
1

Role-Based Security for Distributed Object Systems

Nicholas Yialelis Emil Lupu Morris Sloman

Department of Computing, Imperial College
180 Queen’s Gate, London SW7 2BZ, United Kingdom
Email: {n.yialelis, e.c.lupu, m.sloman}@doc.ic.ac.uk

Abstract

This paper describes a security architecture designed to
support role-based access control for distributed object
systems in a large-scale, multi-organisational enterprise in
which domains are used to group objects for specifying
security policies. We use the concept of a role to define
access control related to a position within an organisation
although our role framework caters for the specification of
both authorisation and obligation policies. Access control
and authentication is implemented using security agents on
a per host basis to achieve a high degree of transparency to
the application level. Cascaded delegation of access rights
is also supported. The domain based authentication service
uses symmetric cryptography and is implemented by
replicated servers which maintain minimal state.

1 Introduction

Distributed systems are increasingly being used in
commercial environments necessitating the development of
trustworthy and reliable security mechanisms. These must
prevent unauthorised access to resources, compromise of
information integrity or loss of confidentiality. Distrib-
ution requires the need for encryption over untrusted
networks and remote computers may not be fully trusted.
Distributed systems may contain millions of objects and
cross inter-organisational boundaries forcing decentral-
isation of security management. There is often no clear
informal or formal specification of enterprise authorisation
policies and no tools to translate policy specifications to
access control implementation mechanisms such as
capabilities or Access Control Lists. It is thus difficult to
analyse the policy to detect conflicts or flaws and it is
difficult to verify that the implementation corresponds to
the policy specification.

This paper gives the overview of a security architecture
to support an access control model that makes use of
domains, explicit policy objects and roles. Domains [1] are
used to group objects to which a common policy applies,
to partition management responsibility in large systems or
for the convenience of humans (c.f. file system
directories). Domains can contain subdomains to form a
hierarchical structure. A role identifies the rights, duties,

functions and interactions, associated with a position such
as vice president, board director, security administrator,
doctor or nurse in a hospital. We model rights as
authorisation policies which specify what activities a
subject is permitted (or forbidden) to perform on a set of
target objects. Duties are modelled as obligation policies
which specify what activities a subject must or must not
perform on a set of target objects. A role is the set of
authorisation and obligation policies which have a
particular role position as a subject [2], although we focus
only on authorisation policies in this paper. The advantage
of using roles for specifying enterprise policies is that
individuals can be assigned to or withdrawn from the role
positions without having to respecify the policies
applying to the role. An object oriented approach to
specifying roles permits multiple instances of a basic role
to be instantiated e.g. for each nurse in a hospital.

We provide a framework in which roles and inter-role
relationships represent enterprise security requirements.
Roles are expressed in terms of policies which refer to
domains to provide a very flexible basis for specifying
Role Based Access Control [3] which caters for large scale,
inter-organisational distributed systems. High-level
abstract policies can be defined and then refined into a
number of implementable policies. Further information on
roles can be found in [4] while this paper concentrates on
the security aspects of the architecture

The security architecture enforcing the access control
consists of four main building blocks: the domain service,
the policy service, the authentication service and the
security agents which are employed on each host to
achieve a high degree of transparency of the security
services to the application level. The distributed domain
service (discussed in section 2.1) maintains information on
domain membership and the policies applying to domains.
The policy service (see section 3.1) allows specification
and refinement of policies by human users. These policies
are then disseminated to the distributed agents which
implement them. The access control model is described in
Section 2 as well as more detail of how roles are specified
in terms of domains and policies. Section 3 describes the
security agents needed in each host for authentication and
access control.

Copyright 1996 IEEE. Published in the Proceedings of the IEEE Fifth Workshops on Enabling Technology: Infrastructure for
Collaborative Enterprises (WET ICE '96), June 19-21, 1996, Stanford, California, USA. Personal use of this is material i s
permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works,
must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box
1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

2

2 Access control policies and roles

Our access control model is based on subjects invoking
operations on targets where the subject or target may be
active or passive objects. Objects may be representatives
of a user (c.f. login shell), distributed agents acting on
behalf of users, devices, files or components of a service.
An object has a unique Object Identifier (OID) which
contains the network address of the object and an element
which is always unique.

