

IEEE/IFIP Network Operations and Management Symposium (NOMS2002),
Florence, Italy, 15-19 April, 2002, pp. 213-218

 1

Tools for Domain-based Policy Management
of Distributed Systems

N. Damianou, N. Dulay, E. Lupu, M. Sloman T. Tonouchi
Department of Computing, Imperial College Networking Laboratories
180 Queen’s Gate,London SW7 2BZ NEC Corporation
UK Japan
{ncd, nd, e.c.lupu, mss}@doc.ic.ac.uk tonouchi@cw.jp.nec.com

Abstract
The management of policies in large-scale systems is complex because of the
potentially large number of policies and administrators, as well as the diverse types of
information that need to be managed. Appropriate tool support is essential to make
management practical and feasible. In this paper we present the implementation of an
integrated toolkit for the specification, deployment and management of policies
specified in the PONDER language. PONDER policies provide a powerful framework for
managing distributed systems which includes explicit domain-based subject and target
specifications as well as a flexible life-cycle and deployment model. Domains,
implemented using LDAP directories, are used for storing policies and grouping
resources, people, and the entities which implement policy, thus facilitating the
automated dissemination of policy information. The toolkit presented in this paper
comprises: a policy compiler, used to generate implementation code for
heterogeneous management and security platforms, a hyperbolic tree viewer for
efficient manipulation of the domain structure and effective navigation across the
domains, and various tools for deploying and managing the policy life-cycle.

Keywords
Policy Management Tools, Policy Based Management, Domain Based Management,
Policy Specification Language, Policy Deployment.

1. Introduction
Policy-based management has become a widely employed and promising solution for
managing enterprise-wide networks and distributed systems. It is largely supported by
standards organizations such as the IETF and DMTF, and most network equipment
vendors. The main benefits from using policy are improved scalability and flexibility
for the management system. Scalability is improved by uniformly applying the same
policy to large sets of devices while flexibility is obtained by separating the policy
from the implementation of the managed system. Policy can be changed dynamically,
thus changing the behaviour and strategy of the system, without modifying the
implementation or interrupting the system’s operation.

The recent emphasis on policy specification [26], information models for managed
objects [7] and policy implementation for specific application areas [27, 29, 30],
sometimes loses sight of the fact that management, even when policy-based, is an

IEEE/IFIP Network Operations and Management Symposium (NOMS2002),
Florence, Italy, 15-19 April, 2002, pp. 213-218

 2

evolutionary process. Policy-based resource allocation, the association between policy
and the devices on which it must be implemented and even the policies themselves
are subject to frequent reviews and changes. To facilitate these activities it is
necessary to use a policy language easily understandable by human administrators in
conjunction with an integrated toolkit for the deployment, enforcement and
coordination of policies within the system. The toolkit must further facilitate the
policy specification and permit easy per user/per device review of policy.

PONDER [5, 6] is one of the few languages for specifying both security and
management policies. The language is declarative and simple to use for human
managers. Its design and deployment model are based on domain-based policy
management [8] where policies apply to domains of managed objects. Domains are
hierarchical and are similar to directories. They group objects according to various
criteria such as geographical boundaries, object type, responsibility and authority
[23]. The benefits of the domain-based approach are twofold: i) a policy applying to a
domain will propagate to its sub-domains thus applying to large numbers of objects
and providing scalability and, ii) when new objects are added or removed from the
system they can simply be included or removed from relevant domains, without the
need to modify the policies or manually manage the association between policy and
managed objects.

Management of enterprise systems requires an integrated but decentralized
administration of resources, people and corporate policies within large and complex
organizational structures. Decentralized administration is both difficult and error
prone. Administrators need to be isolated from the details of the underlying
implementations and policy representations. Tools with the required abstraction and
flexibility must allow for integrated administration of the structures and of the
diversity of management information. They must provide support for specifying new
policies and modifying existing ones, instantiating existing policy types, generating
suitable code from the high-level policies, analysing policies for conflicts and
managing the policy life-cycle.

In this paper we present a toolkit for specifying and managing PONDER policies
which satisfies the requirements mentioned above. In conjunction with the language,
the toolkit permits integrated administration of resources, people and policy
information with automated policy deployment. The toolkit comprises a generic
domain management tool, an Integrated Development Environment (IDE) with a
policy compiler, as well as tools for managing policies and roles at runtime. We
present the tools through a simple scenario of a backup and archiving system for a
computer research institution. The following section describes the scenario. Section 3
describes the domain browser, and the policy IDE. In section 4 we describe tool
support for managing the policy life-cycle, and section 5 presents support for role-
based management. We include related work in section 6 followed by conclusions and
further work.

