
 V5 2/8/00 1

The Ponder Policy Specification Language

Nicodemos Damianou, Naranker Dulay, Emil Lupu, Morris Sloman
Department of Computing, Imperial College, 180 Queen’s Gate, London SW7 2BZ

{n.damianou, nd, e.c.lupu, m.sloman}@doc.ic.ac.uk

Abstract

The Ponder language provides a common means of
specifying security policies that map onto various access
control implementation mechanisms for firewalls,
operating systems, databases and Java. It supports
obligation policies that are event triggered condition-
action rules for policy based management of networks
and distributed systems. Ponder can also be used for
security management activities such as registration of
users or logging and auditing events for dealing with
access to critical resources or security violations.

Key concepts of the language include roles to group
policies relating to a position in an organisation,
relationships to define interactions between roles and
management structures to define a configuration of roles
and relationships pertaining to an organisational unit
such as a department. These reusable composite policy
specifications cater for the complexity of large enterprise
information systems. Ponder is declarative, strongly-
typed and object-oriented which makes the language
flexible, extensible and adaptable to a wide range of
management requirements.

1. Introduction

Large enterprise information infrastructures have to
integrate inter-organisational networks and internet-based
services, which makes the task of managing such systems
very challenging. Distributed systems are changing from
the traditional client-server model to a more dynamic
service-oriented paradigm. The development of mobile
computing applications requires support from adaptive
network architectures and customised services to the
clients. Various techniques have emerged for
programming network elements to support adaptive
services, for example active networks, mobile agents and
management by delegation. While all these approaches
support the programming of new functionality into
network elements and host devices, they increase the
security concerns regarding access to network resources
and services, and make the management task even more
demanding.

Recent work on policy based management of
networks and distributed systems (see www-
dse.doc.ic.ac.uk/policies) provide promising solutions to
these problems. In this work a policy is a rule that defines

a choice in the behaviour of a system. Separating the
policy from the implementation of a system permits the
policy to be modified in order to dynamically change the
strategy for managing the system and hence modify the
behaviour of a system, without changing its underlying
implementation [26].

There are a number of groups working on very
different approaches to specifying policy. Network
component manufacturers and the IETF/DMTF are
concentrating on information models [6][20] and
condition-action rules with the focus on the management
of Quality of Service (QoS) in networks [7][9][11][17].
The security community have developed a number of
models relating to specification of mandatory and
discretionary access control policy [4]. This has evolved
into work on role based access control (RBAC) [24] and
role based management where a role may be considered
as a group of related policies pertaining to a position in an
organisation [15][16]. A lot of work within the greater
scope of management has already resulted in architectures
and technologies that provide the basic infrastructure
required to implement policy-based management
solutions [8][27].

Separate tools are emerging for policy-based
management of systems and specifying security. What is
lacking is a common language that will provide a unified
approach to supporting the concepts of the policy models
emerging from the various research communities. We
identify the following requirements for a policy language:

Support for security policies for access control, and
delegation to cater for temporary transfer of access
rights to agents acting on behalf of a client as well as
policies to express management activity.
Structuring techniques to facilitate the specification of
policies relating to large systems with millions of
objects. This implies the need for policies relating to
collections of objects rather than individual ones.
Composite policies which allow the basic security and
management policies relating to roles, to
organisational units and to specific applications to be
grouped. Composite policies are essential to cater for
the complexity of policy administration in large
enterprise information systems.
It must be possible to analyse policies for conflicts
and inconsistencies in the specification. In addition it
should be possible to determine which policies apply

 V5 2/8/00 2

to an object or what objects a particular policy applies
to. Declarative languages make such analysis easier.
Extensibility is needed to cater for new types of policy
that may arise in the future and this can be supported
by inheritance in an object-oriented language.
The language must be comprehensible and easy to use
by policy users.

This paper describes Ponder [5], a declarative, object-
oriented language for specifying security and
management policy for distributed object systems. The
language is flexible, expressive and extensible to cover
the wide range of requirements implied by the current
distributed systems paradigms identified above. Ponder is
the result of experience gained in policy-based
management at Imperial College over the past 10 years
[15][16][14][18][26]. We present the language syntax
through simple examples of its use; for the complete
syntax of the language see [6].

Sections 2 and 3 present the basic policy types
supported by Ponder. Constraints are described in section
4. The composite policy structures in Ponder are
described in section 5. Section 6 discusses features that
make the language both flexible and extensible. In section
7 we briefly compare Ponder with related work and
section 8 presents conclusions and future work.

2. Access Control Policies

Access control is concerned with limiting the activity
of legitimate users who have been successfully
authenticated [1][23]. Our emphasis has been on
discretionary access control, which can be modified by
administrators or users and a subject with access
permissions can pass them on to another subject. Ponder
supports access control by providing authorisation,
delegation, information filtering and refrain policies as
described below.

We assume that all policies relate to objects with
interfaces defined in terms of methods using an interface
definition language. We use the term subject to refer to
users, principals or automated manager components,
which have management responsibility. A subject
accesses target objects (resources or service providers),
by invoking methods visible on the target’s interface. The
granularity of protection for access control in Ponder is
thus an interface method. References to both subject and
target objects are stored within domains maintained by a
domain service. Domains provide a means of grouping
objects to which policies apply and can be used to
partition the objects in a large system according to
geographical boundaries, object type, responsibility and
authority or for the convenience of human managers [25].
This facilitates policy specification for large-scale
systems with millions of objects. Domains are similar to

directories and have been implemented using an LDAP
service.