2.1 Domains

In a large system many objects or users may exhibit
common characteristics with respect to some criteria, so it
is useful to specify policies that apply to a group of
objects rather than individual ones. A domain is an object
which maintains a list of references to objects that have
been explicitly grouped together to reflect the needs of
users or management [2]. Domains provide similar
functionality to groups in traditional access control
systems but are used to group targets as well subjects. If a
domain holds a reference to an object, the object is said to
be a direct member of that domain and the domain is said
to be its parent. Domains can also be nested in that a
subdomain may be a member of a parent domain and the
subdomain members are then indirect members of the
parent. An object can be a direct or indirect member of
multiple domains.

Multiple domain servers store the domain membership
information and a domain server is trusted to certify
membership of objects in the domains it maintains. The
domain servers may be managed by principals that
represent different interests and so are trusted to different
extents. The access control decision making, which is
based on the domain membership of the objects, cannot
rely on a single authority certifying this membership.

2.2 Access control policies

We consider a policy in its simplest form to be a
relationship between a subject and a target. An obligation
policy determines what operations the subject must (or
must not) invoke on the target object, but are beyond the
scope of this paper – see [5] for further details.

An authorisation or access control policy determines
what operations the subject is permitted (positive
authorisation) or forbidden (negative authorisation) to
perform on the target. We allow the use of negative
authorisation policies at the specification level as they are
found in enterprise policies e.g. students are not permitted
to reboot the workstations. The security architecture only
enforces positive policies with the assumptions that
actions not explicitly authorised are forbidden and that a set
of policies containing negative authorisation policies can
be refined into a set containing only positive ones.

A policy specifying abstract activities can be refined
into a hierarchy of more specific abstract policies and

eventually into enactable leaf-level policies that can be
enforced by the access control agents. An implementable
positive access control policy specifies the operations that
objects in the subject domain are permitted to perform on
objects in the target domain e.g. operations op1, op2 on
objects of type T1, and operations op1, op3 on object of
type T2. In addition, a policy may impose constraints such
as a validity time for the policy (e.g. 09–17.00) or required
encryption for the invocation and reply data [1].

By default, policies propagate to subdomains and hence
to indirect members of parent domains. In some cases it is
useful to be able to restrict the propagation to only direct
members or to certain combinations of subdomains. We
use domain scope expressions to specify groups of objects
in terms of set operations on domains and objects e.g.
*DomA ̂ *DomB specifies the objects that are direct or
indirect members of both DomA and DomB.

The notion of the access control policy has been
extended to deal with the delegation of access rights
whereby an object authorises a possibly remote agent to
act on its behalf to access a service. Objects are not all
equally trusted so it is necessary to control what access
rights can be delegated to which objects and the possession
of a right does not imply the right to delegate it. For these
reasons, there is a need for a policy scheme that enables
the determination of: i) The Grantor, i.e. who can delegate,
ii) The Grantee, i.e. to whom rights can be delegated, iii)
The Delegatable rights, i.e. what rights the grantor is
permitted to delegate to the grantee.

An Extended Access Control Policy, (Fig. 2.1) is used
to control delegation of access rights. It determines that
objects in the Subject scope can delegate to objects in the
Grantee scope the right to perform operations, specified in
the Operations field, on objects in the Target scope.

Cascaded delegation is allowed provided that all grantees
are in the Grantee scope of the policy. Our scheme does
not impose constraints on the order of the delegation steps
(c.f. [6]).

Subject Scope Target Scope

Operations
T1: op1, op2,...

Constraints

Invoke T2:op1

Grantee
Scope

Delegate Delegate

Figure 2.1: Graphical representation of an
Extended Access Control Policy

2.4 Roles

We use the concept of a Role associated with a position
so that policies can be specified with respect to
organisational positions and describe the duties and access

3

rights of the individuals assigned to the positions. This
means that the policies do not have to be respecified when
individuals are assigned to new positions.