2. Scenario
In this scenario, we consider the management of a backup and archiving system for a
research institution with many autonomous operating units corresponding to the
departments (inspired from a scenario in [11]). The central backup and archiving
servers perform periodic backups (e.g., once a month) but departments may have their

IEEE/IFIP Network Operations and Management Symposium (NOMS2002),
Florence, Italy, 15-19 April, 2002, pp. 213-218

 3

own backup servers for more frequent use (e.g., every evening). File servers are
available for each department and it should be possible to specify backup strategies
for individual users, based on their requirements (frequency, what data to backup, life
of backed-up data).

It is important that the administration of managed data can be delegated on a
hierarchical basis. Domains can be used to model a hierarchical structure of the
system, which will also enable policy specification, and logically centralised system
administration. Figure 1 shows a partial view of a domain structure for the system.
The /staff subtree contains the system administrators as well as research and
development staff subdivided by division and department. The /staff/admin subtrees
are also subdivided by department, to reflect the fact that certain administrators are
responsible for certain departments and users. The /system subtree contains the
resources (files and data) partitioned to reflect departmental structure. It also contains
the system servers (e.g. backup, account, mail etc). Finally, the /managementInfo
subtree is used to group policies and other management specific information. Only
policy administrators (/staff/admin/policy) and security administrators
(/staff/admin/sec) are permitted to access management information.

root

staff managementInfosystem

division admin

res dev sec policy

dsys power internet

parallel graphics formal ai...

...

roles URDpol

backup

resources servers

res dev backup acc ac man

staff IDs and profiles

resources divided by
department

servers

... ...
management info

...

Figure 1 Partial Domain Structure

Security is an important aspect in the system. Authorized users are able to access
their own files, those shared in their department, as well as those to which they have
been explicitly granted access. The account servers hold account information for each
user in the system. Users are not normally allowed to execute actions that are carried
out for them by the administrators (e.g., regular backups). However, administrators
can delegate those actions to the users they administer. The management system
includes role-based management features. An account manager role is specified which
defines the authorization and obligation policies associated with an account security
manager. Similarly a backup administrator role is defined to which backup
administrators are assigned.

3. Policy Administration Toolkit
The PONDER system architecture, shown in Figure 2, is derived from experience
learnt from work on Policy-Based Management at Imperial College over the past 15
years. An initial notation for policy specification was described in [18], and an

IEEE/IFIP Network Operations and Management Symposium (NOMS2002),
Florence, Italy, 15-19 April, 2002, pp. 213-218

 4

implementation of an agent for interpreting obligation policies was documented in
[19]. Previous attempts at implementing a domain browser for navigating the domain
structure have been presented in [9], while a simplified template-based policy editor
can also be found in [18]. A separate standalone editor for specifying and viewing
roles and relationships was presented in [16]. None of these papers related to the
current version of the PONDER policy specification language which introduces
modern object-oriented concepts into policy specification as described in [5] & [6].
An approach to deployment of policies for distributed management was outlined in
[8]. In this paper we use the experience gained through earlier attempts at
implementing those different standalone tools and components, and present an
integrated toolkit to support the whole policy life-cycle relating to specifying and
managing deployed policies. We combine the ideas presented in previous papers to
implement a complete policy-based management platform which includes a
comprehensive user interface built around a hyperbolic-tree based domain browser.
The browser permits users to navigate through complex domain hierarchies of both
policies and managed objects. The architecture also includes a compiler with various
multiple ‘back-ends’ to generate, XML policy representations as well as management
and security policy enforcement components targeted at many different platforms.

A Lightweight Directory Access Protocol (LDAP) server is used to implement the
domain service, and Java RMI as the middleware for communication between the
various system components. All tools are implemented in Java, and Swing is used for
the graphical user interfaces. The enforcement components include Policy
Management Components (PMCs) responsible for enforcing obligation and refrain
policies, and Access Controllers (ACs) responsible for enforcing authorizations. The
policy service is used to manage and coordinate access to policy objects stored in the
domain service, and to instantiate new policies from existing policy types. The policy
service creates a Policy Control Object for each policy which is distributed. The
execution of policy life-cycle operations occurs through direct interaction with these
control objects, which are also bound to the directory for persistence. For a more
detailed description of the policy deployment model see [8].

