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Activity recognition aims to automatically determine what people do from a series of observations.

With several billion subscribers and multiple sensors, the mobile phone is an obvious opportunity
for activity recognition. We give an overview of mobile-phone-based activity recognition along two

directions – recognised activities and inference techniques. We show that existing systems can

be classified in two categories depending on whether they are location- or motion-driven. A new
generation of smartphones is inspiring many research efforts. However, the current framework for

mobile-phone-based activity recognition has reached certain limits. We anticipate changes in the

field and identify obstacles to further development.

Categories and Subject Descriptors: A.1 [Introductory and survey]: ; C.5.3 [Microcomput-
ers]: Portable devices (e.g., laptops, personal digital assistants); I.2.6 [Learning]:

General Terms: Algorithms, Design, Experimentation, Human Factors
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1. INTRODUCTION

The layman usually has a limited view of what can be achieved through the analysis
of mobile phone data. Mobile phone users often express certain privacy concerns
over service providers being able to inspect their phone calls or text messages with-
out their consent. Mobile phone data analysis can actually do much more. With 4.1
billion subscribers throughout the world [Tryhorn 2009], the mobile phone is creat-
ing new opportunities to collect, understand and utilise information about human
behaviour. Through their many sensors, today’s mobile phones can unobtrusively
record not only communication but also location and co-presence of individuals
throughout the day. By applying machine learning techniques to this data, systems
can determine what the user is doing at any point in time with reasonable accuracy.
Travel, for example, can be recognised from fluctuations in cellular signals [Ander-
son and Muller 2006a] and time at work can be estimated by detecting colleagues’
Bluetooth-enabled mobile phones or desktop computers [Eagle and Pentland 2006].
Furthermore, the networked nature and computing capabilities of mobile phones
make them much more than just logging devices and opens the way to new appli-
cations. In particular, the analysis of human behaviour from mobile phone data is
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expected to impact three areas profoundly:

—Marketing. Mobile phones provide personal, anywhere and anytime access to
the consumer. Text-message marketing is already being used to send people
text coupons when they are shopping in the vicinity of certain businesses [Cohen
2009]. Companies such as McDonald’s, Burger King, Procter & Gamble, General
Motors and CBS have also been involved in opt-in text message campaigns for
several years [The Associated Press 2006]. By automatically identifying users’
weekly schedule, lifestyle, journeys and acquaintances, mobile phone data analysis
allows fine-grained customer-profiling and targeted advertisement.

—Security. Defense and homeland security departments have been among the first
to explore phone and location data [Shachtman 2003]. The ability to determine
the behaviour of mobile phone users continuously indeed offers new possibilities
for investigators. Cases of successful use of mobile phones to track suspects,
victims and witnesses in police investigations already abound around the world
[Barnard 2009]. Mobile phone data analysis could provide law enforcement agen-
cies with continuous access to the activities and co-presence of suspicious indi-
viduals.

—Social networking. Mobile social networking services have expanded in recent
years. For example, the micro-blogging service Twitter [Twitter, Inc. 2006],
created in 2006, enables its users to send and receive short updates about their
activities via a website, text messages or external applications. Twitter’s website
passed 50 million unique worldwide visitors in July 2009 [Rao 2009]. Other major
Internet companies such as Facebook [Facebook, Inc. 2009] and Google [Google,
Inc. 2009a] are entering the market of mobile social networking. For example,
Google Latitude [Google, Inc. 2009b] allows its users to share their location
with others, as estimated by their mobile phone. In the future, diaries and blogs
could be generated automatically by recognising a mobile phone user’s activities
throughout the day.

Research in automated human behaviour analysis has also been driven by other
applications which will have a significant social and economic impact:

—Logistics. Production can be increased by identifying a worker’s actions and
delivering just-in-time instructions about what has to be done next [Antifakos
et al. 2002]. Boeing has pioneered activity-aware assembly [Barfield and Caudell
2001] while wearable activity recognition systems have been tested on Skoda’s car
manufacturing process [Stiefmeier et al. 2008]. In office environments, meetings
and conferences can be detected with high accuracy from audio and video [Oliver
and Horvitz 2004]. Mobile phones can then be turned to silent mode in a meeting
or set to vibrate for a longer period of time when the carrier is walking outdoors,
to ensure that call notifications are not missed between strides [Anderson and
Muller 2006b]. Recognising workers’ activities provides a clear picture of time
utilisation and can help make working environments more efficient [Osmani et al.
2008].

—Healthcare. Recognising simple activities such as walking, running and staying
stationary can already help calculate a mobile phone user’s energy expenditure
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through daily step counts [Sohn et al. 2006]. By also considering the user’s lo-
cation and encounters, one can easily imagine estimating exposure to pollutants,
noise and infections in the near future. Automatically-generated behaviour logs
can serve as memory aids for aging populations [Vemuri and Bender 2004] and
help doctors monitor their patients continuously. Mobile activity-aware devices
can also assist patients suffering from mild cognitive impairment in public trans-
portation [Liao et al. 2007] and help patients suffering from diabetes to maintain
stable blood glucose levels [Preuveneers and Berbers 2008].

—Policy and planning. Since the 1970s, policy makers, urban planners and
economic analysts have shown a growing interest in human behaviour data. In
2003, after years of study, the U.S. Bureau of Labor Statistics launched the first
annual American Time Use Survey (ATUS) [U.S. Bureau of Labor Statistics
2009]. Each year, randomly selected individuals are asked to fill out a one-day
diary with his or her activities in 15-minute intervals. Whilst surveys of this kind
provide useful information, they place a heavy burden on respondents and are
expensive to execute. This naturally limits their scale, duration and frequency.
For cost reasons, the size of the surveyed population was reduced from 40,500
individuals in 2003 to approximately 26,000 in the following years [Kimmel 2008].
Mobile phones allow the collection of behaviour data on samples larger than those
of surveys by several orders of magnitude. Importantly, the automatic collection
of mobile phone data circumvents human reports, giving direct and real-time
access to people’s activities.