A role is composed of a Role Position Domain (RPD)
and a set of access control and obligation policies which
have the RPD as a subject. An RPD represents a position
or status within the organisation, for instance security
administrator, secretary, doctor [7]. The organisational
structure, however, cannot be fully represented by roles
since individuals interact and co-operate with each other.
The responsibility of the individuals assigned to roles
includes the relationships to other roles e.g. supervision of
work. These relationships include the policies between
related roles (e.g. Ward10_doctor is permitted to assign
tasks to Ward10_nurse) and when and how they can access
shared resources such as patient files. Relationships also
include the interaction protocols defining the exchange of
information and the concurrency constraints on the
activities of the related roles. Thus, our framework
identifies for a role position: i) the access control and
obligation policies related to target objects, ii) the
interactions between roles which reflect organisational role
relationships, and iii) both intra- and inter-role concurrency
constraints. The complete role model is defined in more
detail in [4].

This paper only deals with simplified security roles
composed of a RPD and a set of positive access control
policies. A generic role can be specified as a role class in
terms of policies which define a set of permitted activities
e.g. for a nurse. These could be further specialised e.g. for
a surgical nurse [8]. Multiple instances of surgical nurses
could be created each with their own position and target
domains. The nurse assigned to Ward10 would be
responsible for a different set of target patients from the
nurse assigned to Ward9. The access control policies
associated with a role i.e. which have the RPD as subject
domain define the access privileges of the individuals
assigned to that role. Individuals can be assigned to or
removed from a role without changing the policies and
relationships specified for the role.

Subject
Role Position

Domain (RPD)
Person
Assigned
to Role

Role
Authorisation

Policies
Targets

ROLE

User Representation
Domain (URD)

A user is permanently represented within the system by
a User Representation Domain (URD). The user is
assigned to a position and thus to the corresponding role
by including her URD in the RPD (see Fig. 2.2). Thus,
policies associated with the role will propagate and apply
to the URD representing the user. Note that there may be
propagated policies applying to a position domain (and to
the URDs included in that domain) which are not a
component of the role associated with that position. For
example the College policy for the use of computers
propagates to all the research students but is not a specific
part of the authorisations of their research role. Similarly,
a Professor having her URD included in other
organisational domains (research groups, experts on a
particular subject) will be subject to other policies than
those specified within the role(s) she is assigned to.
Multiple URDs may be included in a RPD to represent the
sharing of a position by a number of people and a URD
can be included in several RPDs if the person performs
multiple roles [2, 4].

2.5 Simultaneous role sessions

When a user logs into a system, a process acting as an
adapter object between the user and the system e.g. login
shell is created within the URD. Note that according to
Fig. 2.2 this object inherits the access rights associated
with all the roles in which the URD is included. This
implies that an action could be performed in a role with
access rights inherited from another role. This is not
desirable and contradicts the concept of a role as a
consistent set of access rights needed to perform the role’s
tasks. The activities related to different roles should be
presented separately to the user e.g. each role has its own
window and the security system must be able to
distinguish in which role the user is acting so as to only
use the access rights relating to that role.

This can be achieved by keeping the URD out of the
RPD and instead specifying a policy permitting the URD
to create an agent within an RPD to which it has been
assigned. This policy has the RPD as target and is not part
of the role’s policies. The adapter object in the URD is
similar to an X server maintaining windows for each of the
roles in which the user chooses to work. The connection
shown between the adapter and agents in Fig. 2.3 does not
imply remote communication – the objects could be
implemented as threads within a single process but
conceptually are members of different domains and so
execute with the rights specific to the RPD. The menu
within a window can be specific to a role and only display
those operations permitted by the policies for that role.
The role policies will also specify what target domains can
be accessed from the role.

Figure 2.2: A human manager assigned to a
role

4

Agent

Agent

Adapter
 Object

Authorisation
 Policies

Connection

Connection

Person assigned
 to roles A and B

User Representation
 Domain (URD)

Role A Position
Domain

Role B Position
Domain

The role framework relies on the policy service and the
domain structure. Roles are only visible at the specifica-
tion level and are implemented as domains and policies for
access control purposes. The security architecture does not
have to know about roles and only sees domains and
policies.

