 

Actions can be operations defined in the management 
interface of the target object or internal operation of the 
management agent. In the latter case, the target element 
of a policy is optional. Concurrency operators specify 
whether actions should be executed sequentially or in 
parallel and are used to separate actions in an obligation 
policy. The optional catch-clause specifies an exception 
that is executed if the execution of the policy actions 
fails  for some reason. The above syntax is used for the 
declaring a policy instance. The language provides reuse 
by supporting definition of policy types, which can be 
instantiated for each specific environment. Figure 4 
shows the syntax for declaring obligation policy types 
and instantiations. 
 
type oblig policyType “(” formalParameters “)” “{” 
  { obligation-policy-parts } “}” 
inst oblig policyName = policyType “(” actualParameters “)” ; 
 

Figure 4 Obligation Types and Instantiations 

Policies are automatically deployed into the relevant 
Policy Management Agents (PMA) specified by the 
subject of the policy. The PMA interprets and enforces 
the obligation policies on a domain of target devices. In 

the current Ponder prototype implementation [12], an 
obligation policy enforcement object is implemented as 
a Java program downloaded to a PMA. The PMA 
registers with the monitoring service to receive the 
relevant events which will trigger the policies it holds. 
Policy actions are executed on the target managed QoS-
enabled devices when the triggering event is received by 
the PMA. Events may pass parameters to the PMA and 
the policy actions may also have parameters, which 
typically correspond to the QoS configuration 
parameters (managed object attributes) of a target 
device. 

We have given a very brief overview of Ponder. 
More details on event composition, composite policies 
and constraints can be found in [5] and a discussion on 
conflict detection and resolution in [13]. In the 
following sections we describe how Ponder policies can 
be used to manage a DiffServ enabled device.  

 
3.1. Policy Rules for Configuring DiffServ 

Functional Elements 
 

Although in this paper we use the abstractions of 
DiffServ provided in [4], the implementation will use 
the more detailed formal model proposed by the IETF 
Policy working group for describing the QoS datapath 
elements for DiffServ [11].  

In our framework, functional elements of a DiffServ 
device are represented as objects, which belong to the 
following classes (derived from [4]): Class Classifier, 
Class Meter, Class Marker, Class AbsoluteDropper, 
Class Counter, Class Multiplexer, Class Queue, Class 
AlgorithmicDropper, and Class Scheduler. These 
fundamental classes can be extended (as shown in [11]), 
to define more specific functional elements. For 
example, the Class Meter may have five subclasses: 
Average Rate Meter, Exponential Weighted Moving 
Average (EWMA) Meter, Two-Parameter Token 
Bucket Meter, Multi-Stage Token Bucket Meter, and 
Null Meter. Furthermore, each fundamental class 
contains a field that points to the next functional 
element along the datapath, as explained in section 2. 

This approach provides the administrator the 
flexibility to define generic policy types, which can 
apply to any type of DiffServ device, and can be 
instantiated with device specific parameters. For 
example, the following policy type can be written to 
insert a Meter (i.e., any subclass of MeterT) on a router.  
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Example 1 Policy type that configures any Meter type 
in any DiffServ device  

type oblig insertMeter (target router, MeterT meter) { 
subject DiffServManager; 
on  addMeterRequest(); 
do router.addMeter(meter);} 

 
The parameter meter used in this policy type is an 

object of class MeterT. The Policy Management Agent 
can detect the actual subclass, which may correspond to 
one of those identified above, and if necessary, take 
specific actions for this particular subclass. The same 
insertMeter type can be instantiated multiple times in 
order to create specific rules, which apply to specific 
devices within the DiffServ domain. For example, the 
administrator may want to apply the 
AverageRateMeterA on the edge routerA and the 
TwoParameterTokenBucketMeterB on the core routerB. 
Two policy instances should be created for that purpose, 
as shown in Example 2. 
 
Example 2 Instantiation of the insertMeter policy type 
for different devices 

inst  Configuration1 = 
 insertMeter(/Routers/EdgeRouters/RouterA, 
     AverageRateMeterA); 
inst  Configuration2 = 
 insertMeter(/Routers/CoreRouters/RouterB, 
     TwoParameterTokenBucketMeterB); 

 
3.2.  Policy Rules for the Management of a Set 

of Devices  
 

Since subjects and targets are explicitly specified in 
the Ponder policies in terms of domains, the same policy 
can be easily applied to a large set of devices. For 
example, an administrator may want to impose the same 
classification rules on all edge routers in a domain, in 
order to provide a common set of DiffServ codepoints. 
The solution provided by our approach is a policy rule 
whose scope is not a particular device, but all devices 
within the defined domain.  
 