—Energy saving. There is growing awareness of environmental issues throughout
the world. Predicting when a house’s inhabitants will return from work or school
helps determine an optimal heating strategy [Gupta et al. 2009]. The energy
footprints of home and office buildings can also be reduced by automatically
switching on electronic devices when they are likely to be used and switching
them off otherwise.

—Entertainment. Activity-aware music players aim to play music that fits the
user’s current level of activity [Dornbush et al. 2007], [Park et al. 2006], [Elliott
and Tomlinson 2006]. Industry leaders such as Nike and Apple have integrated
awareness of human activities into portable music players by equipping running
shoes with sensors and wireless interfaces [Apple, Inc. 2006]. Since recent mobile
phones are also portable music player, mobile-phone-based activity recognition
could be utilised to select songs based on their tempo [Györb́ıró et al. 2009].
Mobile games are also beginning to sense players’ locations and actions [Hewlett-
Packard Development Company 2008], [Groundspeak 2000].

All the applications mentioned above assume that a system is capable of under-
standing automatically what a user is doing. Implementing this capability is the
objective of activity recognition1. In order to fulfill its objective, a mobile-phone-
based activity recognition system records radio signals and other inputs from mobile
phone sensors, processes this data to extract useful information and provides the
result to a machine learning classifier for training. Usually, training data also in-
cludes the user’s true activity when data was collected, as provided by the user

1other names plan/goal recognition
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himself. The trained classifier can then be utilised to determine the user’s activity
in new situations from previously-unseen sensor data.

The mobile phone is an obvious opportunity for activity recognition. People
carry their mobile phone with them for communication purposes. Therefore, the
many sensors embedded in this device can capture data about its user’s activities
unobtrusively throughout the day. However, mobile-phone-based activity recogni-
tion also faces specific challenges which impede its large-scale deployment. The
objective of this survey is twofold. First, it provides an entry point for those who
may be interested in learning about activity recognition from mobile phone data.
The increasing programmability of mobile phones indeed makes these platforms
accessible to a larger audience than ever before. We give an overview of the task
along two directions – recognised activities and inference techniques. We also show
that existing systems can be classified in two main categories depending on whether
they are location- or motion-driven. A new generation of smartphones – popular
through the commercial success of the Apple iPhone [Apple, Inc. 2009] – offers ad-
vanced sensing, processing and connectivity capabilities which are inspiring many
research efforts in both industry and academia. However, the current framework
for mobile-phone-based activity recognition seems to have reached certain limits.
Recent systems achieve relatively high accuracy but focus on a very small set of
human activities. We therefore believe that it is particularly timely to identify
challenges in this domain and consider the next directions of research. In order
to serve this second objective, we anticipate forthcoming changes in the field and
determine obstacles to further development.

We present in this paper the first literature survey on activity recognition from
mobile phone data. The next section provides an overview of the task along two
directions – inferred activities and inference techniques. In Section 3, we review ex-
isting mobile-phone-based activity recognition systems and show that they can be
categorised in either of two categories, depending on whether they are location- or
motion-driven. We then examine prospects in mobile-phone based activity recogni-
tion by anticipating technological evolutions of the mobile phone platform. Lastly,
we identify in Section 5 seven research challenges and open problems in the task.

2. OVERVIEW OF THE TASK

In general terms, activity recognition consists in associating sensor readings and
other inputs to a label taken from a set of distinguishable activities. The task
therefore involves (i) determining a set of activity labels and (ii) assigning sensor
readings and other inputs to the appropriate activity labels.

2.1 Activity Labels

Activity labels are the output of an activity recognition system. Defining a set of
activity labels therefore sets a target which directs the entire design of a system
from sensing to modelling. In this section, we review activity labels assigned by
current activity recognition systems and classify them into two categories.

2.1.1 Defining Activity Labels. The Merriam-Webster dictionary [Merriam-Webster,
Inc. 2009] defines an activity as (i) the quality or state of being active or (ii) a vig-
orous or energetic action. Activity thus encompasses both state and energy. In
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mobile and ubiquitous computing, authors generally avoid defining activities out of
context. Indeed, most often, the set of activity labels considered is constrained by
the sensors at hand and depends on the final application. A fitness monitoring sys-
tem will define stationary, walking and running as activities whereas an automatic
diary application will use just one travelling activity and divide the stationary state
into several depending on the location of the user, for instance, staying at home and
working in the office. For certain applications, sets of activities can be borrowed
from other disciplines. For instance, Activities of Daily Living (ADLs) [Katz et al.
1963], [Katz 1983] have been shown to be relevant in many healthcare situations
and several activity recognition systems have attempted to address them specifi-
cally [Tapia et al. 2004], [Park and Kautz 2008], [Philipose et al. 2004]. Examples
of ADLs are eating, dressing, getting into or out of a bed or chair, taking a bath or
shower and using the toilet. Historically, mobile-phone-based systems have focused
on a smaller set of activities because of the limited sensing capabilities of early
mobile phones. In many cases, human activity is approximated with two proxies,
namely location and motion, which correspond to two orthogonal types of activity
recognition.

2.1.2 Locational versus Motional activity recognition. The best way of introduc-
ing locational activity recognition may be to compare it to the better known and
closely related localisation task [Hightower and Borriello 2001]. In the latter, the
objective is to estimate the position of a device anywhere as accurately as possible
using techniques such as multilateration or assisted GPS. In contrast, locational ac-
tivity recognition is interested in the meaning of the user’s location rather than its
coordinates. In other words, a locational activity recognition system distinguishes
between locations only if it helps determine what the user is doing. Typical lo-
cations which reflect the user’s activity are workplace, home, restaurant, shopping
centre, etc.