2.1. Authorisation Policies

Authorisation policies define what activities a member
of the subject domain can perform on the set of objects in
the target domain. These are essentially access control
policies, to protect resources and services from
unauthorized access. A positive authorisation policy
defines the actions that subjects are permitted to perform
on target objects. A negative authorisation policy
specifies the actions that subjects are forbidden to perform
on target objects. Authorisation policies are implemented
on the target host by an access control component.

inst (auth+ | auth–) policyName “{”
 subject [<type>] domain-Scope-Expression ;
 target [<type>] domain-Scope-Expression ;
 action action-list ;
 [when constraint-Expression ;]
“}“

Figure 1. Authorisation Policy Syntax

The syntax of an authorisation policy is shown in
figure 1. In figure 1 and all subsequent figures presenting
the syntax of the language, everything in bold is a token
in the language. Choices are enclosed in (and) separated
by |, optional elements are specified with square brackets
[] and repetition is specified with braces { }. Constraints
are optional in all types of policies and can be specified to
limit the applicability of policies based on time or values
of the attributes of the objects to which the policy refers.
Constraints are discussed in detail in section 4. Elements
of a policy can be specified in any order. Note that the
subject and target elements can optionally include the
interface specification reference within the specified
domain-scope-expression on which the policy applies.
This can be used to check that the objects do support the
specified operations or to locate the interface
specification. The name of a policy can specify the
domain into which the policy could be stored.

Example 1 Positive and negative authorisation policies

inst auth+ switchPolicyOps {
 subject /NetworkAdmin ;
 action load(), remove(), enable(), disable() ;
 target <PolicyT> /Nregion/switches ;
}

Members of the NetworkAdmin domain are authorised to
load, remove, enable or disable objects of type PolicyT in the
Nregion/switches domain. This indicates the use of an
authorisation policy to control access to stored policies.

inst auth– /negativeAuth/testRouters {
 subject /testEngineers/trainee ;
 action performance_test() ;
 target <routerT> /routers ;
}

 V5 2/8/00 3

Trainee test engineers are forbidden to perform performance

tests on routers. The policy is stored within the /negativeAuth
domain.

The above examples show direct declaration of a
policy instances using the keyword inst. The language
provides reuse by supporting the definition of policy types
to which any policy element can be passed as formal
parameter. Multiple instances can then be created and
tailored for the specific environment by passing actual
parameters. Figure 2 shows the syntax for authorisation
policy types and instantiations.

type (auth+ | auth–) policyType “(” formalParameters “)” “{”
 { authorisation-policy-parts }
“}”

inst (auth+ | auth–) policyName = policyType
 “(” actualParameters “)” ;

Figure 2. Authorisation Types and Instantiations

The authorisation policy switchPolicyOps (from
example 1) can be specified as a type with the subject and
target given as parameters as shown in example 2.

Example 2 Declaring instances from types

type auth+ PolicyOpsT (subject s, target <PolicyT> t) {
 action load(), remove(), enable(), disable() ;
}

inst auth+ switchPolicyOps =
 PolicyOpsT(/NetworkAdmins, /Nregion/switches) ;

inst auth+ routersPolicyOps =
 PolicyOpsT(/QoSAdmins, /Nregion/routers) ;

The two instance allows members of /NetworkAdmins and
/QoSAdmins to execute the actions on policies within the
/Nregion/switches and /Nregion/routers domains respectively.

It can be argued that the specification of negative
authorisation policies complicates the enforcement of
authorisation in a system. However, there are reasons to
support the provision for negative authorisation policies.
Administrators often express high-level access control in
terms of both positive and negative policies; retaining the
natural way people express policies is important and
provides greater flexibility. Negative authorisation
policies can also be used to temporarily remove access
rights from subjects if the need arises. In addition, many
systems support negative access rights (e.g.Windows
NT/2000).

2.2. Information Filtering Policies

Filtering policies are needed to transform the
information input or output parameters in an action. For
example, a location service might only permit access to
detailed location information, such as a person is in a
specific room, to users within the department. External

users can only determine whether a person is at work or
not. Some databases support similar concepts of ‘views’
onto selective information within records – for example a
payroll clerk is only permitted to read personnel records
of employees below a particular grade. Positive
authorisation policies may include filters to transform
input or output parameters associated with their actions,
based on attributes of the subject or target or on system
parameters (e.g. time). In many cases it is not practical to
provide different operations as a means of selecting the
information. Although these are a form of authorisation
policy they differ from the normal ones in that it is not
possible for an external authorisation agent to make an
access control decision based on whether or not an
operation, specified at the interface to the target object, is
permitted. Essentially the operation has to be performed
and then a decision made on whether to allow results to
be returned to the subject or whether the results need to be
transformed. Filters can only be applied to positive
authorisation actions.

actionName { filter }

filter = [if condition] “{”
 { (in parameterName = expression ; |
 out parameterName = expression ; |
 result = expression ;
)
 }
“}”

Figure 3. Filters on Positive Authorisation Actions

Every action can be associated with a number of filter
expressions (see figure 3). Each filter contains an optional
condition under which the filter is valid. If the condition
evaluates to true, then the transformations (the assignment
statements in the body of the filter) are executed. The
in/out keywords are used to indicate input and output
parameters of the action on which the filter is specified;
result is used to transform the return value of the action.