Example 3 Policy that adds the same classifier entry to 
all devices within DomainA of edge routers 

inst oblig insertClassifierToDomainA { 
subject  DiffServManager; 
target  r = /Routers/EdgeRouters/DomainA; 
on   AddClassifierEntryRequest(classifierEntry); 
do   r.addEntryToClassifier(classifierEntry);} 
 

When an AddClassifierEntryRequest event occurs 
(this event is usually triggered through the management 
console), this rule will insert the same entry in the 

classifier elements of all routers that belong to the 
domain /Routers/EdgeRouters/DomainA. Moreover, if a 
new device is later added to that domain, the 
corresponding Policy Management Agent 
DiffServManager will be notified and will apply the 
policy to the newly added device automatically.  
 
3.3. Policy Rules for Implementing DiffServ Per 

Hop Behaviours 
 

Per-Hop Behaviour specifies the treatment packets 
should receive on a DiffServ node, as they are 
traversing a sequence of functional datapath elements. 
The implementation of both standard and vendor 
specific PHBs can be provided by using more complex 
policy rules, whose specification can be easily altered to 
provide varying PHBs.  

In Example 4, we present a policy which will 
configure a set of routers within the DS domain to 
implement the required EF PHB. In this example, traffic 
above the configured maximum input rate is counted 
and discarded. Figure 1 shows the functional elements 
to be configured on each device to provide the requested 
PHB. 
 
Example 4 Policy rule for providing EF PHB.  

inst oblig EFConfigurationPolicy { 
subject DiffServManager; 
target r = /DomainA/Routers/CoreRouters; 
on EFConfigRequest(DS,max_input_rate,min_output_rate); 
do   /* DS: The Diffserv codepoint for EF: 101110 */ 
 r.addEntryToClassifier(DS)->  
 meter = newAverageRateMeter(max_input_rate)->
 r.addMeter(meter)->r.addQueue(queue)-> 
 schedulerEntry=newSchEntry(WRR,min_output_rate)->  
 r.addEntryToScheduler(schedulerEntry)-> 
 r.addCounter(counter)-> r.addDropper(dropper); 
when  max_input_rate <= min_output_rate;  
   /* Property that EF traffic must satisfy */ } 

This example assumes that a Weighted Round 
Robin scheduling algorithm is used. The weight for 
this class of traffic must be calculated from the 
parameter min_output_rate as : weight = 
min_output_rate / total_output_rate, where 
total_output_rate is the egress interface’s 
bandwitdh.  

 
The EFConfigurationPolicy is triggered by the 

administrator’s request EFConfigRequest and will 
configure all routers within the target domain.  

Note that it is possible to define more complex policy 
actions as scripts within the PMA, using a suitable 
scripting language, which may include conditional 
statements, atomic transactions, etc. For example, all the 
actions in Example 4 could be combined in a single 
script action:  
applyEFPHB(DS, max_input_rate, min_output_rate). 
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In our framework, a policy rule is always active, 
unless it has explicitly been disabled by the 
administrator. PMAs can receive events (other that 
configuration requests) relating to changes in the system 
and then enforce the relevant policies. This means that 
the policy rule EFConfigurationPolicy can also be 
triggered in other circumstances. For example, when the 
monitoring service detects a high drop rate of the EF 
traffic class, it can raise an EFConfigRequest with a 
higher maximum input rate value. This dynamic 
triggering of policies is one of the mechanisms used for 
adaptive management in our framework, as explained in 
section 4. 

 
3.4. Enforcement Architecture 
 

The enforcement of rules that can be defined in our 
framework require the execution of low-level actions, 
e.g., addMeter(meter). These provide a uniform way to 
represent management and configuration actions and 
abstract the protocols used for communication between 
a management agent and the managed device. The 
proposed architecture is shown in Figure 5.  
 

