
Grand Challenge:
Scalable Stateful Stream Processing for Smart Grids

Raul Castro Fernandez,
Matthias Weidlich, Peter Pietzuch

Imperial College London
{rc3011, m.weidlich, prp}@imperial.ac.uk

Avigdor Gal
Technion - Israel Institute of Technology

avigal@ie.technion.ac.il

ABSTRACT
We describe a solution to the ACM DEBS Grand Challenge 2014,
which evaluates event-based systems for smart grid analytics. Our
solution follows the paradigm of stateful data stream processing and
is implemented on top of the SEEP stream processing platform. It
achieves high scalability by massive data-parallel processing and the
option of performing semantic load-shedding. In addition, our solu-
tion is fault-tolerant—the large processing state of stream operators
is not lost after failure.

Our experimental results show that our solution processes 1 month
worth of data for 40 houses in 4 hours. When we scale out the system,
the time reduces linearly to 30 minutes before the system bottle-
necks at the data source. We then apply semantic load-shedding,
maintaining a low median prediction error and reducing the time fur-
ther to 17 minutes. The system achieves these results with median
latencies below 30 ms and a 90th percentile below 50 ms.

1. INTRODUCTION
The goal of the ACM DEBS Grand Challenge is to conduct a

comparative evaluation of event-based systems by offering real-life
event data and requirements for event queries. The 2014 edition of
the challenge [15] focuses on smart grid analytics. The challenge is
based on measurements of energy consumption, expressed as “in-
stantaneous load” and “cumulative work”, at the level of individual
electricity plugs. These measurements are synthesised from real-
world profiles derived from a set of smart home installations. The
event queries focus on two types of analytics: (i) short-term load
forecasting and (ii) load statistics for real-time demand management.

We observe three main characteristics of the 2014 challenge:
High data volume. The data includes load and work events of
individual plugs at a rate of approximately one measurement per
second. For the considered 40 houses with roughly 2000 plugs, this
yields a volume of more than 4 billion events for one month. Given
future predicted growth, applications of smart grid analytics can
be expected to process data of hundreds to thousands of houses,
increasing the volume by one or two orders of magnitude.
Unbounded and global state. The event queries require sophis-
ticated handling of processing state. Short-term load forecasting
relies on historical data, which requires aggregates to be maintained
for an unbounded time window. This is challenging due to the ever-
growing state to be stored. The performance of computation on this
state is likely to degrade over time. Moreover, load statistics for
real-time demand management require a global aggregation over all
houses and plugs, which limits the options to distribute processing.
Unbounded and global state also affect fault-tolerance mechanisms
because it becomes expensive or even impossible to recreate all state
by reprocessing events.

 0

 20000

 40000

 60000

 80000

 100000

 0 5 10 15 20 25 30#
 E

v
e

n
ts

 (
lo

a
d

 m
e

a
s
u

re
m

e
n

ts
)

Days (5 min windows)

Figure 1: Load measurements (five min window) indicating change
of more than five watts.

Large measurement variability. For the load and work values in
the dataset, we observe a large variability in the frequency with
which the values change over time. Some plugs report close to con-
stant load for long periods of time, and significant changes in load
are correlated between plugs, following global energy consumption
patterns. This effect is shown in Figure 1, which depicts the num-
ber of load measurements per five-minute window when ignoring
changes of less than five watts. Considering only the events that
indicate larger changes in load, the amount of events that need to be
processed varies by up to a factor of seven over time.

Given these characteristics, we present a solution to the challenge
that is based on the SEEP stream processing platform [7]. SEEP
executes event processing queries as stateful distributed dataflow
graphs. It supports the definition of stream processing operators as
user-defined functions (UDFs). The main features of our solution
using SEEP are as follows:
1. Data-parallel processing. To handle the high volume of events,

our solution scales the processing of events in a data-parallel
fashion on a cluster of nodes.

2. Optimised stateful operators. Given the complex state of the
event queries, our solution exploits stream operators with ef-
ficient state handling specific to a given query, e.g. through
indexed in-memory data structures.