3 Overview of the security architecture

We take an approach to building the system in which
distributed security is provided at the levels of the host
manager and the application server. A Host Manager
provides an Authentication Agent (AA) and an Access
Control Agent (ACA) that are trusted to act on behalf of
all application objects on its host and is accessed via a
simple application programming interface (API). By
transferring part of the security functionality into the host
manager we minimise the size of the security components
that must be replicated among the application servers and
the number of principals (objects in this context) that have
to be registered with the authentication service.

Security
 Agents

Subject Target Secure
Channel

Domain
Service

 Policy
Service

Authentication
 Service

Subject
 Host

Target
 Host

Application Server
Address Space

Reference Monitor
and Cryptographic
Facilities (linked as a
library)

Security
 Agents

Figure 3.1: Security Architecture Overview

The security agents are responsible for authenticating
remote objects, determining access control policies apply-
ing to subject-target pairs and establishing session keys to

be used by subject-target pairs. The operation of these
agents is supported by the Policy, the Domain and the
Authentication Services (see Fig. 3.1).

3.1 Policy Service

Policy Objects are maintained within the servers of the
policy service and are registered within domains. An
administrator who has the necessary access privileges to
the domain can create, edit, activate, disable and delete
policies using a Policy Editor [5]. When an (extended)
access control policy is activated, it is distributed to the
ACAs of the hosts maintaining objects to which the
policy applies (see Fig. 3.2). The domain service is queried
to determine which objects are in the subject, target and
grantee scope of the policy. The scopes of an activated
policy are re-evaluated every time the domain structure
changes or the membership of a non-domain object
changes. In addition, when a policy is disabled, special
revocation tokens are propagated down the domain
hierarchy and are eventually given to the ACAs of the
objects in the scopes of the disabled policy. The effect is
that the ACAs are continuously aware of the policies
applying to the objects being maintained on their hosts.
For a more detailed description of the policy propagation
mechanism see also [9].

Object in
Subject Scope

Access Control
Agent

Operations

Policy

Subject Target

Activate
 Policy

Object in
Target Scope

Access Control
Agent

3.2. Authentication Service

The Authentication Service (AS) is used to authenticate
users and remote authentication agents and verify the
authenticity of delegation tokens and domain membership
statements which form the basis for access control
decisions. User authentication can be achieved either by
passwords or smart cards that are capable of storing a key
and performing cryptographic operations. When the
identity of the user has been verified, the system makes the
adapter object on the login workstation a member of the
URD of the user.

The AS is transparent to the application objects as only
the authentication agents (AAs) interact with it. AAs are
the only objects registered with the AS. This significantly
reduces the size and update rate of the AS security database.
Note that a high update rate of the security database

Figure: 2.3 Multiple role sessions

Figure 3.2: Policy Distribution to Subject and
Target Access Control Agents

5

seriously affects the performance of the system as it
involves expensive cryptographic operations (c.f [10]). It
is the responsibility of the user (or the object acting on her
behalf) to create an application object on a node whose
AA, ACA and system software/hardware can be
sufficiently trusted. An AA believes that the AA and ACA
on a remote host are sufficiently trustworthy to act on
behalf of the application objects on that node. The secrecy
and integrity of communication between servers on the
same node (for example between application and host
manager server) is provided by the underlying system
software and hardware which must be trusted anyway.

An intra-realm authentication service that is based on
symmetric cryptography and employs replicated authentica-
tion servers with minimal state is being developed. It uses
Private-key Certificates [11] to disperse the security
database so that the on-line authentication servers need to
maintain no state apart from their master key, thus
simplifying server replication as there is no state
consistency problem. Further, it permits very simple,
replicated tamper-proof machines to be used as authentica-
tion servers and as translators (relays) [6]. The relay
function of the AS is of great importance in the security
architecture as it allows domain membership verification
without establishing shared secret keys between the verifier
and the domain servers. Specifically, membership
statements encrypted with the secret keys of the AAs of
the domain servers, certifying the claimed membership,
can be re-encrypted by the AS with the secret key of the
verifier. In addition, the push method [6] can be employed
whereby the claimant can collect the necessary certificates
which can later be re-encrypted by the AS with the secret
key of the verifier. A similar mechanism is used to verify
the delegation tokens that are encrypted under the secret
key of the grantor AAs.