Policy Management Agent

Device BDevice A Device C

COPS SNMP CLI

Event Service

LDAPPolicy
rules

repository

 
Figure 5 Enforcement Architecture 

Multiple PMAs can co-exist within the system. The 
management responsibility can be divided amongst 
them according to several criteria: each PMA is 
responsible for the enforcement of a different set of 
policies or responsible for managing a different set of 
devices. The management actions specified in the 
policies may need to be implemented by lower-level 
device specific commands which are downloaded to the 
device using:  

• Command Line Interface (CLI): the policy actions 
are translated into the corresponding CLI commands, 
which are downloaded to the device using a script 
that performs a telnet session between the PMA and 
the device.  

• SNMP: the SMIv2 MIB for Differentiated Services 
[14] supports the abstractions defined in [4]. Thus, 

once the functional elements are created by the 
PMA, SNMP can be used to configure the 
corresponding entries into the device’s MIB.  

• COPS-PR: this is a protocol for policy provisioning 
[15], which can be used with the Differentiated 
Services PIB [16], which also follows the 
abstractions provided by [4]. The PMA creates 
Provisioning Instances (PRI’s) and downloads the 
policy information to the device using COPS-PR.  

The architecture presented in this paper can use any 
of these low-level protocols for communicating the 
policy information between the PMA and the managed 
devices. In the future, it is possible that more 
sophisticated network devices will be capable of 
downloading and directly interpreting Ponder policies 
from a repository. That is, the network device will 
incorporate a PMA and receive policy triggering events.  
 
4. Policy Adaptation  
 

When applying policies to DiffServ elements, the 
policy actions are those provided by the management 
interface of the datapath elements determining the PHB. 
Thus, the “level of abstraction” of the policies is 
determined by the available implementation. However, 
changes in the system such as failures or QoS violations 
may require adaptation of existing policies to new 
circumstances. Thus, policies themselves need to be 
managed and adapted. In this paper, we identify 
different adaptation requirements and show how policy 
adaptation can itself be specified and enforced by other 
policies, specified in the same Ponder policy notation. 

We use the term “Policy Adaptation” to describe the 
ability of the policy-based management system to 
modify network behavior in one of the following ways: 
• Adaptation by dynamically changing the parameters 

of a QoS policy to specify new attribute values for 
the run-time configuration of managed objects.  

• Adaptation by selecting and enabling/disabling a 
policy from a set of pre-defined QoS policies at 
run-time. The parameters of the selected network 
QoS policy are set at run-time.  

• Adaptation by learning which are the most suitable 
policy configuration strategies from the system’s 
behavior. This can be used to select policies or even 
generate new ones when needed.  

In this paper, we will focus only on the first two 
categories of policy adaptation as adaptation by learning 
still requires considerable further work. 
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4.1. Run-Time modification of policy 
parameters 

 
In the general case, the specification of a network-

level QoS policy follows the following format: 
 

inst oblig NetworkQoSPolicy { 
subject  NetworkLevelPMA; 
target targetSet = TargetDomainofDevices;  
on  Event(EventParameters[]); 
do  ActionParameters[] = 
  CalculateActionParameters(EventParameters[]) -> 
  targetSet.executeAction (ActionParameters[]); } 

 
Figure 5 Generic format for network QoS policy 

 
In this type of network-level QoS policy adaptation, 

the parameters of the policy action(s) are dynamically 
calculated from the event attributes. For example, in the 
EFConfigurationPolicy rule from Example 4, which 
provides the EF PHB, the max_input_rate and 
min_output_rate configuration parameters are given by 
the EFConfigRequest event. Thus, a re-configuration of 
the datapath elements can be changed dynamically by 
triggering the policy with a new event containing the 
new values. A re-configuration may occur in either of 
the following cases: 
• upon the admission of a new EF traffic flow. The 

new portion of EF traffic will be aggregated with the 
existing EF traffic via DiffServ’s classification and 
marking processes. The monitoring system detects 
the new traffic flow and notifies the QoS 
management PMA. It calculates new values for 
maximum arrival and the minimum departure rates 
as the sum of the existing allocation for EF, plus the 
requested bandwidth for the admitted new flow. The 
PMA then triggers the EFConfigRequest event with 
the new parameters and the event triggers the re-
evaluation of the EFConfigurationPolicy rule.  

• to provide time-based bandwidth variation for the EF 
traffic class. Typically, gold customers in an ISP 
require high network usage during peak business 
hours. In this case, the rule EFConfigurationPolicy of 
the Example 4 will be triggered by a time event, as 
shown in Example 5.  