Example 3 Information filter policy

inst auth+ filter1 {
 subject /Agroup + /Bgroup ;
 target USAStaff – NYgroup ;
 action VideoConf(BW, Priority)
 { in BW=2 ; in Priority=3 ; } // default filter
 if (time.after("1900")) {in BW=3; in Priority = 1; }
}

Members of Agroup plus Bgroup can set up a video
conference with USA staff except the New York group. If the time
is later than 7:00pm then the video conference takes parameters:
bandwidth = 3 Mb/s, priority = 1. Otherwise the first filter restricts
the parameters to bandwidth = 2 Mb/s, priority = 3.

2.3. Delegation Policies

Delegation is often used in access control systems to
cater for the temporary transfer of access rights. However

 V5 2/8/00 4

the ability of a user to delegate access rights to another
must be tightly controlled by security policies. This
requirement is critical in systems allowing cascaded
delegation of access rights. A delegation policy permits
subjects to grant privileges, which they possess (due to an
existing authorisation policy, to grantees to perform an
action on their behalf e.g. passing read rights to a printer
spooler in order to print a file. A delegation policy is
always associated with an authorisation policy, which
specifies the access rights that can be delegated. Negative
delegation policies forbid delegation. Note that delegation
policies are not meant to be used for assignment of rights
by security administrators.

inst deleg+ “(”associated-auth-policy “)” policyName “{”
 grantee [<type>] domain-Scope-Expression ;
 [subject [<type>] domain-Scope-Expression ;]
 [target [<type>] domain-Scope-Expression ;]
 [action action-list ;]
 [when constraint-Expression ;]
 [valid constraint-Expression ;]
“}”

Figure 4. Delegation Policy Syntax

Figure 4 shows the syntax of a positive delegation
policy. Note that the only required part is the grantee.
The rest of the parts (subject, target, action) must be
subsets of those in the associated authorisation policy; if
not specified they default to those of that policy. A
positive delegation policy can specify delegation
constraints to limit the validity of the delegated access
rights, as part of the valid-clause. Such constraints can be
time restrictions (duration, validity period) to specify the
duration or the period over which the delegation should
be valid before it is revoked. Note that negative
delegation policies do not contain delegation constraints.

NetworkAdmin

DomainAdmin

NRegion

switches

typeA

load, remove,
enable, disable

enable, disable

auth+ switchPolicyOps

deleg+ delegSwitchOps

Implicit auth+ policy
Figure 5. Delegation and Authorisation Policies

Example 4 Delegation policy

inst deleg+ (switchPolicyOps) delegSwitchOps {
 grantee /DomainAdmin ;
 target /Nregion/switches/typeA ;
 action enable(), disable() ;
 valid time.duration(24) ;
}

The above delegation policy accepts the switchPolicyOps
auth+ policy from example 1 as a parameter. It states that the
subject of that authorisation policy (NetworkAdmin), which is
implicit in this policy, can delegate the enable and disable actions
on policies from the domain /Nregion/switches/typeA to grantees
in the domain /DomainAdmin. Note how the policy restricts the
target to a subset of the switchPolicyOps policy target (See figure
5). The valid-clause, specifies that the delegation is only valid for
24 hours from the time of creation; after that it must be revoked.

A delegation policy specifies the authority to delegate,

it does not control the actual delegation and revocation of
access rights. It is implemented as an authorisation policy
that authorises the subject (grantor) to execute the method
delegate on the run-time system with the grantee as the
parameter of the method. At run-time, when the subject
executes the delegate method, a separate authorisation
policy is created by trusted components of the access
control system, with the grantee as the subject. Similarly
the revoke method deletes or disables that second
authorisation policy.

2.4. Refrain Policies

Refrain policies define the actions that subjects must
refrain from performing (must not perform) on target
objects even though they may actually be permitted to
perform the action. Refrain policies act as restraints on
the actions that subjects perform and are implemented by
subjects. Refrain policies have a similar syntax to
negative authorisation policies, but are enforced by
subjects rather than target access controllers. They are
used for situations where negative authorisation policies
are inappropriate – we do not trust the targets to enforce
the policies (e.g. they may not wish to be protected from
the subject). The syntax of refrain policies is the same as
that of negative authorisation policies (figure 1).

Example 5 Refrain Policy

inst refrain testingRes {
 subject s=/test-engineers ;
 action discloseTestResults() ;
 target /analysts + /developers ;
 when s.testing_sequence = "in-progress" ;
}

This refrain policy specifies that test engineers must not
disclose test results to analysts or developers when the testing
sequence being performed by that subject is still in progress, i.e.,
a constraint based on the state of subjects. Analysts and
developers would probably not object to receiving the results and
so this policy is not a good candidate for a negative authorisation.

3. Obligation Policies

Obligation policies specify the actions that must be
performed by managers within the system when certain
events occur and provide the ability to respond to
changing circumstances. For example, security
management policies specify what actions must be

 V5 2/8/00 5

specified when security violations occur and who must
execute those actions; what auditing and logging activities
must be performed, when and by whom. Management
policies could relate to management of QoS, storage
systems, software configuration etc.

Obligation policies are event-triggered and define the
activities subjects (human or automated manager
components) must perform on objects in the target
domain. Events can be simple, i.e. an internal timer event,
or an external event notified by monitoring service
components e.g. a temperature exceeding a threshold or a
component failing. Composite events can be specified
using event composition operators.

inst oblig policyName “{”
 on event-specification ;
 subject [<type>] domain-Scope-Expression ;
 [target [<type>] domain-Scope-Expression ;]
 do obligation-action-list ;
 [catch exception-specification ;]
 [when constraint-Expression ;]
“}”

Figure 6. Obligation Policy Syntax

 The syntax of obligation policies is shown in figure 6.
Note the required event specification following the on
keyword. The target element is optional as obligation
actions may be internal to the subject or on a target,
(whereas authorisation actions always relate to a target
object). If actions are to be invoked on a target, then they
must be preceded by a prefix indicating the target set.
Concurrency operators specifying that actions should be
executed sequentially or in parallel can separate the
actions in an obligation policy. The optional catch-clause
specifies an exception that is executed if the actions fail to
execute for some reason.