In motional activity recognition, the user’s activity is abstracted as a motion
state or a mode of transportation. Certain motion states can be identified from
cellular signals even without any knowledge about the location of observed cell
towers. For examples, fluctuations in GSM signals have been shown to be sufficient
to determine with reasonable accuracy whether a mobile phone carrier is walking,
driving in a motor car or staying stationary [Anderson and Muller 2006a], [Anderson
and Muller 2006b]. Accelerometers embedded in recent smartphones can serve the
same purpose and further distinguish between finer movements such as sitting,
standing or running [Miluzzo et al. 2007], [Miluzzo et al. 2008].

2.2 Inference Techniques

Activity labels are assigned based on context information and background knowl-
edge. Context information [Dey 2001] includes sensor data, time and user inputs.
Background knowledge can either be provided by experts or mined automatically,
for example from the Web [Perkowitz et al. 2004]. The set of activities that may
be performed at a specific location is an example of useful background knowledge.
All activity recognition systems match some context information to activity labels.
However, the range of techniques employed during the labelling can vary substan-
tially.
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2.2.1 Where is Inference Performed?. The architecture of an activity recogni-
tion system usually comprises three main components [Choudhury et al. 2008]:

(1) The sensing module collects raw sensor data such as audio, video, or com-
munication signals. On mobile phones, GSM/3G and Bluetooth signals can be
collected throughout the day.

(2) The preprocessing module transforms raw data into a reduced representa-
tion called a feature vector. The accuracy of the system depends strongly on
how data is represented. Features should help differentiate between activities.
They can be low-level, for example mean and variance computed on a spe-
cific physical signal or high-level, for example the user’s abstracted location as
estimated from cell tower signals.

(3) The inference module takes as input selected features and background knowl-
edge to recognise the user’s activity, for example, staying stationary, walking
and driving.

Figure 1 shows the three components above in a typical distributed architecture.
Sensing is usually limited to the phone’s own sensors and preprocessing performed
on the phone. Due to the inability of early mobile phones to run complex inference
models, this task has traditionally been performed on desktop computers [Eagle
and Pentland 2006], [Eagle and Pentland 2009], [Farrahi and Gatica-Perez 2008b],
[Farrahi and Gatica-Perez 2008a], [Eagle et al. 2009], [LaMarca et al. 2005]. How-
ever, the increasing computational power of mobile phones allowed several recent
systems to make inference directly on the phone [Anderson and Muller 2006b],
[Anderson and Muller 2006a], [Miluzzo et al. 2007], [Miluzzo et al. 2008]. In both
cases, the inference module is the core of an activity recognition system and the
place where machine learning models are implemented.

2.2.2 Early Logic-based Approaches. Although activity recognition is now con-
sidered a research area of its own, it is historically related to plan and goal recog-
nition. Early plan recognition techniques from the late 1970s and early 1980s were
consistency-based and made inferences through first-order logical reasoning. In
[Schmidt et al. 1978] Schmidt et al. used a simple plan recognition process based
on psychological theories of how human observers understand the actions of oth-
ers. In this process, a single hypothesis is pursued until the observations cannot
be matched to expected actions. This triggers a hypothesis revision process. In
[Kautz 1987], Kautz et al. developed a formal theory of plan recognition and pre-
sented a framework in which the minimum sets of independent plans that entail the
observations are inferred. However, the closed-world reasoning they used assumed
knowledge of the complete plan library and was unable to adapt to changes in the
observed agent’s behaviour. Later, Lesh et al. presented a framework based on
version space algebra which could recognise novel plans [Lesh and Etzioni 1995].
By repeatedly pruning inconsistent plans and goals when new actions arrived, they
also achieved better scalability.

However, none of these logic-based frameworks was used in practice. They indeed
had two important limitations. First, they considered all consistent explanations
equally and therefore could not determine which one is the most likely. Secondly,
they did not handle the noise and uncertainty of real-world data. This is particu-
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Fig. 1. Typical distributed architectures of a mobile-phone-based activity recognition system.
Sensing and preprocessing are performed directly on the phone while inference is made on a

destktop computer with greater computational resources.

larly important in our research since there are many sources of noise and uncertainty
in mobile phone data. Devices can be turned off, not recharged or forgotten. There
are issues with radio communication such as poor indoor reception and fluctuat-
ing connections. Cell tower allocation obeys the operator’s strategy which is not
known a priori. Bluetooth errors include detecting people who are not physically
proximate through certain types of windows or doors. There is also a probabil-
ity that Bluetooth will not discover other proximate devices [Eagle and Pentland
2006]. In order to handle noise and uncertainty, most mobile-phone-based activity
recognition systems use statistical models.

2.2.3 Generative versus Discriminative Models. Models implemented in infer-
ence modules fall in either of two categories. Generative models specify a joint
probability distribution PX1X2...XnY over features X1, X2, . . . , Xn and the inferred
activity Y . They can either model data directly or be used to form a conditional
distribution PY |X1X2...Xn

through the use of Bayes’ rule. Model parameters are usu-
ally estimated to maximise the likelihood of training data and new instances are
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classified to the most probable class given the features. Generative models which
have been implemented in inference modules include Bayesian Network (BN) [Cho
et al. 2007], Hidden Markov Model (HMM) [Eagle and Pentland 2006], [Anderson
and Muller 2006b] and Dynamic Bayesian Network (DBN) [Eagle et al. 2009]. In
particular, Hidden Markov Models have been learnt directly on a phone using the
Baum-Welch Expectation-Maximisation algorithm [Anderson and Muller 2006b].

Discriminative models provide a model only of activities conditional on fea-
tures. This can either be done by specifying the conditional probability distri-
bution PY |X1X2...Xn

, or by specifying decision boundaries. Discriminative models
which have been implemented in inference modules include Support Vector Ma-
chine (SVM) [Farrahi and Gatica-Perez 2008b], Artificial Neural Network (ANN)
[Anderson and Muller 2006a] and C4.5 Decision Tree (DT) [Miluzzo et al. 2008] –
which have been learnt directly on a mobile phone [Miluzzo et al. 2008].