3. Filtering and elasticity. We exploit the long periods of rela-
tively constant load measurements in the dataset by performing
semantic load-shedding, thus reducing the total events to process
downstream. To support resource-efficient deployments when
the input event rate varies over time, our solution can dynami-
cally provision processing resources on-demand.

4. Fault tolerance. Our solution supports fault-tolerant processing,
which is crucial for any continuously running data analytics
application on a cluster of nodes. Instead of reprocessing all
events after failure, operator state is recovered from periodic
state checkpoints with low overhead.

Our experimental evaluation shows that our implementation pro-
cesses the challenge dataset with a throughput of 300,000 events per
second for the load forecasting and 100,000 events per second for
the outlier detection, with median latencies of 17 ms and 136 ms,
respectively. The resulting speed-up over real-time processing is 3×
(load forecasting) and 2× (outlier detection).

Our solution also scales linearly in the number of cluster nodes
used for computation. With 6 (load forecasting) and 7 (outlier de-
tection) nodes, the speed-up over real-time increases up to 13× and
9×, respectively. Moreover, we show that semantic load-shedding
leads to a modest median error in the query results, but increases the
speed-up by two orders of magnitude. With this set-up, our solution
processes one month worth of data for 40 houses in 17 mins.

The remainder of the paper is structured as follows. In Section 2,
we give an overview of the SEEP stream processing platform used by
our solution. Section 3 gives details on the implemented operators.
Section 4 presents our evaluation results. We discuss related work
in Section 5, before concluding in Section 6.

2. THE SEEP PLATFORM
Our solution follows the paradigm of stateful stream processing

because it provides a natural way to implement the proposed queries:
it permits the definition of custom state and its manipulation by
UDFs. Event processing systems such as Esper [1] and SASE [3]
provide high-level query languages and lack the possibility to fine
tune the data structures used to maintain the query state. In contrast,
stateful stream processing achieves efficient state handling for each
specific scenario.

Recently, a new generation of data-parallel stream processing
systems based on dataflow graphs have been proposed, including
Twitter Storm [9] and Apache S4 [11]. Although these systems
allow for massive parallelisation of stream processing operators,
they assume that dataflow graphs are static and operators are state-
less: they cannot react to varying input rates or efficiently recovery
operator state after failure.

In contrast, the SEEP platform [7] implements a stateful stream
processing model and can (i) dynamically partition operator state
to scale out a query in order to increase processing throughput;
and (ii) recover operator state after a failure, while maintaining
deterministic execution. As a result, SEEP achieves the following
three features:

(1) SEEP is highly scalable in order to handle high volume data.
For the given challenge, this is an important feature because a
realistic set-up for smart grid analytics would require the processing
of events emitted by more than 40 houses.

Prior work [7] has shown that SEEP scales to close to a hun-
dred virtual machines (VMs) in the Amazon EC2 public cloud. It
achieves this through data parallelism—stateless and stateful opera-
tors are scaled out, i.e. multiple instances of operators are deployed
in the cluster. Each instance operates on a subset of the event data.
Events are dispatched to instances based on query semantics, e.g. in
the challenge dataset the event streams may be hash-partitioned by
houses. In addition, SEEP exploits pipeline parallelism—chains of
operators are deployed on different nodes to reduce latency.

(2) SEEP is fault tolerant, which is critical when operator state
depends on a large number of past events. The load forecasting
in the challenge relies on a model learned from historic data, and
outlier detection employs windows with up to 100,000,000 events.
Even under the assumption of a reliable event source with access
to the full event stream, losing operator state would require the
reprocessing all events. Instead, SEEP creates periodic checkpoints
of operator state, which are backed up to remote nodes and used to
quickly recover state after failure.

Filter

Q1

Q2
Plug

Q2
Global

Source Sink
<input>

<input>
<heartbeat>

<plug prediction>
<house prediction>

<plug update><input> <house outliers>

Figure 2: The dataflow graph of our solution.