Example 6 Obligation policy

inst oblig loginFailure {
 on 3*loginfail(userid) ;
 subject s = /NRegion/SecAdmin ;
 target <userT> t = /NRegion/users ^ {userid} ;
 do t.disable() -> s.log(userid) ;
}

This policy is triggered by 3 consecutive loginfail events with
the same userid. The NRegion security administrator (SecAdmin)
disables the user with userid in the /NRegion/users domain and
then logs the failed userid by means of a local operation
performed in the SecAdmin object. The ‘->’ operator is used to
separate a sequence of actions in an obligation policy. Names
are assigned to both the subject and the target. They can then be
reused within the policy. In this example we use them to prefix the
actions in order to indicate whether the action is on the interface
of the target or local to the subject.

Types external to the policy specification can be
specified assuming the corresponding specifications are
accessible from a type repository.

Example 7 External types

type oblig printFail (string msg, QueueMan qMan) {
 on printfail(jobid, userid, filename);
 subject s = printManager;
 target ms = /servers/mailServer;
 do ms.mailto(userid, filename+msg) ||
 s.putInQueue(qMan, jobid);
 }

The printFail obligation type accepts two parameters one of
which is an external type called QueueMan. This is an interface
specification of a printer queue manager object. The qman
parameter is then used as a parameter in the call to putInQueue
which is local to the printManager. The use of the || concurrency
operator allows the actions to be performed in parallel.

4. Constraints

An important element of each policy is the set of
conditions under which the policy is valid. This
information must be explicit in the specification of the
policy. The validity of a policy however, may depend on
other policies existing or running in the system within the
same scope or context. Those conditions are usually
impossible or impractical to specify as part of each policy.
We need to specify those as part of a group of policies. It
is thus useful to divide the constraints in two categories:
constraints for single policies and constraints for groups
of policies, which we call meta policies. A subset of the
Object Constraint Language (OCL) [22] is used to specify
constraints in Ponder. OCL is simple to understand and
use and it is declarative – each OCL expression is
conceptually atomic and so the state of the objects in the
system cannot change during evaluation.

4.1. Basic Policy Constraints

Basic policy constraints limit the applicability of a
basic policy and are expressed in terms of a predicate,
which must evaluate to true for the policy to apply. Policy
constraints can be considered as conjunctions of basic
constraints, which can be either time or state based
constraints. The analysis of a set of policies can then be
substantially improved since time-based constraints can
be compared for possible overlap and state based
constraints can be either simultaneously satisfied or
mutually exclusive if they relate to states of the same
system component. We separate the different types of
constraints based on:

Subject/target state – the constraint is based on the
object state as reflected in terms of attributes at the
object interface.

Action/event parameters – constraints can be based on
event parameter values in obligations or action
parameter values in authorisations or refrains.

 V5 2/8/00 6

Time constraints specify the validity periods for the
policy. A time library object is provided with Ponder
to specify time constraints.

The policy compiler can resolve the different types of
constraints at compile time and separate the constraints in
order to aid in the analysability of policies.

Example 8 Use of attribute and time constraints

inst auth- testRouters {
 subject s =/testEngineers;
 action performance_test();
 target /routers;
 when s.role = "trainee";
}

TestEngineers cannot execute performance tests on routers
in they are trainee testEngineers. This role attribute of the subject
is used in the constraint.

inst auth+ filter1 {
 subject /Agroup + /Bgroup;
 target USAStaff – NYgroup
 action VideoConf(BW, Priority);
 when time.between("1600", "1800") ;
}

Members of Agroup plus Bgroup can set up a video
conference with USA staff except the New York group. The time-
based constraint limits the policy to apply between 4:00pm and
6:00pm.

4.2. Meta-Policies

Meta-policies specify policies about the policies
within a composite policy or some other scope, and are
used to define application specific constraints. We specify
meta policies for groups of policies, i.e. policies within a
specific scope, to express constraints which limit the
permitted policies in the system, or disallow the
simultaneous execution of conflicting policies. A meta-
policy is specified as a sequence of OCL expressions the
last one of which must evaluate to true or false. The rest
of the OCL expressions can be navigational expressions
resulting in a collection. The raises-clause is followed by
an action that is executed if the last OCL expression
evaluates to true.

inst meta metaPolName raises exception [“(” parameters “)”]
“{”
 { OCL-expression}
 boolean-OCL-expression
“}”

Figure 7. Meta-Policy Syntax

The following examples indicate how meta-policies
can be used to specify application dependent constraints
on groups of policies.