Domain Service

Policy
Service

 Enf/ment
Components

Policy Editor Mgmt Console User-Role Mgmt Tool

Domain Browser

Ponder
Runtime

LDAP

Java RMI

Compiler

 Policy Control
Objects

Policy Editor

Compiler

Storage

Management
Tools

Automated
Enforcement

Domain
Browser

Figure 2 Management System Architecture Figure 3 Policy Management Cycle

The domain browser provides a common user interface for all management
interaction with objects stored in the domain service. Other tools interact with the
domain browser to select objects from the domain service. Figure 3 shows the steps

IEEE/IFIP Network Operations and Management Symposium (NOMS2002),
Florence, Italy, 15-19 April, 2002, pp. 213-218

 5

involved in managing a policy-based system. Policies and roles are created using the
policy editor, compiled and stored in the domain service. The management console
and user-role management tools can then be used to distribute policies and to
activate/deactivate roles. The distribution and enforcement of policies is automated
and the tools can be used in a distributed manner by a number of administrators.

The domain service is implemented using an LDAP directory with extensions to
allow objects to be members of multiple domains. Thus, LDAP is used for both
storing policies and for grouping subject/target objects whereas the IETF framework
[27] uses directories only as policy repositories.

3.1. Domain Browser
The domain browser provides a common user interface for all aspects of an integrated
management environment. It can be used to group or select objects for applying
policy, to monitor them or to perform management operations, although the current
implementation only supports policy management. The domain browser reads data
from the domain service and provides a graphical tree-structured view of the directory
structure. Usability is enhanced by customising pop-up menus according to the type
of the object being selected. Furthermore, external tools can be invoked from within
the domain browser for a specific managed resource or policy, depending on the
current selected context. External tools also interface with the domain browser to
allow for navigation or selection of objects from the domain service. For example, it
is possible to specify a policy’s subject and target domains by selecting them from the
domain browser. The domain structure for the research institution of the scenario in
section 2, is created using the domain browser as shown in Figure 4. Administrators
can use the domain browser to manage the domain structure, group objects into
domains to apply a common policy, modify or create new objects. Objects can
represent users, roles, network components or manager agents.

The domain structure can be very large, both in terms of number of objects within
a domain as well as depth of the hierarchy. Thus, the challenge is to realise a tool

Figure 4 Domain Browser Figure 5 Focusing a sub-tree

IEEE/IFIP Network Operations and Management Symposium (NOMS2002),
Florence, Italy, 15-19 April, 2002, pp. 213-218

 6

which enables users to easily visualise and navigate the structure. We adopt a
hyperbolic tree-mapping algorithm [15] which has two characteristics. First, the
hyperbolic plane is a non-Euclidean geometry in which parallel lines diverge away
from each other. Therefore, the circumference of a circle on the hyperbolic plane
grows exponentially with its radius, which means that exponentially more space is
available with increasing distance. In a 600 by 600 pixel window, a standard two-
dimensional hierarchy browser can typically display 100 nodes whereas the
hyperbolic browser can display about 1000 nodes, while providing more effective
navigation of the hierarchy. The second characteristic guarantees that every sub-tree
can be mapped congruously; the central angle of the sector that every sub-tree
occupies is the same. The domain browser can thus display any part of the tree
uniformly. This gives users a better feel of the entire domain structure, making it
easier to perceive the context. We have experimented in the past with two-
dimensional tree viewers, and have found it very difficult to display large domain
structures. The domain structure of PONDER is not a pure tree but an acyclic graph
[24] as it permits objects and sub-domains to be members of multiple parent domains.

Navigation is realised by moving the domain tree around the hyperbolic plane.
Objects nearer to the centre of the display are enlarged and come into focus. For
example, an administrator can focus on the policies sub-tree of the domain structure
by selecting the /managementInfo/pol sub-tree and dragging it near the centre of the
viewer, as shown in Figure 5. Sub-trees can be collapsed or expanded providing
further flexibility in navigating large structures.

PONDER has composite policy structures (roles, relationships, management
structures), which consist of sub-component policies. The domain browser displays a
composite policy as a domain or sub-tree, whose children are the component policies.

Edited domain structures can be saved into the domain service or discarded by
undoing the operations. Similarly, the latest domain structure information can be
loaded from the domain service. The browser registers for update notifications with
the domain service and the “Load” button is highlighted when the browser receives a
notification that the domain structure has been modified. This function enables the
cooperative use of the tool by several users.

We provide two implementations of the domain browser with the same API: one
uses a program module we developed, and the other uses the Inxight Star Tree
Software Development Kit [13]. Although the current version uses LDAP directories
as the information repository, the browser implementation is not dependent on LDAP
and data can be loaded from other sources as well.