 
Example 5 Policies for time-based bandwidth variation 
 

type oblig  EFConfigurationPolicy (String timeOfDay,  
   float max_input_rate, float min_output_rate) { 
subject DiffServManager; 
target r = /Routers/CoreRouters/RelevantRouters; 
on  timer.At(timeOfDay); 
do   r.applyEFPHB (DS, max_input_rate, 
      min_output_rate); 
 
when  time.dayOfWeek() != “sat” ||  
   time.dayOfWeek() !=”sun”; } 
 

inst oblig timePolicy1 = EFConfigurationPolicy( 
      “08:00:00”,20,20); 
inst oblig timePolicy2 = EFConfigurationPolicy( 
      “17:00:00”,10,10); 

In the above, min_output_rate = max_input_rate,  
but in practice, min_output_rate =  
k * max_input_rate, where k>=1.03. The rule 
timePolicy1 sets the bandwidth for the EF traffic at 
20Mbps every weekday at 8am. The rule 
timePolicy2 sets the EF’s allocated bandwidth at 
10MBps again every weekday (during the 
weekend, timePolicy1 or timePolicy2 do not have 
to be re-enforced) 

 
• to support adaptive applications, which adapt their 

behaviour under changing network conditions, by 
increasing/decreasing compression ratio, changing 
coding algorithm etc. In our framework network 
QoS policy parameters can thus be adapted to the 
application’s requirements.  

 
Consider an adaptive multimedia application. The 

QoS metrics for a typical video flow would be the 
spatial resolution (number of pixels/frame) and the 
temporal resolution (number of frames/sec). Using a 
mapping technique (for example as defined in [17]), 
these application-level QoS metrics are translated into 
network-level QoS metrics such as network bandwidth, 
which the network must guarantee. However, when the 
available bandwidth increases, the application may want 
to transmit a better quality of video. Assume the 
application receives notification of newly available 
bandwidth newBW from the network, calculates new 
requirements for adjusted application behaviour via a 
call calculate(newBw) and notifies the network of its 
new requirements by generating an EFConfigRequest 
event with requiredBW as a parameter, (where 
requiredBw ≤ newBw). We assume that the application’s 
packets are EF treated.  This can be realised using an 
obligation policy at the application layer as shown in 
Example 6. The low-level EFConfigurationPolicy in the 
NetworkLevelPMA is triggered by the EFConfigRequest 
event with requiredBw as a parameter and resets the 
relevant network devices. 
 
Example 6 Policy for providing adaptation to the video 
application 
 

inst oblig  AdaptationPolicyForVideoApplication { 
subject   ApplicationLevelQoSManager;  
on  AvailableBandwidth (newBw); 
do  requiredBw = calculate (newBw) -> 

  EventService.GenerateEvent(EFConfigRequest, 
                    requiredBw); } 

A number of different adaptation strategies could be 
adopted for the video application, and so there may be a 
need to dynamically change these strategies by 
replacing AdaptationPolicyForVideoApplication with a 
new version or by enabling/disabling different versions 
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of the policy. Policies provide a more flexible means of 
implementing this type of application-level adaptation 
than scripts or special purpose code. Note that other 
events indicating high delay, high jitter or high packet 
loss could trigger policies in the ApplicationLevelQoS 
manager. In the following examples, we indicate 
adaptation strategies which could be implemented by 
Ponder policies similar to Example 6, but omit the 
actual policies.  
• The monitoring system detects that video packet 

delays exceed a threshold so it generates a 
HighDelay event received by the application 
manager. Corrective actions which may be 
performed include: a) Increase the minimum 
departure rate of the EF traffic to guarantee that the 
video packets (especially large ones) will remain in 
the output queue for less time before being 
transmitted to the next hop. This is verified from 
the measurements provided in [18]. b) Choose a 
different application state in which the video 
quality is decreased but which requires less 
bandwidth and hence less delay. 

• Measurements provided by [18] and from 
simulations in RFC 2598 show that jitter is not 
reduced by increasing the EF service rate, when the 
EF aggregate is constructed from a single 
microflow. On the contrary, when the EF 
aggregation degree increases, jitter increases 
rapidly with the number of microflows and with the 
EF load. Thus, there are two possible corrective 
actions for a HighJitter event: a) Decrease the 
number of microflows, by degrading other EF 
traffic to a lower PHB. b) Reduce the EF load, by 
choosing a lower video quality. 