(3) SEEP is elastic—it dynamically scales out stateful operators at
runtime by partitioning their state. This functionality is particularly
useful for event queries with high variability in the input rate. When
pre-filtering events in the challenge to ignore minor changes in load,
the input rate varies. SEEP can adapt to such workload changes,
using cluster resource more efficiently.

3. QUERY IMPLEMENTATION
This section describes how we implemented the event queries

from the challenge on the SEEP platform. We first give an overview
of the main ideas behind the queries (Section 3.1), before we give
details of the operator implementations (Sections 3.2–3.4).

3.1 Overview
The structure of the logical dataflow graph of the queries is shown

in Figure 2. An operator filter performs semantic load-shedding
across all load and work measurements (denoted by <input>). This
permits, for example, filtering of events that indicate only a minor
change in load for a certain plug. The filter operator can be scaled
out so that different instances realise data parallelism by partitioning
the event stream <input> per house, household or even plug.

The actual queries are implemented by three operators, namely
Q1, Q2 Plug, and Q2 Global. Load forecasting and outlier detection
are independent queries—their parallelisation is done separately.
Load forecasting is realised by operator Q1, and it is done at two
levels of aggregation, i.e., plugs and houses. Hence, the operator
can be scaled out by partitioning the respective event stream for
the most coarse-grained aggregation, i.e., per house. Data-parallel
processing is of particular importance for this operator because the
query requires the maintenance of an unbounded time window.

At the same time, the query also requires frequent updates of the
result stream, i.e. every 30 seconds as specified by the timestamps
of the events. When events are streamed faster than real-time and
distributed over a large number of operator instances, however, it
becomes impossible to identify the intervals for updating the result
stream at a particular instance. To solve this issue, we implement a
heartbeat mechanism in the filter operator, which emits a signal to
operator Q1 whenever an update is due.

Heartbeat generation is implemented in operator filter because the
pre-processing of data is less costly than the actual load prediction.
Hence, the number of instances of operator filter can be expected to
be much smaller than the number of instances of operator Q1. To
cope with data quality issues such as missing values, e.g. as seen
around days 20 and 28 in Figure 1, operator Q1 also features a cor-
rection mechanism that is based on the measurements of cumulative
work per plug, which will be detailed below.
Outlier detection is split up into two operators. Here, the idea is to
separate the part of the query that can be parallelised from the part
that requires a global state. Operator Q2 Plug thus takes the input
stream and maintains the median of the load per plug for each of the
time windows. The operator can be scaled out at the level of plugs.

Operator Q2 Global, in turn, maintains the global median over all
plugs. It also realises the outlier detection and emits the results. Due
to its global state, this operator cannot be scaled out. To reduce the
amount of computation done at the singleton instance of operator
Q2 Global, it relies not only on the median values computed by
Q2 Plug, but also on the information about which measurements
entered or left one of the investigated time windows (denoted by
<plug update> in Figure 2). As a consequence, a large part of
the effort to maintain the time windows per plug is performed at
operator Q2 Plug, which can be scaled out.

3.2 Filter
The filter operator realises the following functionality:

Duplicate elimination. To filter duplicate measurements, the opera-
tor maintains the timestamps of the last load and work measurements
for each plug. Only measurements with a timestamp larger than the
last observed (per plug) are forwarded.
Variability-based filtering. To leverage the large variability in the
frequency with which load values change over time for optimisation,
the filter operator can perform semantic load-shedding, ignoring
measurements that denote a minor change in load with respect to
the last non-filtered measurement. In such a case, measurements
of work are only forwarded if the load measurement with the same
timestamp has not been removed by the filter procedure. In Section 4,
we evaluate the trade-off between this type of filtering and the
correctness of the query results with an experimental setup.
Heartbeat generation. The aforementioned heartbeats are gener-
ated based on the timestamps of the processed events. Whenever an
event with a timestamp larger than the time of the last heartbeat plus
the heartbeat interval is received, a new heartbeat is emitted.