Although generative models usually require more training data and are sometimes
outperformed by discriminative models, they hold a major advantage over the latter
in their ability to generate values of any variable in the model. Therefore, generative
models can simulate data and provide better understanding of underlying processes.

2.2.4 Supervised versus Unsupervised Learning. Models are learnt from training
data in essentially two ways. Most activity recognition systems rely on supervised
learning. In this type of learning, training data is collected by the sensing module
and other inputs and transformed into a set of instances by the preprocessing
module. Each training instance is then labelled for the user’s true activity when
data was collected. The supervised inference model generalises from training data
to infer the activity labels of unseen instances in test situations. One way to acquire
the ground truth is to prompt for activity labels on the fly as the user performs
his daily activities [Eagle and Pentland 2006]. This method has the advantage that
the information collected is fresh in the user’s mind and therefore more accurate.
However, providing labels using the interface of a mobile phone is not easy in
practice. Also, not all activities can be labelled as they are performed. For instance,
interrupting a meeting to input an activity label is not realistic. An alternative
approach is to label data a posteriori, for example at the end of the day using
a diary application or a paper notebook [LaMarca et al. 2005]. The issue with
this method are clearly its low temporal accuracy and the limitations of human
memory. In either case, activity labels provided by the user are subjective. For
example, one user may interpret being at work as working while another user may
only label as working time intervals during which he is actively engaged in his work.
Secondly, training an activity recognition system in a supervised fashion requires
considerable involvement from the part of the user who not only has to regularly
charge his device and carry it with him for several weeks but also needs to spend
some time labelling his data.

Unsupervised learning aims to relieve the user from the burden of labelling, usu-
ally by clustering data based on some distance measure. One of the most common
clustering technique is K-Means, which tries to minimize the total intra-cluster
variance [Lloyd 1982]. K-Means takes as a parameter the number of clusters, for
example three clusters for stationary, walking and driving [Anderson and Muller
2006b]. However, in many cases, the exact number of clusters depends on the user’s
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personal habits. In particular, this is the case for locational activities. A child may
have the three significant locations home, school and park while other users may
have many more including workplace, restaurant, supermarket and library. More
recent algorithms, such as DBSCAN have been used in that context [Zhang et al.
2007]. DBSCAN finds the number of clusters automatically from the estimated
density distribution of data points [Ester et al. 1996]. In either case, devising an
appropriate distance measure is a difficult problem and can be quite subjective.

3. ACTIVITY RECOGNITION SYSTEMS USING MOBILE PHONES

In this section, we review the design and performance of selected locational and
motional activity recognition systems making use of mobile phone data. Each
system is categorised according to the criteria stated in the previous section.

3.1 Locational Systems

The first main category of activity recognition systems for mobile phones deter-
mines the user’s activity in terms of location. We review below the major activity
recognition systems for mobile phones which fall into that category. Each system is
named after the project in which it was developed followed by a short description.

3.1.1 Reality Mining: Hidden Markov Model over Cellular and Bluetooth Data.
In the Reality Mining project [Eagle and Pentland 2006], Eagle and Pentland inves-
tigate how cell tower information and Bluetooth proximity data can complement
each other to help infer important locations and social relationships. The Reality
Mining project collected 330,000 hours of continuous data over the course of nine
months on 94 mobile phones. Participants, staff and faculty from the MIT Media
Laboratory and Sloan Business School, were provided with Nokia 6600 Bluetooth-
enabled mobile phones running the ContextLogger. This piece of software was
developed by the Context Group at the University of Helsinki [Raento et al. 2005]
and records different bits of information including call logs, Bluetooth devices in
proximity, the cell tower to which the phone is connected, application usage and
phone status, for example, charging or idle. An anonymised version of the dataset
collected during the Reality Mining project is the largest set of mobile phone data
publicly available to date.

A significant part of the work carried out in the Reality Mining project falls into
the scope of localisation and locational activity recognition. Eagle and Pentland
fuse two types of information to determine the user’s location. First, relatively high
location accuracy is achieved by estimating cell tower probability density functions.
When a mobile stays at one place for a long period of time, it connects to different
cell towers successively depending on several variables which include signal strength
and network traffic. The distribution of detected cell towers varies substantially
with changes in location. In order to improve the user’s localisation, the authors
also incorporate the use of static Bluetooth devices as ’cell towers’. Bluetooth
provides spatial accuracy of about 10m and static Bluetooth devices can often be
detected in places where cellular signals are weak. For example, Bluetooth desktop
computers can be detected in office buildings. Therefore, static Bluetooth devices
supplement GSM cell towers in localisation.

In locational activity recognition, Eagle and Pentland consider three activity
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states – home, work and elsewhere – which correspond to three location clusters
in cell tower and Bluetooth data. They build a first-order Hidden Markov Model
conditioned on both the hour of the day and the day of the week (weekday or
weekend) to capture daily and weekly routines in user behaviour. A Hidden Markov
Model [Rabiner 1989] is a generative model in which the system being modelled
is assumed to be a Markov process whose state is hidden but output is observed
and probabilistically dependent on its state. Hidden Markov Models are widely
used in speech recognition [Rabiner 1989] and natural language processing tasks
[Leech et al. 1994] to model sequential patterns. However, the first-order Markov
assumption also has important limitations for activity recognition. According to
this assumption, a state is conditionally independent of all earlier states given
the immediately previous state. In other words, a user’s activity at a given time
slice only depends on his activity at the previous time slice and any longer-range
dependency in data is ignored.

The authors report an accuracy typically greater than 95% after training the
model on one month of data from several subjects. However, this very high figure
is difficult to interpret because neither the exact subset of the dataset used in
the evaluation nor the criteria which guided the selection of subjects, training and
test periods are detailed. In addition, results are not compared to any baseline.
Lastly, the Reality Mining dataset was collected on users from the same academic
community. Therefore, generalising results obtained on this dataset is not easy.