• The action for a HighPacketLoss event would be to 
increase the maximum arrival rate of the incoming 
EF traffic. This will reduce the number of packets 
being dropped by the policer at the ingress 
interface. Alternatively, as packet loss is 
proportional to the aggregation degree, the number 
of EF microflows can be reduced, in order to 
reduce packet loss in the remaining EF traffic. 

 
4.2. Adaptation by dynamically selecting and 

enabling policies from a set of policies  
 

In this approach, higher-level control policies receive 
events, which require system adaptation and decide 
which lower-level DiffServ policy must be 
enabled/disabled to adapt the configuration of the 
managed system. The advantage of using policies rather 
than a procedural language for selecting and enabling 
the appropriate network-level policies is that modifying 
the management strategy at this level can be achieved 

by dynamically changing the control policy. 
Furthermore, the same Ponder deployment framework 
can be used to distribute both high-level control policies 
and network DiffServ policies [12]. 

In the general case, a control policy is specified with 
the template obligation rule GenericControlPolicy, 
presented in Figure 6. In the following sub-section, we 
will present specific examples of control policies, which 
follow this template.  
 

inst oblig  GenericControlPolicy { 
subject  ControlPMA; 
on  AdaptationRequest (params[]); 
do  QoSpolicy = selectPolicy (params[])-> 
  QoSPolicy.enable() -> 
  QoSpolicy’sParams [] =  

 calculate (QoSPolicy, params[]) -> 
EventService.GenerateEvent ( 

     QoSPolicy’sObligationEvent, 
     QoSpolicy’sParameters []);} 
 

Figure 6 Specification of a generic control 
policy 

 
4.2.1. Usage scenarios. In this section, we will consider 
a set of Per-Domain-Behavior (PDB) DiffServ policies 
from which one must be selected and enabled, in 
response to an event requiring system re-configuration. 
As defined in [19], a PDB describes the edge-to-edge 
behaviour across a DiffServ domain. A particular PHB 
(or a set of PHBs) and traffic conditioning requirements 
are associated with each PDB. Using PDBs, it is 
possible to guarantee that a class of service will receive 
guaranteed QoS characteristics when traversing a 
DiffServ domain.  

In our proposed framework, the QoS guarantees for 
PDB policies are specified in a policy database, which is 
part of the Policy service. Table 1 shows an example 
policy description database. 

Typical network-level QoS PDB policies include an 
EFConfigurationPolicy for implementing EF behaviour, 
an AFConfigurationPolicy for implementing Assured 
Forwarding (AF) services, etc. In the following, we will 
present usage scenarios of our framework. 
 
• Selection of a PDB policy to provide the required 
QoS for a new service to be supported by the DiffServ 
network. The QoS needs of the service are stated in its 
associated Service Level Specification (SLS). A detailed 
description of a SLS can be found in [20]. The Policy 
Based Management system must select the PDB policy, 
which most closely matches the SLS.  A framework for  
mapping SLSs to PDBs can be found in [21]. For 
example, if the SLS states that the application must be 
guaranteed the lowest possible values of delay and jitter, 
then the PDB that provides the lowest delay and jitter 
must be selected from Table 1. This operation will be 
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performed by a Control PMA, using the policy as in 
Example 7.  
 
Example 7 Policy to configure PDB for a new service 
 

inst oblig  ServiceConfigurationPolicy { 
subject  PDBSelectorAgent; 
on  newServiceRequest (SLS_params[]); 
do  pdb = selectPDB (SLS_params[]) ->  
/* pdb is the reference to the policy object representing the 
PDB policy*/ 
  pdb.enable()->  

  pdb_params[]= calculate(SLS_params[]) -> 
  EventService.GenerateEvent (pdb’sObligationEvent,
  pdb_params[]);} 
 
• Selection of a new PDB policy in response to link 
failures or routing changes. A PDB is usually 
associated with a path of routers within the DiffServ 
domain (e.g. when using DiffServ over MPLS). When a 
link fails or routing changes for a specific flow, the 
corresponding PDB may not be appropriate for the 
routers in the new path, or it may no longer be suitable. 
A new PDB must be selected, that satisfies the QoS 
expectations for the flow and that can be applicable to 
the new path. This can be implemented using the 
following control policy:  
 
Example 8 Policy for configuring DiffServ upon link 
failures or routing changes 
 

inst oblig ConfigPolicyUponRoutingChangesOrLinkFailures
 { 
 subject PDBSelectorAgent; 
 on routeIsChanged (newPath); 
 do pdb = selectPDB (SLS_params[], newPath) ->  