3.3 Query 1: Load Forecasting
Operator Q1 for load forecasting is implemented as follows:

Prediction model. As a baseline, we rely on the prediction model
defined in the challenge description, which combines current load
measurements with a model over historical data. More specifically,
the load prediction for the time window following the next one is
based on the average load of the current window and the median of
the average loads of windows covering the same time of all past days.
The generation of prediction values is triggered by the heartbeats,
which are generated by the filter operator.
Work-based correction. To address the issues stemming from
missing load measurements, our operator exploits measurements of
cumulative work per plug. Correction is triggered when the operator
receives a work measurement, and the number of recorded load
measurements for the preceding window is less than a threshold.

Since work is measured at a coarse resolution (1 kWh), the work
values enable us to derive only an approximation of the actual aver-
age load. Therefore, the threshold on the number of load measure-
ments allows for tuning how many load values are at least required
to avoid the computation of the window average based on work
values. A specific value for the threshold is chosen based on the
expected rate for load measurements.

If applied, the correction mechanism determines the maximal
interval of adjacent windows with insufficient load measurements.
The difference between the first and last work measurement for this
period is used to conclude on the average load for all the windows.
State handling. Load forecasting relies on the average load per
window per plug over the complete history. To cope with the un-
bounded state of the query, our implementation strives for reducing
the size of the state as much as possible.

First, we observe that although results have to be provided for five
different window sizes, all of them can be expressed as multiples of
the smallest window of one minute. Therefore, our implementation
only stores the state for the smallest windows.

Second, since prediction is based on the load average, our operator
keeps only a sliding average for the current smallest window and
the average load for all historic windows. Load averages are kept
in a two-dimensional array (per plug, per window), and an index
structure allows for quick access of a global identifier for a plug.
The index is implemented as a three-dimensional array over the
house, household, and plug identifiers.

For the work-based correction mechanism, additional state needs
to be maintained. For each plug and window, the number of load
measurements and the first recorded work value is maintained in
further two-dimensional arrays.

3.4 Query 2: Outliers
Outlier detection is realised by operators Q2 Plug and Q2 Global.

The former focuses on the calculation of windows and the median
load per plug. Its results are then used by operator Q2 Global to
conduct the actual outlier detection.
Plug windows and median. To maintain the time windows and
calculate the median load per plug, operator Q2 Plug proceeds
as follows. Upon the arrival of load measurement, the value and
timestamp is added to either window for the respective plug. The
timestamp of the received event is used to remove old events from
both windows. Then, the median of the load values for the plug is
calculated. If both, the median and the multiset of values of both
windows, did not change, no event is forwarded to operator Q2
Global. If there has been a change, the new median for the plug as
well as the load values added or removed to either window are sent
to Q2 Global (<plug update>).
Outlier detection. To detect outliers, operator Q2 Global compares
the median values per plug as computed by operator Q2 Plug with
the global median. To compute the latter, the operator maintains
two time windows over all plugs. However, these windows are
updated only based on the values provided by the events of the
<plug update> stream generated by operator Q2 Plug.

Receiving an event of the <plug update> stream leads to re-
calculation of the global median for the respective window. If that
has not changed, only the house related to the plug for which the
update has been received is considered in the outlier detection. If
the global median changed, the plugs of all houses are checked. If
the percentage of plugs with a median load higher than the global
median changes, the result stream is updated.
State handling. To implement the time windows, for each plug, op-
erator Q2 Plug maintains two double-ended queues, one containing
the timestamps and one containing the load values. Implemented
as linked lists, these queues allow to insert new measurements in
constant time. Accessing and removing events from the other end
of the queue is done in constant time. The queue containing the
timestamps is used to determine whether elements of the queue
containing the load values should be removed.