3.2. Compiler Framework
The PONDER policy language provides reuse by supporting the definition of policy
types to which any policy element can be passed as formal parameter. Multiple
instances can then be created and tailored for a specific environment by passing actual
parameters. We refer to policy instances as policies in this paper. PONDER policies can
be mapped to low-level representations suitable for the underlying system or into
XML for transfer around the network. Authorization policies can be mapped onto a
variety of heterogeneous security platforms and mechanisms, such as firewalls,
operating systems security, database security and Java authorizations. For example, if
servers used to store data in the AI research group are Linux based while servers in
other departments are Windows 2000 based, then appropriate code will be generated

IEEE/IFIP Network Operations and Management Symposium (NOMS2002),
Florence, Italy, 15-19 April, 2002, pp. 213-218

 7

based on the type of server.
Dedicated code generators (compiler back-ends) must be implemented to translate

the PONDER specification into the desired format. The compiler framework is designed
for extensibility with custom code generators without recompiling the system.

Policy
Source
Text

Syntax
Analysis

Semantic
Analyser

AST

Syntax
Analyser

(SableCC)

Scope /
Type

Analysis
IC

Call Policy-
Service to store
policy code in
directory

Code
Assembler

IC: Intermediate Code
AST: Abstract Syntax Tree

…

XML
Code Generator

Java Policies
Code Generator

Backup Server config.
Code Generator

Figure 6 Compiler Framework

Figure 6 shows the main modules of the compiler which is based on a LALR(1)
parser generated with SableCC [10], an object-oriented Java parser generator. The
main phases of the compiler generate an intermediate code which is then passed on to
all the code-generators added to the compiler. The code assembler module is
responsible for coordinating the code generation phase, and for storing the generated
code for a given policy in the directory service under the appropriate domain. Its
implementation is specific to the underlying domain service. A Java code generator is
included by default, which generates a Java class for each of the basic policies as
defined in the deployment model for the PONDER language [8]. Preliminary
implementations exist for translating PONDER policies onto various access control
platforms. These include:
• A Java back-end which transforms PONDER authorization policies into access

control policies for the Java platform. This has required several extensions to the
Java security model in order to enable run-time PONDER policy evaluation,
constraint checking and filtering [4].

• Code generators for translating PONDER authorization policies to Windows 2000
security templates and Firewall rules.

• Experimentation with mapping PONDER authorization policies to Linux access
controls. System level scripts have been specified to program the Linux security
kernel. A code generator translates PONDER policies into calls on those scripts.

3.3. Policy Editor
The policy editor tool (Figure 7) is integrated with both the domain browser and the
PONDER compiler and provides an easy to use development environment for
specifying, reviewing and modifying policies. Templates can be used to create
policies easily. The domain browser can be invoked to select the subject and target
domains for policies. Existing policies and policy types can be selected from the
directory with the aid of the domain browser, loaded into the editor, modified,
recompiled and stored back to the directory. Code generators added to the compiler
framework, are accessible and can be enabled from within the editor to select the type
of code to be generated.

IEEE/IFIP Network Operations and Management Symposium (NOMS2002),
Florence, Italy, 15-19 April, 2002, pp. 213-218

 8

Figure 7 Policy Editor

4. Policy Life-Cycle Management

4.1. Policy Dissemination
Policy types are compiled into Java policy classes by the PONDER compiler, and
stored in the domain hierarchy. Instantiation of a basic policy type creates a Java
policy object in the domain hierarchy to maintain a suitable representation of the
policy attributes. Further, a policy control object is created to coordinate run-time
access and dissemination of the policy: an authorization control object (ACO) for
authorization policies, a refrain control object (RCO) for refrains and an obligation
control object (OCO) for obligations.

Once instantiated, a policy object can be loaded into its enforcement components,
and once loaded, it can be enabled. An enabled policy can be disabled and later re-
enabled, or disabled and then unloaded from its enforcement components. Unloaded
(i.e. dormant) policies can be either re-loaded or deleted. Enable/disable are less
expensive to implement when a policy is frequently stopped and later restarted. The
policy control object co-ordinates these life-cycle policy operations, and acts as a
centralized control point for managing concurrent and possibly conflicting requests
from multiple policy administrators and from domain objects to which the policy
applies. The control object does not participate in the policy enforcement process.
Replication of policy control objects is possible, to enhance scalability.

Dynamic Changes to Subject/Target Domains and Objects
PONDER policies operate over sets of objects formed from domains using domain
scope expressions (i.e. set expressions). Domains however, are not static, and when an
object is added to a domain, loaded or enabled policies applying to that domain will
need to be loaded and enabled on the new object. Thus, domains must maintain
references, held in a multi-value attribute, to the policies applying to them. When a
policy is loaded, its control object updates the entry of all domains to which it applies.