/* A PDB suitable for the new path must be selected 
to cater for the service */ 

  pdb.enable() -> 
  pdb_params[] = calculate(SLS_params[]) -> 
  EventService.GenerateEvent( 
    pdb’sObligationEvent, pdb_params[]); } 

 
• Selecting a new PDB policy in response to 
performance degradation. It is possible that a PDB 
cannot deliver its QoS promises, due to congestion on 
links or due to a high degree of flow aggregation. This 
could be a result of over provisioning if too many PDBs 
try to guarantee QoS characteristics. In this case, a flow 
or a traffic class will experience performance 

degradation when being served by a “violated” PDB. A 
solution is to dynamically select a new PDB that will 
more closely match the service(s) QoS requirements.  
 
• Time-based selection of PDBs. This usage scenario 
is similar to the one presented in section 4.1. A set of 
PDBs is chosen taking into account the Time Validity 
field of Table 1.  Time Events activate the relevant 
policies as shown in section 4.1. 
 
4.2.2. Enforcement architecture. In the previous 
section, we presented scenarios where a policy is 
selected and enabled by the higher-level Policy 
Management Agent PDBSelector. In the general case, 
this management functionality of the generic Policy 
Management Agent ControlPMA is specified with the 
obligation rule GenericControlPolicy, presented in 
Figure 6. 
 
The ControlPMA must be able to: 
a) Select, using a suitable algorithm, the most 

appropriate lower-level policy to actually implement 
the configuration adaptation, when the event 
AdaptationRequest occurs. 

b) Calculate the selected policy’s specific parameters. 
c) Enable and trigger the selected policy with the 

derived parameters. 

Policy Service

Event Service

Control PMA

Network  Level PMA(s)

Selected
Policy
Object1

2

3

5

6

4

load,
enable,
disable,

etcAdaptation
Request

 
Figure 7 Enforcement architecture for policy 

adaptation 
The enforcement architecture is presented in Figure 7. 

Table 1. PDB policies and their QoS characteristics (part of the Policy Service) 
 

PDB 
identifier 

Enforcement 
Network Policy 

Assured 
bandwidth 

(Mbps) 

Delay 
(ms) 

Jitter 
(ms) 

Loss 
(%) 

Enforcement 
Routers Path 

Time when valid 

PDB1 /Policies/Policy1 10 ≤ 20 ≤ 3 ≤ 1 <r1,…, rN> Every day 
PDB2 /Policies/Policy2 20 ≤ 10 < 1 ≤ 0.1 <r1,…, rM> Working hours 
… … … … … … …  



9 

1. The ControlPMA receives the event 
AdaptationRequest from the event service.  

2. The ControlPMA invokes a selection algorithm to 
choose a suitable policy from the policy description 
database in the policy service. 

3. The policy service replies with the selected policy 
object.  

4. The enable() method is called on the selected policy 
object, which in turn calls the enable() method  on 
the relevant PMAs. Enabling the policy means that 
policy enforcement objects within the PMAs register 
the obligation event with the event service, as 
described in [12]. At this point, the selected policy is 
activated on its PMAs. In addition, an “old” policy 
can be unloaded or disabled from the corresponding 
PMA’s.  

5. An event is generated with the policy’s calculated 
parameters to trigger the policy.  

6. The obligation event is sent by the event service to 
the registered Policy Enforcement Objects.  

 
The pseudocode for the selectPolicy() method within 

the ControlPMA is given below: 
 

PolicyObjectReference selectPolicy (parameters[]) {  
/* This method returns the reference of the policy object. In 
the current implementation, it is an RMI reference.*/  
selectedPolicy = PolicyService.selectPolicy(parameters[]); 
/* selectPolicy is the specific implementation of an algorithm 
for policy selection within the Policy Service. The user could 
provide his/hers selection algorithms*/ 
return ( SelectedPolicy); } 

  
5. Related Work  
 

Various research groups have presented ideas 
regarding QoS adaptation in which they have identified 
the need for specifying policy in order to adapt system 
configuration in response to network changes, but no 
acknowledged solutions have emerged. Other research 
groups are working on policy specification and 
enforcement. Out work aims at bringing together these 
areas, by showing how to use the flexibility of a policy 
based management framework for the adaptive 
management of DiffServ networks.  