To compute the median over the load values, operator Q2 Plug
maintains an indexable skip-list [12] of these values per plug. Such
a skip-list holds an ordered sequence of elements and maintains an
additional index structure, a linked hierarchy of sub-sequences that
skip certain elements of the original list. We use the probabilistic
and indexable version of this data structure—the skip paths are
randomly chosen and, for each skip path, we also store the length in
terms of the number of skipped elements.

The indexable skip-list allows for inserting, deleting and search-

ing load values as well as accessing the load value at a particular
list index in logarithmic time. Calculation of the median is traced
back to a list lookup. Since the query requires the lookup only for
the median element, and not for an arbitrary index, we also keep a
pointer to the current median element of the list, which is updated
with every insertion or deletion. Hence, the median is derived in
constant time.

Although bounded, handling the state of operator Q2 Global is
challenging due to the sheer number of measurements that need to
be kept (up to 100,000,000 events) and the update frequency. For
both windows, our implementation relies on an indexable skip-list
and uses a pointer to the median elements of these lists.

4. EVALUATION
Our evaluation assess the performance of our system along three

dimensions by investigating:
• whether it scales. Does the system support more houses?
• whether it can cope with the current load with headroom. Can

the system process faster than real time?
• how fast we can incorporate predictions. Does the system

achieve low latency, even when it is distributed?
We deploy our solution in a private cluster composed by 10

Intel(R) Xeon(R) CPU E3-1220 V2 @ 3.10GHz nodes with 8 GB
of RAM, running SEEP on a Linux kernel 3.2.0 with Java 7. We
run SEEP with the fault tolerant mechanism enabled.
Scalability. To measure scalability we report relative throughput,
where we normalize the throughput of the system for the baseline
case, and show how it increases as we add cluster nodes. Also, we
explain the bottlenecks observed when conducting the experiments.
Throughput. After analysing the available datasets, we found that
we need a system capable of processing 377 events/s, 696 events/s
and 1565 events/s on average for the 10, 20 and 40 houses dataset
to process the incoming input rate over a month. SEEP processes
three orders of magnitude faster than this. For this reason, we report
speedup over RT (real time) as the number of times the system
process faster than required to run the queries. As an example,
consider a speedup over RT of 2×, which would allow for processing
one month worth of data in 15 days.
Latency. We measure the end to end latency of those events that
close windows in both queries. To measure latency accurately we
place both source and sink of our system on the same cluster node,
so that both operators have access to a common clock.

For the given event queries, the processing cost per event is close
to constant regardless the dataset size. Dataset sizes, however, have
an impact on the total memory required to run the queries. We
exploit the stateful capabilities of our system to provide an effi-
cient implementation which expresses the state efficiently, avoiding
any kind of performance hit. Note that under this scenario, larger
datasets do not impact the throughput of our system, but only the
speedup, as there are more events to process.

4.1 Query 1: Load Forecasting
Our implementation of query 1 consists of two operators, a filter

and Q1 (see Figure 2). For the baseline system, each of the operators
is deployed on a single node of the cluster. For our distributed
deployment we scale out from 2 to 6 nodes.
Baseline system. Figure 3 shows the 10th, 50th, and 90th percentile
of throughput as requested in the challenge description. As expected,
this is constant across the different workload sizes but the speedup
over RT decreases as there are simply more events to process. With
a speedup over RT of around 9×, the system can process one month

0

100

200

300

400

500

10 20 40
 0

 200

 400

 600

 800

 1000

 1200

 1400

T
h

ro
u

g
h

p
u

t
(1

K
 e

/s
)

%
 S

p
e

e
d

u
p

 o
v
e

r
R

T

Workload (houses)

Th. 10th
Th. 50th
Th. 90th
% Speedup over RT

Figure 3: Throughput and speedup as a function of the number of
houses. With a constant throughput, growing the size of the dataset
implies less speedup.