IEEE/IFIP Network Operations and Management Symposium (NOMS2002),
Florence, Italy, 15-19 April, 2002, pp. 213-218

 9

We use the Java Naming and Directory Interface (JNDI) event listener functionality to
generate events on domain membership changes, which are sent to the policy control
objects so that policies are added or removed accordingly from the enforcement
components.

In the archiving scenario, the following policy applies to backup servers in the
research division. The servers must perform a self-check of available disk space on
the 1st of each month. When a new server that is installed in the system, is added
under the /system/serv/backup/res domain, this policy and all others applying to the
domain are automatically loaded and enabled on the server.

inst oblig selfDiskCheck {
 on Timer.at(“23:00:00”, “01:*:*”);
 subject backServ = /system/serv/backup/res;
 do backServ.checkDisk(); }

4.2. Management Console Tool
We have implemented a management console tool (Figure 9) for dynamically
managing policies. The steps involved in using the tool in relation to the policy life-
cycle are demonstrated in Figure 8. The tool has two main views:

E nab led

Ins tan tia te
P o licy C lass

...

Loaded
M anagem ent
C onso le

D om ain
B row ser

LD A P

E nforcem ent C om ponents

load , un load

enab le , d isab le

se lect o b ject

P olicy S ta tes

D orm ant

P o licy
C ontro l
O b jec t

query

Figure 8 Managing the Policy Life-Cycle

In the Policy Objects View, a policy instance can be selected from the directory
(using the domain browser) and loaded into the management console. Similarly, if a
domain is selected all policy instances under that domain will be loaded into the
management console in an expandable tree-navigator. Policies can then be selected
and loaded, unloaded, enabled or disabled as needed. Details about the selected
policy are displayed including the policy-status. When a new backup policy for a
specific user is specified, a policy administrator uses the management console to
select the policy from the directory, load it and enable it. Multiple management
consoles could manage the same domain of policy objects, but LDAP does not
support concurrency control.

In the Enforcement Components View, enforcement components can be selected
and information about the policies loaded into them is displayed in a tabular format.

A Command-line Window can be used to type single-line commands to the
PONDER compiler. This allows interactive instantiation of policy types.

IEEE/IFIP Network Operations and Management Symposium (NOMS2002),
Florence, Italy, 15-19 April, 2002, pp. 213-218

 10

Figure 9 The Management Console Tool

4.3. Conflict Analyzer
Having both positive and negative policies may result in conflicts which may lead to
inconsistent or deadlock states within the system. A user-specified backup policy may
conflict with backup policies specified by the administrator. In large-scale systems,
where several administrators specify policies, conflict detection should be automated.
We have implemented a conflict analysis tool, integrated with the policy editor, to
perform static analysis of policies [17]. The tool also allows various forms of
precedence to be specified to resolve policy conflicts. For example precedence can be
given to negative policies, more specific ones or more recent ones. Policies stored in
a sub-tree of the domain structure can be analyzed for conflicts or analysis can take
place when storing new policies to see if they conflict with existing ones.

5. Role-based Management
In PONDER policies pertaining to a position in an organization have a common subject
domain and can be grouped into a role such as: operator, security administrator or a
nurse in a hospital [6]. Roles can also be used to group policies for a particular type
of automated management agent such as backup agent. Roles can be specified using
the policy editor and then compiled and stored in the domain service as a composite
role object c.f. a domain. Policies inside the role are stored as subentries of the role.
This allows navigation of the role contents in the same way that domains are
navigated. Instantiating a role type creates a new object for the role instance, and
instantiates all the policies contained in the role type.

Roles provide a grouping and abstraction mechanism which simplifies
management and can be selected from the domain service using the management
console in the same way as policy objects are selected. Control operations can then be
performed on the role object, without needing to access the individual policies of the
role. The corresponding role control object takes care of loading, unloading, enabling,
or disabling the policy instances inside the role to all the enforcement components.

IEEE/IFIP Network Operations and Management Symposium (NOMS2002),
Florence, Italy, 15-19 April, 2002, pp. 213-218

 11

5.1. Role Assignment
An important aspect of role-based management is that of assigning users to roles, and
activating/deactivating roles. A user representation domain (URD) is a persistent
representation of a human user in the system which contains two different kinds of
objects: one or more policy management components (PMC’s) and a user profile
object (UPO). PMC’s can act as proxies for the user to allow access to resources
permitted by the authorization policies or they can act as automated agents,
interpreting obligation policies on the user’s behalf. A user is assigned to a role by
including a PMC from the user’s URD into the subject domain of the role. PMCs are
application specific and different PMCs can be used to support security management,
backup administration etc. if the user is assigned to different roles. The UPO contains
information about the roles and domains to which a user’s PMCs have been assigned.
Note that automated agents implementing policies are also PMCs which can be
assigned to roles but do not represent a human user.