Each AA shares a secret key with the AS and so
authentication between AAs can be achieved by using a
protocol described in [12] which is similar to that
employed by the Kerberos system [13]. The main
difference is that the authentication server in our system is
provided with the private-key certificates that contain the
secret keys of the AAs involved in the protocol.

The authentication service could be based on
asymmetric cryptography which eliminates the need for
network interaction with on-line authentication servers.
However, it dramatically increases the encryption/
decryption time (symmetric encryption is considered to be
1000-5000 times faster than asymmetric cryptography [6]).
As our system supports multiple domain membership
authentication as well as delegation, a relatively large
number of membership certificates and delegation tokens
are generated and verified for each secure channel (see
Section 3.3). Thus, use of an asymmetric cryptosystem
would significantly increase the processing required for
secure channel establishment.

3.3 Security Agents and secure channels

We use a secure channel between a subject and a target
to represent authentication, cryptographic, access control
and domain membership information. Each channel has a
unique identifier (CHID) which can be used as a reference
to the information related to the channel. The subject
initiating an invocation on a target requests the
establishment of a secure channel which involves both the
AA and ACA. The subject and target can then exchange
messages which are encrypted and decrypted by the
Cryptographic facilities (CFs) in their address space. The
access control decision for each invocation is made by the
Reference Monitor (RM) in the address space of the target,
based on channel related access control information
provided by the target ACA. The cryptographic and RM
facilities are linked as a library into each application
server.

The type and degree of the communication security
required e.g. integrity or secrecy is application dependent.
Use of encryption may be precluded for performance
reasons or by legislation, so the subject requesting a
channel can specify the level of security that the channel
should support.

Reference
Monitor

Cryptographic
 Facilities

 Incoming
Invocation

Outgoing
Invocation

 Reply

Authentication
 AgentAccess

Control
 Agent

CHID,
Policies

CHID,
Cryptosystem

Host Manager
 Server

Subject/
Target

Establish
Channel with
Target Agents

Application
 Server

 Reply

Establish
Channel with

SubjectAgents

AAs establish channel keys on behalf of the application
objects and can easily verify whether a remote
authenticated AA is trusted to act on behalf of an object
whose OID and location are known. A remote AA is
always trusted to act on behalf of all objects on its host,
so an AA simply checks whether the network address of
the authenticated remote agent matches the address of the
object with which a channel has to be established. If
mutual trust between the two agents has been established,
they proceed to choose a channel key and a CHID. These
are given to the cryptographic facilities of the two
application objects (see Fig. 3.3). The CHID generated by
the subject AA is based on its host name and a sequence

Figure 3.3: Application Server Facilities and
Secure Communication

6

number. AAs also perform verification of object
membership in domains using the Domain Service. A
description of the membership verification mechanism is
given in [12].

The ACAs hold copies of the access control policies
applying to the objects on their nodes. The target ACA
determines the policies that apply to an established channel
once the subject has been authenticated and its domain
membership verified by the target AA. These policies are
given to the RM in the address space of the target to make
the final access control decision for each invocation on the
established channel (see Fig. 3.3). The subject ACA
determines the set of policies relating to the channel i.e.
the Pseudo-Capability List which contains the OIDs of the
policies applying to the subject. These are provided as a
hint to reduce the number of policies applying to the target
that have to be checked by the target ACA. A detailed
description of the access control mechanism is given [9]
which also describes how the mechanism has been
extended to make access control decisions when delegation
is involved.

4 Conclusion

We have given an overview of an access control model
for distributed object systems and a security architecture
that is being developed in the CORBA distributed
programming environment. The access control model is
based on the notion of domains to specify access control
policies for groups of objects which may be subjects or
targets. Our domains are more flexible and powerful than
the group concept traditionally used in access control and
can be used to partition responsibility or reflect the
structure of large-scale enterprises. The power of the
domain concept is indicated in the fact that it can be used
to model positions and roles, such that the security service
only has to know about domains.