3.1.2 Reality Mining: Principal Component Analysis over Cellular Data. In a
subsequent paper [Eagle and Pentland 2009], the same authors uncover some sim-
ilarities between the behaviours of different participants from the Reality Mining
dataset. Structure in daily human behaviour is represented by the principal com-
ponents of the complete dataset called eigenbehaviours. A user’s day is then ap-
proximated by a weighted sum of his primary eigenbehaviours. Calculating weights
half way through the day of selected users, the authors predict the day’s remaining
activities with 79% accuracy. In addition, it is shown that users of similar demo-
graphics can be clustered into a behaviour space spanned by a set of their aggregate
behaviours and classified into their correct group affiliation with 96% accuracy –
excluding staff members.

Principal Component Analysis (PCA) is an orthogonal linear transformation that
performs a coordinate rotation around the data mean to align the transformed axes
with the directions of maximum variance called principal components. In the new
coordinate system, the first coordinate accounts for as much of the variance as
possible, the second coordinate accounts for as much of the remaining variance
and so on. PCA is commonly used for dimensionality reduction and modelling.
In particular, it has been successfully applied to computer vision tasks such as
face recognition [Turk and Pentland 1991]. However, PCA has certain limitations
for activity recognition. Rare activities, for example, are almost certainly always
missed by the first eigenbehaviours and considered noise although they could be
the most interesting ones. Also, eigenbehaviours are not robust to variations in the
durations of users’ activities.
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3.1.3 MULTI: Support Vector Machine over Cellular and Bluetooth Data. In
[Farrahi and Gatica-Perez 2008b], Farrahi and Gatica-Perez consider a subset of 30
users and 121 consecutive days from the Reality Mining dataset to compute both
location and proximity features at two different time scales (a fine-grained one every
30 minutes and a coarse-grained one every 3-4 hours). The predictive power of those
features is then evaluated in two different tasks. Features are tested alone and in
pairs of one location and one proximity feature. Using a Support Vector Machine
[Boser et al. 1992] with a Gaussian kernel, the authors aim at (i) classifying a user’s
day as weekday or weekend and (ii) classifying a user as a business or engineering
student.

Support Vector Machines perform binary classification by constructing a sepa-
rating hyperplane which maximises the distance to neighbouring data points from
both classes. These neighbouring data points are called support vectors. Multiclass
classification can be performed by reducing the multiclass problem into several bi-
nary problems. Support Vector Machines have been shown to be competitive with
many state-of-the-art classifiers notably in computer vision [Osuna et al. 1997] and
finance [Huang et al. 2005]. However, training a Support Vector Machine requires
to solve a Quadratic Programming (QP) problem which can be computationally
demanding. In [Farrahi and Gatica-Perez 2008b], SVMs are not learnt on a mobile
phone but on a standard computer.

Evaluation is performed in leave-one-user-out cross-validation. Specifically, test-
ing is performed on all the days for one unseen person while training on the data
for all other people. Weekdays were best recognised by detecting work cell towers
whereas weekends were best identified from proximity data (absence of colleagues).
Overall, combining location and proximity features yielded to over 80% accuracy,
outperforming both location and proximity features alone. Unsurprisingly, group
affiliations were best recognised from the identity of people in proximity of the user.
The generic locations considered (home, work and elsewhere) were found to be little
informative for that purpose. It is likely that considering absolute locations such
as a particular building would have been more useful to recognise people’s group
affiliations but this was not attempted in the experiment. Overall, affiliations were
correctly classified with nearly 90% accuracy. However, given that only 6 of the
23 students considered were business students, a most frequent baseline already
provides 74% accuracy.

3.1.4 X-Factor: Dynamic Bayesian Network over Cellular Data. In [Eagle et al.
2009], Eagle et al. repurpose unsupervised clustering techniques originally devel-
oped for community detection to identify salient locations within the network gen-
erated by cell tower transitions. Clustering is then validated using data from Blue-
tooth beacons positioned in the homes of 215 subjects randomly sampled in a U.S.
city. Clusters are used as states within several Dynamic Bayesian Networks to
predict dwell times within locations and each subject’s subsequent movement with
over 90% accuracy with an average of 6.88 locations.

A Bayesian Network (BN) [Pearl 1985] is a probabilistic graphical model in which
nodes represent variables and arcs encode conditional independences between the
variables. The structure of a Bayesian Network can therefore reflect expert knowl-
edge about the classification task. However, static Bayesian Networks do not cap-
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ture temporal relations in data. A Dynamic Bayesian Network (DBN) [Ghahra-
mani 1998] is a Bayesian Network that models a dynamic system by representing its
state at subsequent time slices. Arcs joining nodes at consecutive time slices encode
probabilistic temporal relations between them. Dynamic Bayesian Networks can
be viewed as a generalisation of Hidden Markov Models and inherit the limitations
of the first-order Markov assumption.

In order to detect behaviours that deviate from a given routine, [Eagle et al. 2009]
introduces the X-Factor model. This model is really a Dynamic Bayesian Network
with a latent variable corresponding to abnormal behaviour. By calculating the
entropy of the transition matrix from the X-Factor model, the authors quantify
the amount of structure in the daily routines of different demographics and find
that there are individuals across demographics who have a wide range of routines
in their daily lives. This result runs contrary to previous findings restricted to an
academic community [Eagle and Pentland 2006].

The study presented in [Eagle et al. 2009] contrasts with the authors’ previous
work based on the Reality Mining dataset in that it uses a larger and potentially
more representative set of users. Also, the users’ locations are clustered in an unsu-
pervised fashion. However, the exact meaning of clustered locations is unknown. A
user may stay at a location for a long time or come back to it regularly even if this
location has no particular meaning to him for example at traffic lights. The second
limitation of the technique is that only very short-range dependencies are consid-
ered. Long-range information is only captured in one ’abnormal behaviour’ latent
variable which switches between two states corresponding to normal or abnormal
behaviour. In addition, transition probabilities in the abnormal state are actually
smoothed versions of transition probabilities in the normal state. The objective of
this approach is to give abnormal behaviour a broader distribution which allows
behaviours not seen in training data. However, this approach somewhat gives up
in understanding the specificities of abnormal behaviour.