Q1 Dist. Q1 Q2 Dist. Q2

10th 4 3 118 40
50th 17 12 136 150
90th 31 21 160 186

Table 1: Latencies in ms for both queries with baseline and dis-
tributed deployment.

worth of data from 10 houses in about one hour, while it will take
around four hours to do the same for 40 houses.
Distributed system. Ideally, we want the system to scale to support
the data coming from more houses, which in our system is equivalent
to keep the speedup over RT constant. We exploit data parallelism to
aggregate throughput, thus, keeping constant or even increasing the
speedup over RT. Figure 4 shows in the x axis the number of cluster
nodes used during the experiment. The relative throughput increases
linearly from 2 to 3 nodes, then sub-linearly until 5, and then we find
a spike when using 6 nodes. The reason for the sub-linear behaviour
is due to the sink operator, which has to aggregate the results coming
from distributed nodes, becoming an IO bottleneck. To confirm this
was the case, we scaled out the sink and run the system with 6 nodes,
which shows how the throughput increases again. The speedup over
RT across this experiment is always increasing, which confirms that
our system can scale to bigger datasets while keeping the throughput.
We stopped at 6 nodes as the source became a bottleneck at this
point. This would not be an issue in a real scenario with distributed
sources, but we did not want to break the order semantics provided
in the dataset.

Table 1 shows the latencies we measured for both the baseline
system and the distributed one. The major sources of latency spikes
in SEEP are caused by the buffering mechanism used for fault
tolerance, and the intricacies of this with the garbage collector under
high memory utilisation scenarios. Neither of these happen in the
context of query 1. Our latencies are slightly lower than in the non-
scaled out case. The reason for lower latencies in the distributed
case is the source cannot insert data at higher rates, and thus, events
go through the same number of queues and processing elements as
in the non-scaled case, but with more headroom.

4.2 Query 2: Outliers
Our implementation of query 2 consists of three operators, fil-

ter, Q2 Plug and Q2 Global (see Figure 2). Hence, the baseline
deployment comprises 3 nodes of the cluster. For the distributed
deployment we scale out from 3 to 7 nodes.

0

2

4

6

8

10

2 3 4 5 6
 0

 200

 400

 600

 800

 1000

 1200

 1400
R

e
la

ti
v
e

 T
h

ro
u

g
h

p
u

t

%
 S

p
e

e
d

u
p

 o
v
e

r
R

T

Number of nodes

Relative th.
% Speedup over RT

Figure 4: Throughput and speedup over RT as a function of the
number of machines. We increase the speedup by scaling out the
system to aggregate throughput.

0

50

100

150

200

10 20 40
 0

 100

 200

 300

 400

 500

T
h

ro
u

g
h

p
u

t
(1

K
 e

/s
)

%
 S

p
e

e
d

u
p

 o
v
e

r
R

T

Workload (houses)

Th. 10th
Th. 50th
Th. 90th
% Speedup over RT

Figure 5: Throughput and speedup as a function of the number of
houses, for query 2.

Baseline system.. Figure 6 shows the expected behaviour of de-
creasing speedup as the dataset grows in events size. This query is
computationally more expensive than query 1. In our solution this
translates into a total time of 3.2 hours to process one month of data
for 10 houses to 13 hours to do the same in the 40 houses case.
Distributed system.. We follow the same strategy of scaling out
the system to increase the speedup over the minimum throughput
required by the system, reported in Figure 6. When adding more
cluster nodes the throughput increases, except between 5 and 6
nodes. The reason for this behaviour is that there were two simul-
taneous bottlenecks. First a CPU bottleneck that disappears after
scaling from 5 to 6 nodes, giving rise to an IO bottleneck. When
scaling out the IO bottleneck, we show how the system can keep up
increasing the speedup. We stop our query at this point, when the
source becomes a bottleneck.

Latencies for query 2 are reported in Table 1. Latencies are higher
than in query 1 because the bottleneck in this query was CPU related
while in query 1 was IO (serialisation and deserialisation).

4.3 Impact of Semantic Load-Shedding
To investigate the inherent trade-off of result accuracy and compu-

tation efficiency implied by semantic load-shedding, we compared
the load predictions derived by query one for a sample of four days.
We focus on the predictions derived for the smallest time window
(one minute). This window represents the most challenging case,
since for larger windows, the relative importance of filtered events
is smaller and, thus, accuracy is less compromised.