Self-Management: “There should be no policy
authorising a manager to retract policies for which he is
the subject”, from [12]. This happens within a single

authorisation policy with overlapping subjects and targets.
This can be specified in Ponder as follows:

Example 9 Self-management meta-policy

inst meta selfManagement1 raises selfMngmntConflict (pol) {
 [pol] = this.authorisations -> select (p | p.action->exists (a |
 a.name = "retract" and a.parameter -> exists (p1 |
 p1.oclType.name = "policy" and
 p1.subject = p.subject))) ;

 pol->notEmpty ;
}

The body of the policy contains two OCL expressions. The
first one operates on the authorisations set (part of the meta
policy itself) of the meta policy (‘this” refers to the current object –
in this case the meta policy), and selects all policies (p) with the
following characteristics: the action set of p contains an action
whose name is “retract”, and whose parameters include a policy
object with the same subject as the subject of policy p. The
second OCL expression is a boolean expression; it returns true if
the pol variable, which is returned from the first OCL, expression
is not empty. If the result of this last expression is true, the
exception specified in the raises-clause executes. It receives the
pol set with the conflicting policies as a parameter

Example 10 Separation of duty

inst meta budgetDutyConflict raises conflictInBudget(z) {
 [z] = self.policies -> select (pa, pb |
 pa.subject -> intersection (pb.subject)->notEmpty and
 pa.action -> exists (act | act.name = “submit”) and
 pb.action -> exists (act | act.name = “approve”) and
 pb.target -> intersection (pa.target)->oclIsKindOf (budget))

 z -> notEmpty ;
}

This metapolicy prevents a conflict of duty in which the same
person both approves and submits a budget. It searches for
policies with the same subject acting on a target budget in which
there is an action submit and approve.

The above policy implements a static separation of

duties in that it prevents the same person being authorised
to perform conflicting actions. Dynamic separation of
duties is a slightly different, in that all members of a
group are authorised to perform potentially conflicting
actions but after performing one action they cannot
perform a conflicting one. This is implemented as
constraints relating to attributes of the subject and target
object rather than as a meta-policy.

Example 11 Dynamic separation of duty

inst auth+ sepDuty {
 subject s = accountants ;
 action approvePayment, issue ;
 target t = cheques ;
 when s.id <> t.issuerID ; }

The same user from the accountants domain cannot both
issue and approve payment of the same cheque. This assumes
that the identity of the issuer/approver can be stored as an
attribute of the cheque object.

 V5 2/8/00 7

5. Composing Policy Specifications

Ponder composite policies facilitate policy
management in large, complex enterprises. They provide
the ability to group policies and structure them to reflect
organisational structure, preserve the natural way system
administrators operate or simply provide reusability of
common definitions. This simplifies the task of policy
administrators.

5.1. Groups

This is a packaging construct to group related policies
together for the purposes of policy organisation and
reusability and is a common concept in most
programming languages. There are many different
potential criteria for grouping policies together – they
may reference the same targets, relate to the same
department or apply to the same application. Figure 8
shows the syntax for a group instance. It can contain zero
or more basic policies, nested groups and/or meta-policies
in any order. A meta-policy specifies constraints on the
policies within the scope of the group.

inst group groupName “{”
 { basic-policy-definition }
 { group-definition }
 { meta-policy-definition }
“}”

Figure 8. Group Syntax

Reusability can be achieved by specifying groups as
types, parameterised with any policy element and then
instantiating them multiple times. For instance, policies
related to the login process can be grouped together since
they must always be instantiated together (example 12).

Example 12 Group policy

inst group loginGroup {

 inst auth+ staffLoginAuth {
 subject /dept/users/staff ;
 target /dept/computers/research;
 action login;
 }

 inst oblig loginactions {
 subject s = /dept/computers/loginAgent ;
 on loginevent (userid, computerid) ;
 target t = computerid ^ {/dept/computers/}
 do s.log (userid, computerid) ->
 t.loadenvironment (userid);
 }

 inst oblig loginFailure { … } // see example 6
}

The login group policies authorises staff to access computers
in the research domain, log login attempts, update the users
environment on the computer he logs into and deal with login
failures.

5.2. Roles

Roles provide a semantic grouping of policies with a
common subject, generally pertaining to a position within
an organisation such as department manager, project
manager, analyst or ward-nurse. Specifying
organizational policies for human managers in terms of
manager positions rather than persons permits the
assignment of a new person to the manager position
without re-specifying the policies referring to the duties
and authorizations of that position [16]. A role can also
specify the policies that apply to an automated component
acting as a subject in the system.

Organisational positions can be represented as
domains and we consider a role to be the set of
authorisation, obligation, refrain and delegation policies
with the subject domain of the role as their subject. A
role is thus a special case of a group, in which all the
policies have the same subject.

inst role roleName “{”
 { basic-policy-definition }
 { group-definition }
 { meta-policy-definition }
“}” [@ subject-domain]

Figure 9. Role Syntax

A role (figure 9) can include any number of basic-
policies, groups or meta-policies. The subject domain of
the role can be optionally specified following the @ sign.
If it is not specified then a subject domain with the same
name as the role is created by default.

Example 13 Role policy

type role ServiceEngineer (CallsDB callsDb) {

 inst oblig serviceComplaint {
 on customerComplaint(mobileNo) ;
 do t.checkSubscriberInfo(mobileNo, userid) ->
 t.checkPhoneCallList(mobileNo) ->
 investigate_complaint(userId);
 target t = callsDb ; // calls register
 }

 inst oblig deactivateAccount { . . . }

 inst auth+ serviceActionsAuth { . . . }

 // other policies
}

The role type ServiceEngineer models a service engineer role
in a mobile telecommunications service. A service engineer is
responsible for responding to customer complaints and service
requests. The role type is parameterised with the calls database,
a database of subscribers in the system and their calls. The
obligation policy serviceComplaint is triggered by a
customerComplaint event with the mobile number of the customer
passed in. On this event the subject of the role must execute a
sequence of actions on the calls-database in order check the
information of the subscriber whose mobile-number was passed
in through the complaint event, check the phone list and then

 V5 2/8/00 8

investigate the complaint. Note that the obligation policy does not
specify a subject as all policies within the role have the same
implicit subject.