3.2 Motional Systems

The second main category of activity recognition systems for mobile phones outputs
the user’s activity in terms of motion state. We review below the major activity
recognition systems for mobile phones which fall into that category. As previously,
each system is named after the project in which it was developed followed by a
short description.

3.2.1 EQUATOR: Artificial Neural Network over Cellular Data. Certain mo-
tion states can be recognised from cellular signals even without knowing where the
cell towers that emitted those signals are actually located. Anderson and Muller,
from the Mobile and Wearable Computing group at the University of Bristol have
developed techniques for the recognition of motional activities using GSM mobile
phones. In [Anderson and Muller 2006a], they propose to determine whether a
mobile phone carrier is walking, driving in a motor car or staying stationary. In
order to allow their system to run on any mobile phone, the authors avoid the use
of accelerometers. Instead, they rely on two simple observations. First, in a given
environment, the rate of cell change increases with speed. Secondly, the level of
signal strength fluctuation at the same physical position and the variance of signal
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strength levels at different physical positions are greater when the phone carrier is
moving compared to when the phone is left stationary.

The method presented in [Anderson and Muller 2006a] is built around an Ar-
tificial Neural Network (ANN) [Jain et al. 1996]. Artificial Neural Networks are
non-linear statistical models which simulate the function of a biological neural net-
work. Due to their ability to model complex relationships between inputs and
outputs, ANNs have been applied to many pattern recognition problems including
face detection [Rowley et al. 1998] and handwritten text recognition [Garris et al.
1998]. However, the architecture of an ANN makes the integration of background
knowledge and the understanding of a learnt ANN arduous in general. The struc-
ture of the ANN used in [Anderson and Muller 2006a] comprises an input layer, an
output layer and a single hidden layer of eight units. Following the authors’ obser-
vations, the ANN is fed with two features, computed over a time interval ranging
from 15 to 30 seconds: (i) the number of distinct cells monitored over the time
interval and (ii) the sum of signal strength fluctuation across currently serving and
neighbouring cells. Given these two input features, the network outputs the user’s
current activity. The authors observe that, at times, the patterns of fluctuation
while driving match those observed while walking. This happens in urban areas
because of traffic lights and traffic congestion which force vehicles to slow down
and stop. The effect of such events on the performance of the classifier is mitigated
by applying a simple averaging filter to the input.

Anderson and Muller train their ANN in a supervised fashion, by repeatedly
presenting the system with data corresponding to each activity. The weights of the
ANN are then learnt using back-propagation, a gradient-based method in which
errors in classification of training data are propagated backwards through the net-
work to adjust the bias weights of the network elements until the mean squared
error is minimized. Due to the computational cost of the algorithm, the authors
were not able to train the ANN directly on a mobile phones and had to use a
desktop computer.

One of the shortcomings of the technique is that the ANN must be retrained in
every type of environment. Indeed, network capacity in dense urban environments
is increased by using a higher number of short-range cells. Therefore, the same
rate of cell change and level of signal fluctuation can correspond to different activ-
ities dense and sparse urban environments. In the absence of a scheme to share
data across users, collecting and labelling training data while walking, driving and
staying stationary in each visited place could rapidly become intractable.

Also, in real life, certain sequences of motion states are much more likely than
others. For example, a short walk followed by a long drive followed by another short
walk occurs almost every time a mobile phone carrier uses a car. In contrast, a
succession of numerous short drives interrupted by short walks is very uncommon.
Since the approach does not take into account temporal patterns of activities, any
sequence of activities can be output, no matter how inconsistent or unlikely it is.

3.2.2 EQUATOR: Hidden Markov Model over Cellular Data. In a subsequent
paper [Anderson and Muller 2006b], Anderson and Muller present an unsupervised
activity recognition technique in which the user is still required to spend about 15
minutes walking, driving and stationary in each environment but does not have
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to keep a record of his activities anymore. As a calibration step, K-means [Lloyd
1982] is applied to partition observations into three clusters according to cell and
signal strength fluctuations. The three means of these clusters are assigned to
the three activities using a fixed ordering defined in background knowledge. Each
observation is then labelled with the activity of its cluster and a five-step Hidden
Markov model is learnt over this data using the Baum-Welch algorithm [Baum
et al. 1970]. After training the HMM, the most likely state sequence producing a
sequence of observations is determined using the Viterbi algorithm [Viterbi 1967].
In comparison with the authors’ previous approach, the use of an HMM gives
an important advantage in that it models not just a single activity but temporal
sequence of activities such as driving followed by walking.

Both this method and the previous were implemented on an Orange SPV C500
mobile phone capable of monitoring up to six neighbouring cells in addition to the
current serving cell. This phone model has a 200Mhz ARM OMAP 730 processor.
Unlike the ANN used in the previous method, the HMM could be learnt directly on
the phone. K-means and Baum-Welch were both implemented on the phone and
training took approximately two minutes to complete. Both the trained ANN and
HMM recognise activities on the phone in real time.

The performance of both techniques was significantly higher in urban than in
metropolitan areas. An explanation for this is that cell and signal strength fluc-
tuations are much higher within metropolitan areas, due to high concentrations of
micro-cells and high traffic. As a result, a number of stationary states were misclas-
sified as walking. For both techniques and in both environments, the poorest results
were obtained for the driving activity. In towns, cars often have to slow down. As
a result, it is sometimes difficult to distinguish between driving and walking fast.

Overall, the unsupervised method achieved the same level of performance as the
ANN without the need of manually labelled data. This is a key advantage for mobile
users who cannot label their data easily. However, the unsupervised calibration
process relies on a hard-coded ordering of the means associated to each cluster.
If, as the authors suggest, more activities were recognised, including, for example,
running and cycling, signal strength fluctuations associated to certain activities
may be much closer and difficult to order consistently over all observations.