We show in Figures 7 and 8 the absolute error prediction error
for plugs and houses, respectively, aggregated for windows of five

0

1

2

3

4

5

3 4 5 6 7
 0

 200

 400

 600

 800

 1000

 1200

 1400

R
e

la
ti
v
e

 T
h

ro
u

g
h

p
u

t

%
 S

p
e

e
d

u
p

 o
v
e

r
R

T

Number of nodes

Relative th.
% Speedup over RT

Figure 6: Distributed deployment of query 2. Scaling out the query
aggregates throughput and increases the speedup

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.5 1 1.5 2 2.5 3 3.5 4A
b

s
.

o
f

p
re

d
ic

ti
o

n
 e

rr
o

r
(W

a
tt

)

Days (5 min windows)

Plug 10th
Plug 50th
Plug 90th

Figure 7: Time series over four days showing a low prediction error
for plugs over five minute windows. Note that the 50th overlaps the
x axis.

minutes. For individual plugs, although the 90th percentile shows
spikes up to 15 watt, the median error is zero in virtually all cases.
For load predictions for houses, in turn, the median error is largely
between one and three watts and there is little variability in the
results. Based on these results, we conclude that the error is small
enough to justify the activation of the mechanism.

Turning to the benefits of load-shedding for processing perfor-
mance, Figure 9 shows the difference in throughput and speedup
over RT when enabling the mechanism. As discussed before, the
throughput per node is mostly not affected since processing cost per
event is close to constant. However, we observe an improvement
of speedup of two orders of magnitude, meaning that one month
worth of data for 40 houses is processed in 17 minutes. This drastic
speedup together with the low accuracy loss justifies the usage of
semantic load-shedding in this scenario. We consider this an impor-
tant outcome as it allows more headroom to scale out the system to
accommodate the load from more houses.

5. RELATED WORK
Our solution is based on the use of distributed stream process-

ing. Various engines for stream processing have been proposed in
the literature, such as Discretized Streams [14], Naiad [10], Twit-
ter Storm [9], Apache S4 [11], MOA [5], Apache Kafka [8], and
Streams [6]. Discretized Streams support massive parallelisation
and state in the form of RDDs (Resilient Distributed Datasets), how-
ever, its approach based on micro-batching is not optimal to reduce
processing latency. Naiad [10] can scale out across many nodes
maintaining low latencies, however the system is not designed to

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.5 1 1.5 2 2.5 3 3.5 4A
b

s
.

o
f

p
re

d
ic

ti
o

n
 e

rr
o

r
(W

a
tt

)

Days (5 min windows)

House 10th
House 50th
House 90th

Figure 8: Time series over four days showing a low prediction error
for houses over five minute windows.

0

100

200

300

400

500

10 20 40
 100

 1000

 10000

 100000

T
h

ro
u

g
h

p
u

t
(1

K
 e

/s
)

%
 S

p
e

e
d

u
p

 o
v
e

r
R

T

Workload (houses)

Th. Original

Th. Filtered

% Speedup over RT (original)

% Speedup over RT (filtered)

Figure 9: When applying semantic load-shedding, the speedup
grows two orders of magnitude (note the logarithmic scale). The
system process one month worth of data for 40 houses in 17 minutes.

be fault tolerant when the managed state is large. The other sys-
tems support massive parallelisation of stream processing, but lack
support for managing stateful operators and for reacting to varying
input rates. Both issues are of particular relevance for the grand
challenge—the queries feature a large and complex state and the
number of events indicating changes in load shows large variability.
Therefore, we grounded our solution on SEEP [7], which supports
stateful operators, dynamic scale-out, and fault tolerant processing.