URD

PMC User Profile
Object

Management Console

< Back Next > Cancel

User - Role Assignments

Management Console - User Management

Create

Domain
Hierarchy

Subject Domain
for BackupAdmin Role

3

1

User-Role Assign 4

2
5

User-Management

Figure 10 User-Role Management Tool Figure 11 User-Role Management Steps

Figure 11 shows the steps involved in assigning users to roles. These steps are

summarized below in relation to the user-role management tool (Figure 10), which is
used to manage users for which policies are specified in the system. The tool consists
of three sub-views:

In the User-Management View new users can be created, assigned and removed
from domains. Creating a user means, creating a URD for the user, and a UPO, which
is stored inside the URD. Assigning a user to a domain implicitly creates a reference
in the selected domain, which points to a policy management component (PMC)
within the URD. This corresponds to steps 1 and 2 in Figure 11.

In the Management Components View new policy management components can
be created (or deleted) for users and stored in the users’ URD. This is also related to
step 1 of Figure 11. PMCs stored in domains (URDs or other domains), can be started
and stopped using the user management tool remotely onto any host. This requires a
PMC-Server to be running on the remote host. For example, when a new backup
administrator for the research division of our scenario is added to the system, a
corresponding URD will be created under /managementInfo/URD, and a backup-

IEEE/IFIP Network Operations and Management Symposium (NOMS2002),
Florence, Italy, 15-19 April, 2002, pp. 213-218

 12

enabled PMC will be instantiated in the URD. The administrator is then assigned to
/staff/admin/backup/res, and his PMC is started on the research network.

In the User-Role Management View users can be assigned and removed from
roles. This simply updates the list of roles to which the user is assigned within the
UPO (steps 3 and 4). A PMC representing the user in the role must then be selected.
Roles assigned to a user can be selectively activated and deactivated. Activating a role
creates a reference in the role’s subject domain which points to the PMC in the user’s
URD (step 5). This implements the RBAC concept of sessions [22]. The new backup
administrator in our scenario can be assigned to the backupAdmin role by selecting
from the domain browser the appropriate URD, PMC and the backupAdmin role. The
role can then be activated and deactivated with a click of a button by selecting it from
the list of roles assigned to the user.

6. Related Work
Unlike the PONDER framework, which covers a wide range of policies with
customized enforcement, the majority of existing policy-based tools for networks and
distributed systems management concentrate on a specific area, primarily quality of
service or access control management. Verma [29] describes a QoS tool used to
specify Service Level Agreements (SLAs) and to manipulate SLA related information
in a tabular format. The tool transforms high-level policy information into device
configurations, and stores them in an LDAP directory. Another tool, presented in [20],
focuses solely on template-based refinement of policies from high-level goals.

Existing work within the RBAC community is limited to specifying access control
configurations in terms of roles. A centralized tool, presented in [28], translates access
control configuration from the RBAC framework to the target’s native security
mechanism, which is then transported to the target. Another web-based tool, presented
in [2], allows administrators to specify roles, role hierarchies and constraints.

In Policy Based Networking most of the tool support comes from industry and is
based on the IETF policy framework. The majority of these tools are specific to
quality of service management [3, 12, 14, 21] but some also include access control
configuration for routers, switches and firewalls [1, 25]. The user interface usually
comprises a policy-editing tool, which uses a tabular view of policies. Although visual
tools are included by some vendors, most of this work focuses on managing
individual network elements. Scalability to enterprise wide management is not
obvious as the dissemination of policies to specific elements is performed manually
whereas in PONDER this is automated based on domain membership. For comparison
of PONDER with other policy specification languages and approaches see [5].

7. Conclusions and Further Work
In this paper we have presented a prototype implementation of a management toolkit,
for integrated management of distributed systems. The toolkit is based on the use of
domains which support scalability in that policies can be specified for hierarchical
groups of objects and deployed automatically. We have used the experience gained
through earlier attempts at implementing various tools and components of the
architecture, to provide for the implementation of a policy-based management
platform. We have experimented with various forms of domain visualization as the

IEEE/IFIP Network Operations and Management Symposium (NOMS2002),
Florence, Italy, 15-19 April, 2002, pp. 213-218

 13

traditional ‘Windows Explorer’ view does not scale for large acyclic graphs of
directories/domains, although it is useful for small sub-trees. The hyperbolic tree-
based view gives a ‘fisheye’ focus onto specific sets of domains and permits easy
navigation of very complex structures. We think that integrating all management tools
around the domain browser to give a common ‘look and feel’ is the right approach but
so far we have only concentrated on tools for specification, analysis, dissemination
and control of policy.

