Will Pervasive Computing be Manageable?

An Architectural View

Gaetano Borriello

University of Washington/CS&E

gaetano@cs.washington.edu www.cs.washington.edu/homes/gaetano

17 May 2001

IM 2001 - Seattle, WA

What is Pervasive Computing?

- Technology view
 - Mobile portable devices
 - "Scrap" devices
 - Embedded sensors
 - Voice/vision/motion interfaces
- User view
 - Distraction-free, "invisible"
 - Minimal configuration
 - Augmenting human abilities in context of tasks

The Vision

- Make computers usable by those who don't really care to (or can't ever) become system administrators
 - enabled by ubiquitousity of smart devices, sensors, services, and infrastructure
- Implies a shift in focus
 - away from devices and technology
 - towards users and their goals

17 May 2001

IM 2001 - Seattle, WA

The Reality

- Hardware is almost there
 - handhelds, tablets, cars, fridges, dogs, . . .
 - wireless networking
 - location sensing
- Applications are slow in coming
 - too hard to design, build, debug, and deploy a giant, ad-hoc distributed system
 - new abstractions are needed

The Challenge

- Average programmer needs to develop applications that
 - adapt to a constantly changing environment
 - continue to work even if
 - devices are roaming
 - users switch devices
 - · network provides only limited services
 - · connectivity is intermittent

17 May 2001

This Is A Systems Problem!

- Existing approaches to building distributed systems are not suitable
 - designed for smaller, closed, and less dynamic environments
- Need dedicated systems support to make programmers' task feasible
 - "checkpoint" and "restore"
 - "move to remote node"
 - "find matching resource"

In a nutshell

Events

- Devices inject events into the network
 - they find their own way active
 - discovery services
 - aggregation and correlation
- Database/tuplespace
 - common query language
 - publish/subscribe
 - passive data provides increased security
- Abstraction services
 - extraction of higher-order events
 - monitoring
 - redundancy

Separate Data and Functionality

- Tuplespace represents data
 - self-describing records
 - define common data model, type system
 - composability through queries
- Components implement functionality
 - export and import event handlers
 - rely on a common core API
 - bound to tuplespaces
- But data and functionality do depend on each other

17 May 2001

IM 2001 - Seattle, WA

Environments

- Containers for
 - tuples
 - components
 - other environments
- Represent a combination of
 - access privileges
 - file system directories
 - nested processes
- Fundamental unit of migration/replication

Expose Change

- Applications need to acquire all resources and be able to reacquire them at any time
 - explicitly bind resources
 - use leases to provide timeouts when accessing unavailable resources
- Programming for change shifts burden to application developer

- provide checkpoint/restore/migration primitives

17 May 200	1
------------	---

IM 2001 - Seattle, WA

Migration

- Moves/copies an application and its data
- Affects an entire environment tree
 - tuples
 - components
 - environments
 - but nothing outside the tree
- Make migration in the wide area feasible
 - environments negotiate to move keep promises
 - moves entire operating environment
 - including security

Summary

- Challenge
 - build applications that gracefully adapt to constant change
- Solution
 - provide dedicated systems support
 - · separate data and functionality
 - expose change to applications
 - · include primitives to cope with change
- Web sites
 - portolano.cs.washington.edu
 - one.cs.washington.edu
 - labscape.cs.washington.edu

17 May 2001

Questions to panel

- Will communication facilities be able to cope with the required bandwidth and give guaranteed quality of service for future mobile, multi-media traffic?
- Can we develop intelligent context-aware systems which can determine our activity and react appropriately eg to distinguish a heart problem from exertion due to running for a bus.
- How do mobile computers locate the required services from the local environment to form ad-hoc collaborative groups?
- How can we develop self-organising hardware and software architectures for pervasive computing?
- Is there a distinction between management and normal functionality for adaptive and selforganising systems?
- Will interaction techniques based on biological organisms be an appropriate solution for coherent behaviour from vast numbers of unreliable sensors, actuators and communication devices?
- · How will personal-privacy be affected by constant monitoring and location tracking?
- Will current security and management mechanisms scale to cater for millions of mobile computers interacting with a pervasive computing environment.