5.3. Type Specialisation and Role Hierarchies

Ponder allows specialisation of policy types, through
the mechanism of inheritance. Any type can inherit from
another. When a type extends another, it inherits all of its
parts, overrides parts with the same name and can add
new parts.

type role roleTypeName “(” formalParameters “)”
 extends parentRoleType “(” actualparameters “)”
“{”
 role-body
“}”

Figure 10. Inheritance Syntax

An example of the use of inheritance to extend a Role
type is shown below. Similar syntax can be used to
extend other types.

Example 14 Role inheritance

type role MSServEngineer (CallsDB vlr, SqlDB eqRegistry)
 extends ServiceEngineer(cdb) {

 inst oblig maintainProblems {
 on MSfailure(equipmentId) ; // MS = Mobile Station
 do updateRecord(equipmentId) ;
 target eqRegistry // Equipment identity registry
 }
}

The MSServEngineer (MobileStation Service Engineer) role
extends the ServiceEngineer role specified in example 13. It
inherits the policies of the parent role and adds an obligation
policy that updates the record of equipment within the equipment
identity registry (the target) when the mobile station signals a
failure of that equipment (the event).

Role and organisational hierarchies can be specified
using specialisation. The role-hierarchy in figure 11 can
be specified in Ponder by extending roles as shown in the
following example.

Example 15 A role hierarchy

type role EmployeeT(…) { … }
type role AdmStaffT(…) extends Employee { … }
type role ResearchStaffT(…) extends Employee { … }
type role SecretaryT(…) extends AdmStaff { … }
type role SoftDeveloperT(…) extends ResearchStaff { … }

type role ProjectManagerT(…) extends ResearchStaff { … }

5.4. Relationships

Managers acting in organisational positions (roles)
interact with each other. A relationship groups the
policies defining the rights and duties of roles towards
each other. It can also include policies related to resources
that are shared by the roles within the relationship. It thus
provides an abstraction for defining policies that are not
the roles themselves but are part of the interaction
between the roles. The syntax of a relationship is very
similar to that of a role but a relationship can include
definitions of the roles participating in the relationship.
However roles cannot have nested role definitions.
Participating roles can also be defined as parameters
within a relationship type definition as shown below.

Example 16 Relationship type

type rel ReportingT (ProjectManagerT pm, SecretaryT secr) {
 inst oblig reportWeekly {
 on timer.day (“monday”) ;
 subject secr ;
 target pm ;
 do mailReport() ;
 }
 // . . . other policies
}

The ReportingT relationship type is specified between a
ProjectManager role type and a Secretary role type. The
obligation policy reportWeekly specifies that the subject of the
SecretaryT role must mail a report to the subject of the
ProjectManagerT role every Monday. The use of roles in place of
subjects and targets implicitly refers to the subject of the
corresponding role.

5.5. Management Structures

Many large organisations are structured into units
such as branch offices, departments, and hospital wards,
which have a similar configuration of roles and policies.
Ponder supports the notion of management structures to
define a configuration in terms of instances of roles,
relationships and nested management structures relating
to organisational units. For example a management
structure type would be used to define a branch in a bank
or a department in a university and then instantiated for
particular branches or departments. A management
structure is thus a composite policy containing the
definition of roles, relationships and other nested
management structures as well as instances of these
composite policies.

Figure 12 shows a simple management structure for a
software development company consisting of a project
manager, software developers and a project contact
secretary. Example 17 gives the definition of the
structure.

 Employee

AdmStaff ResearchStaff

ProjectManager Secretary SoftDeveloper

Figure 11. A role hierarchy

 V5 2/8/00 9

Example 17 Software company management structure

type mstruct BranchT (...) {
 inst role projectManager = ProjectManagerT(…);
 role projectContact = SecretaryT(...);
 role softDeveloper = SoftDeveloperT(...);

 inst rel supervise = SupervisionT
 (projectManager, softDeveloper);
 rel report = ReportingT
 (projectContact, projectManager);
}

inst mstruct branchA = BranchT(…);
 mstruct branchB = BranchT(…);

This declares instances of the 3 roles shown in Figure 12.
Two relationships govern the interactions between these roles. A
supervise relationship between the softDeveloper and the
projectManager, and a reporting relationship between the
ProjectContact and the projectManager. Two instances of the
BranchT type are created for branches within the organisation
that exhibit the same role-relationship requirements.

6. Miscellaneous Features

6.1. Class Hierarchy

The class hierarchy of the language (figure 13), allows
new policy classes that may be identified in the future to
be defined as sub-classes of existing policy classes. The
model also provides a convenient means of translating

policies to structured representation languages such as
XML. The XML representation can then be used for
viewing policy information with standard browsers or as a
means of exchanging policies between different managers
or administrative domains.

6.2. Scripts

An obligation action can be defined as a script using
any suitable scripting language to specify a complex
sequence of activities or procedures with conditional
branching. Scripts are implemented as objects and stored
in domains. Thus authorisation policies can be specified
to control access to the scripts.

Scripts give the flexibility of including complex
actions which cannot be expressed as single object
method invocations and can contain conditional
statements supported by the scripting language. For
example a script could be defined to update software on
all computers in a target domain as an atomic transaction
which rolls back to the old version if any one of the
updates fail.