PONDER supports a number of composite policy concepts [5, 6] although only
roles are discussed in this paper. Being able to specify all the policies relating to a
position in an organization or for an automated agent and then creating multiple
instances of these roles, provides a powerful mechanism for specifying policies in
large-scale systems. Composite policies are viewed in the same way as domains with
the domain browser and both composite policy types and instances can be easily
opened and controlled.

The PONDER deployment model is implemented using Java and LDAP and uses
JNDI to interface with LDAP directories. We are currently working on extending the
domain browser with an optional explorer-like view for selected domains. This will
enable easier selection and manipulation of objects inside specific domains.
Extensions to the domain browser include drag-and-drop functionality to assign users
to domains and roles, and optionally viewing relationships between policies, such as
delegation-authorization policy relationships or subject and target relationships.

The enforcement of PONDER authorisation policies on various security platforms
needs to be investigated further; different security platforms have different
enforcement semantics and some may include restrictions which prevent direct
mapping of certain features of PONDER policies onto these platforms. Future work
will evaluate more closely the degree to which the same authorisation policy can be
enforced on a variety of security architectures and platforms. In addition we are
working on mapping PONDER policies to QoS rules for configuring a DiffServ-
enabled network. It has been quite easy to produce back-ends for the Ponder compiler,
targeted to different platforms. We definitely believe that a common high-level
declarative language for different applications of policy-based management is the
right approach.

The paper describes what we consider to be the minimum requirements for a
toolkit for policy life-cycle management – a high-level language and editor for
specifying policies, a compiler for translating policies into enforcement components
targeted to specific platforms, a browser to view and manipulate complex domain
structures of policies and objects, and an automated approach to dynamically
deploying, enabling, disabling and replacing policies in the distributed components
that will interpret them. Other components which have been implemented, but not
described here, include policy conflict analysis and resolution.

The policy-management toolkit needs to be developed further. Tools for the
refinement of high-level policy specifications (goals, SLA’s, etc) are a primary
objective. As the refinement process is not expected to be fully automated this will
require interactive tool support. We are also investigating the possibility for providing
further analysis by simulating the execution of policies. An integrated environment
for animating the simulation and viewing the results will be part of such a task.

IEEE/IFIP Network Operations and Management Symposium (NOMS2002),
Florence, Italy, 15-19 April, 2002, pp. 213-218

 14

Acknowledgments
We gratefully acknowledge the support of the EPSRC for research grants GR/L96103
(SecPol) and GR/M 86019 (Ponds), BT for support on the Alpine project, and NEC
Corporation for funding Mr Tonouchi’s visit to the UK.

References
[1] Allot Communications, Policy Based Networking Solution, Available electronically at:

http://www.allot.com/pdf/company/pbn_solution.pdf
[2] Barkley, J., et al. Role-Based Access Control for the Web. In Proceedings of CALS Expo

International & 21st Century Commerce 1998: Global Business Solutions for the New
Millennium

[3] Cisco Systems Inc., Cisco Assure Policy Manager, Available electronically at:
http://www.cisco.com/warp/public/cc/pd/nemnsw/cap/index.shtml, June 2000.

[4] Corradi, A., N. Dulay, R. Montanari, and C. Stefanelli. Policy-Driven Management of
Agent Systems. In Proceedings of Policy Workshop 2001. 29-31 January 2001. HP Labs,
Bristol, UK, Springer-Verlag.

[5] Damianou, N., N. Dulay, E. Lupu, and M. Sloman. The Ponder Policy Specification
Language. In Proceedings of Policy Workshop 2001. 29-31 January 2001. HP Labs,
Bristol, UK, Springer-Verlag.

[6] Damianou, N., N. Dulay, E. Lupu, and M. Sloman. Ponder: A Language for Specifying
Security and Management Policies for Distributed Systems. The Language Specification -
Version 2.3. Research Report DoC 2000/1, Imperial College of Science Technology and
Medicine, Department of Computing, London, 20 October, 2000.

[7] DMTF Distributed Management Task Force, Inc., Common Information Model (CIM)
Specification, version 2.2, available from http://www.dmtf.org/spec/cims.html, June 14,
1999.