Also, the extension of the strategy to 3G networks is an open issue. 3G networks
use smaller cells because they have to support the transmission of large amounts
of information and operate at a higher frequency. In that respect, the decrease in
performance observed when the density of GSM cells increases raises some concerns.
3G cells also expand and contract in size depending on the number of simultaneous
calls being made. Signal strength fluctuations will therefore not always be indicative
of motion.

Anderson and Muller showed three interesting things. First, motion information
could be captured on a GSM mobile phone without the need of additional sensors.
Secondly, the burden of data labelling could be avoided by using unsupervised
calibration. Lastly, HMMs could be both learnt and used for inference on a mobile
phone. Nevertheless, in comparison to accelerometer-based techniques, the methods
they propose are significantly slower. This is due to the length of the time interval
over which features are computed (15 to 30 seconds). As more and more mobile
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phones embed accelerometers, Bluetooth and GPS, using GSM data only may be
an unnecessary constraint. Patterson et al. [Patterson et al. 2004], for example,
have been able to distinguish between a wider range of transportation modes using
a GPS receiver.

3.2.3 Place Lab: Boosted Logistic Regression with Decision Stumps over Cellular
Data. Place Lab is software developed by Intel Research Seattle and academic
research partners for device positioning. Sohn et al., at the University of San Diego
have contributed to Place Lab and proposed a mobility detection method based on
GSM traces [Sohn et al. 2006]. Similarly to Anderson and Muller, they propose
to recognise if the carrier of an unmodified mobile phone is walking, driving, or
staying stationary. The recognition scheme and features used in this work are
more elaborate than previous approaches and achieve an overall accuracy of 85%.
However, these techniques have not actually been implemented on a mobile phone.

In [Sohn et al. 2006], activity recognition is based on the same principle as
fingerprint-based location estimation. Specifically, radio signals observed from fixed
sources are consistent in time, but variable in space. Given a series of GSM obser-
vations, a change in the set of visible cell towers and signal strengths is therefore
interpreted as motion. A Euclidean distance is designed to capture the similarity
between consecutive GSM measurements and the authors find a proportional rela-
tionship between this distance and speed of movement. Seven statistical measures
are computed as features. Three of them compare two consecutive measurements,
while the other four use a sliding window of measurements varying between 10 and
300 seconds. Averages computed on larger windows are more robust to noise. How-
ever, they are also less affected by speed variations. The window size is therefore a
trade-off between robustness to noise and responsiveness.

The seven features considered feed a two-stage classification scheme. A first clas-
sifier categorises an instance as stationary or not. If the instance was not classified
as stationary, a second classifier determines if the user was walking or driving.
Both classifiers implement Boosted Logistic Regression (LR) with Decision Stumps
[Friedman et al. 2000] as the weak classifiers. Boosting is a general method to con-
struct an accurate classifier by combining the output of so-called weak classifiers
and has been used successfully in face detection [Viola and Jones 2004]. In [Sohn
et al. 2006], weak classifiers are depth-one Decision Trees, equivalent to if-then-else
decision rules. The authors used the Weka machine learning toolkit [Witten and
Frank 1999] to compare their method with several machine learning classifiers and
selected the one technique which achieved the highest accuracy.

GSM data was collected on Audiovox SMT mobile phones running a custom
logging application. Each reading included identifiers, signal strength values and
channel numbers of up to seven nearby cell towers. In addition, the application
recorded the channel numbers and associated signal strength values of up to 15
additional channels. Data collectors were three members of a research team who
went about their daily lives for one month. The selection of these data collectors
is justified by the very tedious and error-prone self-reporting protocol. However,
the fact that an external user could not train the supervised algorithm raises some
doubts on the possibility to deploy such a system in the real world. Each user had
to report his walks, drives, and stays using a custom diary application and a paper
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notebook.
The method achieved very high precision and recall when detecting stationary

activities (95.4% and 92.5%, respectively). Walking and driving were also quite
well recognised with recalls of 80% and 81.7%, respectively. However, the precision
figure for walking (70.2%) was much lower than for other activities. As in [Anderson
and Muller 2006b] and probably for the same reasons, many walks were misclassified
as driving activities. It can be observed that motional activity recognition systems
based on GSM signals are never evaluated in rural areas. Methods based on cell and
signal strength fluctuations may be challenged in such regions which are covered
by macro-cells with ranges of up to several kilometres.

Building on their activity recognition method, the authors also design a step
counter. The application is based on a simple heuristic obtained by performing
linear regression with a 5-fold cross-validation on their dataset. The accuracy of
the step count method was evaluated against the measurements of the Omron
Healthcare HJ-112, a highly-rated commercial pedometer. Overall, 50 days of data
were collected. The heuristic predicted daily step counts ranging from 1,500 to
12,000 steps, with an average of 5,000 steps. Comparing with the pedometer’s step
counts, an average difference of 1,400 steps per day (with a standard deviation of
900 steps) was observed. Therefore, a specific effort from the user is very likely
to go unnoticed (the average error is equivalent to almost an hour of walk). Also,
the correlations between measured and predicted step counts for the three data
collectors were relatively low.