To improve the processing performance, we apply semantic load-
shedding, dropping input events in a structured way to achieve
timely processing. Load-shedding is common technique for opti-
mising event processing applications, in particular for achieving
high throughput [13, 4]. In some cases, load shedding for dis-
tributed stream processing may in itself become an optimization
problem [13]. Our approach exploits domain semantics, i.e., the
size of a change of a measurement value, to decide on which events
to filter. Our evaluation showed that this approach results in only
minor inaccuracies in the load forecast. However, filtering leads to
drastic performance improvements. The speedup realised by the
system grows by two orders of magnitude.

6. CONCLUSIONS
In this work, we presented a highly scalable solution to the ACM

DEBS Grand Challenge 2014. We based our solution on SEEP, a
platform for stateful stream processing that supports dynamic scale
out of operators and recovery of operator state after a failure. To
achieve efficient processing, we presented implementations of the
stream processing operators that are geared towards parallelisation

and effective state management, e.g., using queues and skiplists. In
addition, we exploited the fact that there are long time periods over
which measurement values are relatively constant. Further details
on our solution including a screencast are available at [2].

The experimental evaluation of our solution indicates that the
system can indeed cope with high volume data, processing it with
300,000 events per second for the load forecasting and 100,000
events per second for the outlier detection and median latencies of
17 ms or 136 ms, respectively. We also conclude that the system
is capable to handle larger workloads since it scales linearly when
adding cluster nodes. Further, we demonstrated that semantic load-
shedding can lead to huge performance gains. While filtering leads
to approximate query results only, in our case, the resulting bias was
rather modest, with a low median error for the prediction. However,
the speedup over real time was increased by two orders of magnitude,
which allowed us to process the whole dataset in 17 minutes.

Our approach to filter events for more efficient stream processing
opens several directions for future work. On the one hand, the
generation of filter conditions from a set of queries would allow for
automating the approach. On the other hand, filtering may be guided
by the amount of tolerated inaccuracies in the query results. Probing
unfiltered results for certain time intervals would enable to assess
the consequences of filtering and adapt its selectivity dynamically.

7. REFERENCES
[1] http://esper.codehaus.org/.
[2] http://www.doc.ic.ac.uk/~mweidlic/gc14/.
[3] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman.

Efficient pattern matching over event streams. In SIGMOD,
pages 147–160. ACM, 2008.

[4] B. Babcock, M. Datar, and R. Motwani. Load shedding in
data stream systems. In Data Streams, volume 31 of Advances
in Database Systems, pages 127–147. Springer, 2007.

[5] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. Moa:
Massive online analysis. The Journal of Machine Learning
Research, 99:1601–1604, 2010.

[6] C. Bockermann and H. Blom. The streams framework.
Technical Report 5, TU Dortmund University, 2012.

[7] R. C. Fernandez, M. Migliavacca, E. Kalyvianaki, and
P. Pietzuch. Integrating scale out and fault tolerance in stream
processing using operator state management. In SIGMOD,
pages 725–736. ACM, 2013.

[8] J. Kreps, N. Narkhede, and J. Rao. Kafka: A distributed
messaging system for log processing. In NetDB, 2011.

[9] N. Marz. Storm - distributed and fault-tolerant realtime
computation, 2013.

[10] D. G. Murray, F. McSherry, et al. Naiad: A Timely Dataflow
System. In SOSP, 2013.

[11] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4:
Distributed stream computing platform. In Data Mining
Workshops (ICDMW), pages 170–177. IEEE, 2010.

[12] W. Pugh. Skip lists: A probabilistic alternative to balanced
trees. Commun. ACM, 33(6):668–676, 1990.

[13] N. Tatbul, U. Çetintemel, and S. Zdonik. Staying fit: Efficient
load shedding techniques for distributed stream processing. In
VLDB, pages 159–170. VLDB Endowment, 2007.

[14] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica.
Discretized Streams: Fault-tolerant Streaming Computation at
Scale. In SOSP, 2013.

[15] H. Ziekow and Z. Jerzak. The DEBS 2014 Grand Challenge.
In DEBS, Mubai, India, July 2014. ACM.