[8] Dulay, N., E. Lupu, M. Sloman, and N. Damianou. A Policy Deployment Model for the
Ponder Language. In Proceedings of 7th IFIP/IEEE International Symposium on
Integrated Network Management (IM'2001): Integrated Management Strategies for the
New Millennium. 14-18 May 2001. Seattle, Washington, USA

[9] Fosså, H. and M. Sloman. Interactive Configuration Management for Distributed Object
Systems. In Proceedings of First International Enterprise Distributed Object Computing
Workshop (EDOC’97). October 1997. Gold Coast, Queensland, Australia, pp. 118-128,
IEEE.

[10] Gagnon, E. SableCC, An Object-Oriented Compiler Framework. Master of Science,
School of Computer Science, McGill University, Montreal.

[11] Hegering, H.-G., S. Abeck, and B. Neumair, Integrated Management of Network Systems:
Concepts, Architectures and Their Operational Application, ed. D. Clark. 1999: Morgan
Kaufmann Publishers. 651.

[12] Hewlett-Packard Company, PolicyXpert, Available electronically at:
http://www.openview.hp.com/products/policyexpert/index.asp, 2001.

[13] Inxight Software Inc., Inxight Web-Page,http://www.inxight.com.
[14] IP Highway Ltd, Policy Management Console, Available electronically at:

http://www.iphighway.com/, 2001.
[15] Lamping, J., R. Rao, and P. Pirolli. A Focus+Context Technique Based on Hyperbolic

Geometry for Visualizing Large Hierarchies. In Proceedings of CHI 95, Available
electronically at: http://www.acm.org/sigchi/chi95/Electronic/documnts/papers/jl_bdy.htm.

[16] Lupu, E.C. A Role-Based Framework for Distributed Systems Management. Ph.D. Thesis,
Department of Computing, Imperial College, London, U. K.

[17] Lupu, E.C. and M.S. Sloman, Conflicts in Policy-Based Distributed Systems
Management. To appear in IEEE Transactions on Software Engineering - Special Issue on

IEEE/IFIP Network Operations and Management Symposium (NOMS2002),
Florence, Italy, 15-19 April, 2002, pp. 213-218

 15

Inconsistency Management, 1999.
[18] Marriott, D.A. Policy Service for Distributed Systems. Ph.D. Thesis, Department of

Computing, Imperial College, London, U. K.
[19] Marriott, D.A. and M.S. Sloman. Implementation of a Management Agent for Interpreting

Obligation Policy. In Proceedings of 7th IFIP/IEEE International Workshop on Distributed
Systems Operations Management (DSOM'96). October 1996. L' Aquila, Italy

[20] Mont, M.C., A. Baldwin, and C. Goh. POWER Prototype: Towards Integrated Policy-
Based Management, Extended Enterprise Laboratory, HP Laboratories, Bristol, 18 October
1999.

[21] Orchestream Ltd, Orchestream Service Activator, Available electronically at:
http://www.orchestream.com/, 2001.

[22] Sandhu, R.S., E.J. Coyne, H.L. Feinstein, and C.E. Youman, Role-Based Access Control
Models. IEEE Computer, 1996. 29(2): p. 38-47.

[23] Sloman, M. and K. Twidle, Domains: A Framework for Structuring Management Policy, in
Chapter 16 in Network and Distributed Systems Management (Sloman, 1994ed). 1994a. p.
433-453.

[24] Sloman, M.S., Policy Driven Management for Distributed Systems. Journal of Network
and Systems Management, 1994b. 2(4): p. 333-360.

[25] Solsoft Inc., Solsoft NP: Policy Management for Enterprise Network Security, Available
electronically at: http://www.solsoft.com/

[26] Stone, G.N., B. Lundy, and G.G. Xie, Network Policy Languages: A Survey and a New
Approach. IEEE Network January/February 2001, 2001.

[27] Strassner, J., E. Ellesson, B. Moore, and A. Westerinen, Policy Core Information Model -
Version 1 Specification, RFC 3060, Available from http://www.ietf.org, February 2001.

[28] Thomsen, D., D. O'Brien, and J. Bogle. Role Based Access Control Framework for
Network Enterprises. In Proceedings of 14th Annual Computer Security Applications
Conference. December 1998

[29] Verma, D., M. Beigi, and R. Jennings. Policy Based SLA Management in Enterprise
Networks. In Proceedings of Policy Workshop 2001. 29-31 January 2001. HP Labs,
Bristol, UK, Springer-Verlag.

[30] Virmani, A., J. Lobo, and M. Kohli. Netmon: network management for the SARAS
softswitch. In Proceedings of 2000 IEEE/IFIP Network Operations and Management
Seminar (NOMS 2000). April 2000. Hawaii