If an interpreted language such as Java is used to
program scripts, then the scripts could be updated using
mobile code mechanisms to change the functionality of
automated manager agents. However this suffers from all
the usual security vulnerabilities of mobile code [3].

6.3. Imports

Import statements can be used to import definitions
such as constants, constraints and events from external
Ponder specifications stored in domains into the current
specification. This allows reuse of common specifications
in order to minimise errors that arise due to multiple
definition. The following example shows how an event
specification can be reused.

Example 18 Import statement

inst group /groups/groupA {
 event e(userId) = 3*loginfail(userid) ;
 …
 // other common specifications
 // basic-policies
}

inst group groupB {

import /groups/groupA ;

inst oblig FlexibleLoginFailure {
 on e(userId) | loginTimeOut(userId) ;
 subject s = /NRegion/SecAdmin ;
 target t = /NRegion/users ^ {userid} ;
 do s.log(userid) ;
}

}
GroupB imports the specification groupA from the /groups

domain (where it is stored), and reuses the specification of the
event e(userId) defined within loginFailure. The event of the new
obligation policy is now 3 consecutive loginfail events or a

P
supervise

report

Project
manager

Software
developers

Project
contact

Figure 12. A Simple Management Structure

Object

Meta CompositeBasic

auth oblig refrain deleg role rel mstruct

auth+ auth- deleg+ deleg-

group

Figure 13. Ponder Object Meta Model

 V5 2/8/00 10

loginTimeOut event, which is triggered when the user takes too
long to enter the password after the prompt.

7. Related Work

Most of the other work on policy language
specification relates to security. None includes the range
of policies covered in Ponder and most lack the flexibility
and extensibility features of Ponder.

Formal logic-based approaches are generally not
intuitive and do not easily map onto implementation
mechanisms. They assume a strong mathematical
background, which can make them difficult to use and
understand. The ASL [12], is an example of a formal
logic language for specifying access control policies. The
language includes a form of meta-policies called integrity
rules to specify application-dependent rules that limit the
range of acceptable access control policies. Although it
provides support for role-based access control, the
language does not scale well to large systems because
there is no way of grouping rules into structures for
reusability. A separate rule must be specified for each
action. There is no explicit specification of delegation and
no way of specifying authorisation rules for groups of
objects that are not related by type.

Ortalo [21] describes a language to express security
policies in information systems based on the logic of
permissions and obligations, a type of modal logic called
deontic logic. Standard deontic logic centres on
impersonal statements instead of personal; we see the
specification of policies as a relationship between
explicitly stated subjects and targets instead. In his
approach he accepts the axiom Pp = ¬O¬p ("permitted p
is equivalent to not p being not obliged") as a suitable
definition of permission. This axiom is not suitable for the
modelling of obligation and authorisation policies; the
two need to be separated. Miller [19] discusses several
paradoxes that exist in deontic logic. Since [21] contains
only syntactical extensions to deontic logic, it also suffers
from the same problems.

LaSCO [10] is a graphical approach for specifying
security constraints on objects, in which a policy consists
of two parts: the domain (assumptions about the system)
and the requirement (what is allowed assuming the
domain is satisfied). Policies defined in LaSCO have the
appearance of conditional access control statements. The
scope of this approach is very limited to satisfy the
requirements of security management.

In [2], Chen and Sandhu introduce a language for
specifying constraints in RBAC systems. It can be shown
that their language is a subset of OCL and we can thus
specify all of their constraints as meta-policies. Space
limitations prevent further discussion of this issue.

The Policy Description Language (PDL) is an event-
based language originating at the network computing
research department of Bell-Labs [28][13]. Policies in
PDL are similar to Ponder obligation policies. They use

the event-condition-action rule paradigm of active
databases to define a policy as a function that maps a
series of events into a set of actions. The language has
clearly defined semantics and an architecture has been
specified for enforcing PDL policies. The language can
be described as a real-time specialised production rule
system to define policies. Events can be composite events
similar to those of Ponder obligation policies.

8. Conclusion and Further Work

In this paper we have presented Ponder, a language for
specifying policies for management and security of
distributed systems. Ponder includes authorisation, filter,
refrain and delegation policies for specifying access
control and obligation policies to specify management
actions. Ponder thus provides a uniform means of
specifying policy relating to a wide range of management
applications – network, storage, systems, application and
service management. In addition, it supports a common
means of specifying enterprise-wide security policy that
can then be translated onto various security
implementation mechanisms. We are currently
implementing back-ends to the Ponder compiler for
Firewall rules, Windows security templates and Java
security policy.

The Ponder composite policies (groups, roles,
relationships and management structures) allow
structured, reusable specifications which cater for
complex, large-scale organisations. Ponder’s object-
oriented features allow user-defined types of policies to
be specified and then instantiated multiple times with
different parameters. This provides for flexibility and
extensibility while maintaining a structured specification
that can be, in large part, checked at compile time. Meta-
policies in Ponder provide a very powerful tool in
specifying application specific constraints on sets of
policies. Ponder is a declarative language and this aids in
the analysis of policies [14].

The language specification leaves room for future
additions in many areas. Relationships need to be
extended with interaction protocols to specify the
interaction between roles. We are also investigating sub-
types of meta policies to cover concurrency constraints
and user-role assignment constraints.

A policy specification toolkit is under development
for defining, compiling and analysing policies. The design
and implementation of a generic runtime object-model for
enforcement of Ponder policies on any object-based
platform is also under development.

 V5 2/8/00 11

References

For additional references see http://www-
dse.doc.ic.ac.uk/policies.