The IETF Policy working group [22] is defining a 
framework for managing QoS within networks, [23]. 
They do not have a language for specifying policies but 
are using the X.500 directory schema. IETF policies are 
of the form if <set of conditions> then do <a set of 
actions>. Directories are used for storing policies but 
not for grouping subjects and targets. They do not have 
the concepts of subject and target that can be used to 
determine to which components a policy applies, so the 
mapping of policies to components has to be done by 
other means (i.e., interface roles). Furthermore, they do 
not support policy rules that can be dynamically 

triggered by events to reconfigure the managed system 
according to changing circumstances. The policy work 
in the IETF seems to be focused only in the network 
layer and they have not considered the interaction 
between application and network policy. 

 A number of vendors are marketing policy toolkits 
for defining policies for DiffServ enabled networks, 
e.g., [24], [25]. Most of these are similar to the IETF 
ideas. None of them supports a language but they do 
have graphical editors that allow the administrator to 
define individual policies and then explicitly identify the 
enforcement components to which the policies must be 
loaded. None of these tools appear to have considered 
the automation of the policy lifecycle and how to adapt 
the configuration of network elements when conditions 
change. New configurations need to be imposed 
manually by the administrator through the management 
console.  

 In [26], a policy-based management system is 
proposed for managing Service Level Agreements 
within DiffServ networks. They use a tabular 
specification (described in detail in [27]) where a policy 
table contains entries, which map traffic aggregates into 
classes of service. The list of PHBs that different 
devices support is obtained by a resource discovery 
mechanism. Thus, rather than providing a policy-based 
management system for managing the characteristics of 
DiffServ devices, the proposed system only maps 
application flows into predefined and already 
implemented PHBs. Moreover, this system can only 
communicate policies to the enforcement devices during 
the configuration process, initiated by the administrator. 
The scope of this approach is specifically aimed at a 
management system for a DiffServ network, whereas 
our work is applicable to a wide range of management 
areas.  

The framework proposed in [28] adapts policy 
parameters on monitoring the network. A management 
script includes policies, expressed in the IETF 
representation, and also specifies how the policy life 
cycle should be managed. The script notifies the 
management system about QoS threshold violations. In 
this work, a prototype implementation is provided for 
Differentiated Services, where policy parameters, such 
as the peak rate of a traffic profile, its peak burst size 
and the associated DSCPs, are changed dynamically to 
adapt to system behaviour. The framework we propose 
for the adaptive management of DiffServ can specify, in 
a uniform way, all the necessary information required 
for enforcement and adaptation of policies using 
obligation rules. Furthermore, in addition to providing 
adaptation by changing policy parameters, we can also 
select new policies to be enabled upon events other than 
just QoS violation events.   
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The system proposed in [29] for the management of 
QoS in Multi-Protocol Label Switching (MPLS) 
networks, also follows the IETF Policy working group 
approach. They have extended the Common Information 
Model (CIM) policy model with MPLS specific classes. 
This system has the same limitations as the IETF 
framework.  In [30], IETF’s Policy Core Information 
Model (PCIM) is extended, to provide support for goal 
specification. Service-level goals can be specified to 
enforce QoS on a per-user, per-application basis. 
Monitored data is used to evaluate whether the specified 
goals are satisfied. These service-level goals can be 
expressed in our framework as higher-level obligation 
policy rules.   

In [20], an architectural framework is proposed for 
providing QoS in DiffServ networks. Although they 
identify the need for a policy-driven management plane, 
no concrete proposals for its architecture have been 
presented yet. 

[31] presents an architecture for the management of a 
network offering active services. In their architecture, a 
bacterial algorithm forms the basis for the adaptation 
performed by autonomous controllers. These controllers 
are programmed (like a bacterium) to autonomously 
replicate policies that improve its performance and de-
activate policies that degrade performance. This way, 
“useful” policies spread and “poor” policies die out. A 
policy is evaluated though a fitness (revenue-cost) 
function. In this work, each policy is related to one 
active service; policies control the deployment of 
services (proxylets) in their active services environment. 
[32] presents an example of this type of adaptation for 
providing QoS differentiation of active services, where 
the queue length of network servers (DPSs) is adapted 
to provide either short delay or low loss  to service(s), 
depending on the users QoS requirements. Example of 
these requirements (policies or service genes) can be: 
“Accept request for service A if DPS <80% busy” of  
“Accept request for service C if queue length < 20”.   In 
our framework, policies are used in a more generic 
sense, describing the actions that management agents 
must undertake when receiving different types of 
requests. We provide adaptation, in a more systematic 
way, by adapting the policy based management system 
itself, either by changing attributes of policies or by 
removing and adding new policies.  