Our authorisation polices provide a very flexible means
of specifying access control permissions and include
constraints to limit their applicability. They can also be
extended to specify delegation policy. Policies explicitly
identify both subjects and targets, and domains maintain
information about the policies applying to them so it is
easy to analyse the policies to determine those applying to
a specific object.

Roles and inter-role relationships are used for the
representation of the organisational structure. The role
framework is combined with the ability to refine
organisational policies from an abstract level to enactable
rules for a full representation of the organisational
structure, organisational policies and the assignment of
responsibilities to managers.

The security system consists of four main building
blocks. The Policy Service which maintains and
distributes policy objects, the Domain Service which
maintains domain objects and certifies domain
membership, the Authentication Service and security
agents that are employed on a per host basis. The

Authentication Service is based on symmetric
cryptography to minimise the encryption overhead and it is
provided by on-line servers with minimal state to facilitate
replication. The distributed security provided by the system
is transparent to the application level and APIs are
provided to facilitate the development of security unaware
applications.

Acknowledgements

We gratefully acknowledge financial support from the
Swiss Bank Corporation (London), EPSRC Roleman
project (GR/K 37512) and BT MMN project.

References

[1] J. Moffett, M. Sloman, “User and Mechanism Views of
Distributed System Management”, IEE/IOP/BCS
Distributed Systems Engineering, vol. 1, no. 1, pp. 37-
47, Aug. 1993.

[2] M. S. Sloman, “Policy Driven Management for
Distributed Systems,” Journal of Network and Systems
Management, vol. 2, no. 4, pp. 333-360, Dec. 1994.

[3] E. Lupu, D. Marriott, M. Sloman, and N. Yialelis, “A
Policy Based Role Framework for Access Control,” First
ACM/NIST Role Based Access Control Workshop,
Gaithersburg, USA, Dec. 1995.

[4] E. Lupu and M. Sloman, “Towards a Role Based
Framework for Distributed Systems Management,” To
appear in: Plenum Press Journal of Network and Systems
Management, vol. 5, no. 1, 1997.

[5] D. Marriott and M. Sloman, “Management Policy Service
for Distributed Systems,” IEEE Third Int. Workshop on
Services in Distributed and Networked Environments
(SDNE’96), June 1996, Macau, pp. 2-9

[6] B. Lampson, M. Abadi, M. Burrows, and E. Wobber,
“Authentication in Distributed Systems: Theory and
Practice,” ACM Trans. on Computer Systems, vol. 10,
no. 4, pp. 265-310, Nov. 1992.

[7] B. J. Biddle and E. J. Thomas, “Role Theory: Concepts
and Research,” New York: Robert E. Krieger Publishing
Company, 1979.

[8] R. Sandhu, E. Coyne, H. Feinstein, C. Youman “Role
Based Access Control Models”, IEEE Computer vol. 29,
no. 2, pp. 38-47, Feb. 1996.

[9] N. Yialelis and M. Sloman, “A Security Framework
Supporting Domain-Based Access Control in Distributed
Systems,” IEEE ISOC Symposium on Network and
Distributed Systems Security’96, San Diego, pp. 26-34,
Feb. 1996.

[10] R. Deng, S. Bhonsle, W. Wang and A. Lazar, “Integrating
Security in CORBA Based Object Architecture”, IEEE
Symposium on Security and Privacy, pp. 50-61, 1995.

[11] D. Davis and R. Swick, “Network Security via Private-
Key Certificates,” ACM SIGOPS Operating Systems
Review, vol. 24, no. 4, pp. 64-67, Oct. 1990.

[12] N. Yialelis and M. Sloman, “An Authentication Service
Supporting Domain Based Access Control Policies,”
Imperial College, Research Report DoC 95/13, Sep.
1995.

[13] C. Neuman and T. Ts’o, “Kerberos: An Authentication
Service for Computer Networks,” IEEE Communications
Magazine, vol. 32, no. 9, pp. 33-38, Sept. 1994.