[1] Abrams, M.D. Renewed Understanding of Access Control

Policies. In Proceedings of 16th National Computer
Security Conference. 1993. Baltimore, Maryland, U.S.A.

[2] Chen, F. and R.S. Sandhu. Constraints for Role-Based
Access Control. In Proceedings of First ACM/NIST Role
Based Access Control Workshop. 1995. Gaithersburg,
Maryland, USA, ACM Press.

[3] Chess, D.M., Security Issues in Mobile Code Systems, in
Mobile Agents and Security, G. Vigna, Editor. 1998,
Springer. p. 256.

[4] Clark, D.D. and D.R. Wilson. A Comparison of
Commercial and Military Computer Security Policies. In
Proceedings of IEEE Symposium on Security and Privacy.
1987

[5] Damianou, N., N. Dulay, E. Lupu, and M. Sloman. Ponder:
A Language for Specifying Security and Management
Policies for Distributed Systems. The Language
Specification - Version 2.2. Research Report DoC 2000/1,
Imperial College of Science Technology and Medicine,
Department of Computing, London, 3 April, 2000.

[6] Distributed Management Task Force, Inc. (DMTF),
Common Information Model (CIM) Specification, version
2.2, available from http://www.dmtf.org/spec/cims.html,
June 14, 1999.

[7] Goh, G. Policy Management Requirements, System
Management Department, HP Laboratories Bristol, April,
1998.

[8] Hegering, H.-G., S. Abeck, and B. Neumair, Integrated
Management of Network Systems: Concepts, Architectures
and Their Operational Application, 1999: Morgan
Kaufmann Publishers.

[9] Hewlett-Packard Company, A Primer on Policy-based
Network Management, OpenView Network Management
Division, Hewlett-Packard Company, September 14, 1999.

[10] Hoagland, J.A., R. Pandey, and K.N. Levitt. Security Policy
Specificaton Using a Graphical Approach. Technical report
CSE-98-3, UC Davis Computer Science Department, July
22, 1998.

[11] Internet Engineering Task Force, Policy Working Group
http://www.ietf.org/html.charters/policy-charter.html

[12] Jajodia, S., P. Samarati, and V.S. Subrahmanian. A Logical
Language for Expressing Authorisations. In Proceedings of
IEEE Symposium on Security and Privacy. 1997, pp. 31-42

[13] Lobo, J., R. Bhatia, and S. Naqvi. A Policy Description
Language. In Proc. of AAAI, July 1999. Orlando, Florida,
USA

[14] Lupu, E.C., and M. Sloman. Conflicts in Policy-Based
Distributed Systems Management. IEEE Trans. on Software
Engineering, 25(6): 852-869 Nov.1999.

[15] Lupu, E.C. A Role-Based Framework for Distributed
Systems Management. Ph.D. Thesis, Department of
Computing, Imperial College, London, U. K.

[16] Lupu, E.C. and M.S. Sloman, Towards a Role Based
Framework for Distributed Systems Management. Journal
of Network and Systems Management, 1997b. 5(1): p. 5-
30.

[17] Mahon, H. Requirements for a Policy Management System.
IETF Internet draft work in progress, Available from
http://www.ietf.org, 22 October 1999.

[18] Marriott, D.A. Policy Service for Distributed Systems.
Ph.D. Thesis, Department of Computing, Imperial College,
London, U. K.

[19] Miller, J., HELP! How to specify policies?, Unpublished
paper, available electronically from
http://enterprise.shl.com/policy/help.pdf

[20] Moore, B., J. Strassner, and E. Ellesson, Policy Core
Information Model VI, IETF Internet draft, Available from
http://www.ietf.org, May 2000.

[21] Ortalo, R. A Flexible Method for Information System
Security Policy Specification. In Proceedings of 5th
European Symposium on Research in Computer Security
(ESORICS 98). 1998. Louvain-la-Neuve, Belgium,
Springer-Verlag.

[22] Rational Software Corporation, Object Constraint
Language Specification, Version 1.1, Available at
http://www.rational.com/uml/, September 1997.

[23] Sandhu, R.S. and P. Samarati, Authentication, Access
Control, and Intrusion Detection. Part of the paper
appeared under the title "Access Control: Principles and
Practice" in IEEE Communications, 1994. 32(9): p. 40-48.

[24] Sandhu, R.S., E.J. Coyne, H.L. Feinstein, and C.E.
Youman, Role-Based Access Control Models. IEEE
Computer, 1996. 29(2): p. 38-47.

[25] Sloman, M. and K. Twidle, Domains: A Framework for
Structuring Management Policy. Chapter 16 in Network
and Distributed Systems Management (Sloman, 1994ed),
1994a: p. 433-453.

[26] Sloman, M.S., Policy Driven Management for Distributed
Systems. Journal of Network and Systems Management,
1994b. 2(4): p. 333-360.

[27] Sun Microsystems, Inc., Java Management Extensions
Instrumentation and Agent Specification, v1.0, December
1999.

[28] Virmani A., J. Lobo, M. Kohli. Netmon: Network
Management for the SARAS Softswitch, IEEE/IFIP
Network Operations and Management Symposium,
(NOMS2000), ed. J. Hong, R., Weihmayer, Hawaii, May
2000, pp803-816.

[29] Weis, R. Policy Definition and Classification: Aspects,
Criteria and Examples. In Proceedings of IFIP/IEEE
International Workshop on Distributed Systems:
Operations & Management. 1994a. Toulouse, France.