[33] presents a policy-driven framework for QoS 
management of multimedia applications. They specify 
policy at the application layer using the Ponder 
language, although they rely on violation of  constraints 
to trigger policy rules instead of events. Their QoS 
policy only provides the QoSHostManager component 
with a notification message; the corrective actions 
which are enforced upon QoS violation are described in 
other types of rules. No formal specification is 

discussed for these rules, although they could be 
specified with  Ponder’s  obligation policies as well. 
Furthermore, they use the term “adaptation” to refer 
only to the actions, which are taken when a QoS 
violation occurs which corresponds to the actions in a 
Ponder obligation policy.  Section 4.1 describes how we 
would support the type of adaptation provided in [33], 
but we consider our approach to be more general than 
theirs. 

[34] presents a QoS Architecture transport system for 
a multicast, multimedia networking environment. It 
offers a QoS configurable API at the transport layer, 
which enables applications to have control over QoS. 
QoS is specified at the API in terms of a flow 
specification, which includes parameters such as delay, 
throughput, jitter etc. and a QoS policy.  The QoS 
policy enables users to advise the infrastructure on how 
to deal with the flow when resource availability 
changes. A distributed QoS adapter interprets the policy 
and is responsible for informing applications when 
resources become available. A QoS adaptation protocol 
is implemented for the communication between QoS 
adapters. Our framework can provide this functionality, 
but also it may apply adaptive behavior in other 
circumstances, as we presented through the examples in 
section 4.   

A lot of work on QoS adaptation has also been 
carried out in the Distributed Systems area, e.g. [35, 36]. 
Most of this work provides adaptation by hard coded 
QoS management and monitoring in middleware 
systems for supporting multimedia applications.  
 
6. Conclusions and Future Work  

 
In this paper we have presented a case study of 

applying the Ponder policy framework to the adaptive 
management of Differentiated Services networks. The 
use of parameterised policy types gives applicability to 
a wide range of DiffServ-enabled devices while the 
policy system communicates with each managed node 
through the configuration and management interface 
that the node provides. Our approach provides the 
administrator with the flexibility to define rules at both 
the network and the application level for managing 
DiffServ networks and network-aware applications. 
More complex policy rules, such as rules for 
establishing standard (i.e. AF, EF) or customized Per-
Hop Behaviours in a DiffServ domain can be expressed 
in our framework. They can be communicated to the 
managed devices by existing protocols, such as SNMP 
and COPS-PR, or through the CLI. Network policies 
can be dynamically triggered by events, in order to 
automatically change the configuration of the managed 
objects under changing circumstances. The dynamic 
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configuration of policies forms the basis of the adaptive 
management our framework can provide. 

We identified the need to manage and adapt policies 
themselves and discussed different adaptation 
requirements. Furthermore, we showed how policy 
adaptation can itself be enforced by other policies, 
specified in the same Ponder policy notation. We 
presented examples of adaptation by dynamically 
changing the parameters of a network QoS policy to 
give new values to attributes of the managed objects at 
run-time and of adaptation by selecting and enabling a 
policy from a set of pre-defined QoS policies Finally, 
we proposed an enforcement architecture for our ideas 
on policy adaptation.  

We are currently implementing Policy Management 
Agents that interpret policy actions into configuration 
parameters for DiffServ routers, using SNMP for 
configuring DiffServ MIB’s within Linux routers [37]. 
We have done an implementation for policy 
enforcement using (CLI–like) commands that the 
Network Simulator (NS-2) provides for managing 
DiffServ nodes and have experimented with adapting 
the DiffServ parameters.  

The main issues to resolve are to determine what can 
be specified and implemented as policies and where 
scripts may be needed to provide the required 
adaptability. We intend to experiment with Linux-PC 
based routers as well as commercial routers or switches 
and to evaluate the performance implications of 
executing policies on routers. We are also interested in 
investigating particular methods or design patterns for 
building policy aware applications and to extend our 
framework with other techniques and interfaces for 
interaction between policy-based applications and 
policy-enabled networks in order to support dynamic 
adaptation.  

We also intend to use this approach for management 
of MPLS networks in the future. 
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