3.2.4 CenceMe: Supervised Decision Tree over Accelerometer Data. The CenceMe
system [Miluzzo et al. 2007], [Miluzzo et al. 2008] combines inference of activity,
travel, conversation and presence of individuals using a Nokia N95 mobile phone.
This information can then be shared through social networking application such as
Facebook [Facebook, Inc. 2009] and MySpace [MySpace, Inc. 2009]. CenceMe im-
plements a split-level classification scheme whereby inference is run in part on the
phone and in part on a backend server to improve scalability. Activity recognition
is performed directly on the phone using on-board accelerometer data to determine
whether the user is sitting, standing, walking or running. The accelerometer sensor
and event detector are Symbian C++ modules that act as daemons producing data
for corresponding JME client methods. A preprocessing module fetches raw ac-
celerometer data from the local storage component and extracts lightweight features
including the mean, standard deviation and number of peaks of the accelerometer
readings along the three axes of the accelerometer. CenceMe’s inference module is
based on a C4.5 Decision Tree [Quinlan 1993] which is trained off-line on a desk-
top machine because of computational requirements. Decision Trees are tree-like
graphs in which each node stands for a test on the value of a feature and each
branch represents a possible outcome of a test. The class of an instance can be
read by following branches from the root of the decision tree down to one of its
leaves. Decision Trees are easy to interpret and quick heuristics exist to build them.
However, Decision-Tree learning can produce large trees which overfit training data
and do not generalise well. In practice, pruning techniques are used to avoid over-
fitting. In [Miluzzo et al. 2008], the output of the training algorithm is a small
depth-three tree which classifies test instances in less than a second on average on
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the phone.
CenceMe was evaluated in a small-scale supervised experiment involving eight

users, student and faculty from Dartmouth College. These users annotated their
actions over a one week period at intervals of approximately 15 to 30 minutes. With
an average accuracy of 78.89%, reported figures are up to 20% lower than those
reported using custom hardware [Lester et al. 2006]. In particular, the system has
difficulties differentiating between sitting and standing and walking and running.
The position of the phone was found to impact recognition accuracy. Specifically,
holding the phone in a trouser’s pocket or at the belt produces similar results but
having it at a lanyard position yields poor accuracy when classifying sitting and a
slightly lower accuracy for running. The length of the lanyard cord and its type
were also found to affect the results.

The CenceMe system is one of the existing implementations which actually runs
on a mobile phone. However, the techniques implemented are relatively rudimen-
tary and therefore achieve low accuracy even on a custom small-scale controlled
experiment.

3.3 Summary Table

For each system we reviewed, Table I summarises sensor inputs, inference technique,
outputs and evaluation details. It is striking to observe that activity recognition sys-
tems for mobile phones can achieve relatively high accuracy but only address a small
set of human activities. Consequently, many of the applications mentioned in the
introduction section cannot be implemented properly. For example, an automatic
diary unable to recognise meetings would be of little use in an office environment.
In most cases, locations and motion states act as substitutes for activities. The
problem for potential applications is that these approximations can be quite inac-
curate. For example, staying at home does not tell us much about what the user
is doing and being at work is not equivalent to working. It is often believed that
finer activity recognition will be achieved through augmented sensing capabilities.
However, one cannot but notice that certain sensors which have been supported by
standard mobile phones for several years, are still very little used. In particular,
this is the case of the Bluetooth sensor. In theory, Bluetooth short-range communi-
cation could provide very useful information for activity recognition including the
co-presence of mobile Bluetooth devices. For instance, the co-presence in a meet-
ing room of phones belonging to certain team members indicates that a meeting is
taking place. In the next section, we examine what other sensing technologies may
be used for mobile-phone-based activity recognition in the future.

4. PROSPECTS

Each new generation of mobile phones brings advances in both hardware and soft-
ware. Looking at trends in high-end models gives an insight into what may be
available for activity recognition on every mobile phone in the near future. In this
section, we review some work carried out in activity recognition using technologies
which are expected to be widely available on standard mobile phones in the short
term.
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Table I. Comparison of mobile-phone-based activity recognition techniques.

4.1 Extended Sensing Capabilities

High-end mobile phones are equipped with an increased number of sensors. Many
of those sensors have been used for activity recognition on non-mobile-phone-based
systems. We give below some examples of how the GPS, accelerometers and RFID
have helped in activity recognition and discuss their added-value in mobile-phone-
based activity recognition.

4.1.1 Accurate Outdoor Localisation and the Global Positioning System. The
Global Positioning System (GPS) is a global navigation system relying on a con-
stellation of satellites around the Earth that transmit radiowave signals. GPS posi-
tioning has a precision of about 15 metres on the surface of the earth and is widely
used for navigation purposes. Anticipating a boom in localisation services, smart
phone manufacturers have equipped an increasing number of high-end models with
GPS receivers. However, few activity recognition systems for mobile phones make
use of GPS information at the present stage. One notable exception is AniDiary
[Cho et al. 2007] which summarises a user’s day in a cartoon-style diary based
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on GPS localisation mapped to the nearest building. GPS has also been utilised
independently of any mobile phone. Assuming the availability of a street map,
Patterson et al. [Patterson et al. 2004] propose to predict both a person’s location
and mode of transportation to help guide cognitively impaired people safely using
a portable GPS unit. In [Liao et al. 2007], Liao et al. segment a GPS trace in order
to generate a discrete sequence of activity nodes. Specifically, a person’s activity is
labelled everytime he passes through or stays at a 10 metre patch of the environ-
ment. The technique they present is capable of detecting both motional activities
such as walking, driving car and riding bus and locational activities including work,
leisure, sleep, visit, drop off/pickup.

In semi-urban areas, GPS provides an outdoor position with a precision of about
20 metres which allows the systems mentioned above to recognise more varied
locational activities than GSM-based systems. For example, AniDiary attempts to
infer events such as doing sport, eating out and shopping. The higher accuracy of
GPS in outdoor environments makes it possible to delimit finer-grained locations
including shops, hospitals or schools [Cho et al. 2007]. Some of those fine-grained
locations such as parking lots, bus stops, roads and bus lines help in turn determine
fine-grained motional activities including whether the user is in a car or riding a
bus [Patterson et al. 2004], [Liao et al. 2007].

Unfortunately, GPS has been shown to be available for less than 5% of a typical
user’s day [Sohn et al. 2006]. Also, GPS signal is affected by a number of factors
including atmospheric conditions and the local built environment. In particular,
GPS signals reflect off buildings in cities in what is known as the multipath effect.
As a result, the accuracy of activity recognition can be very low. AniDiary, for
example, was tested on 27 days of real data from one student equipped with a Nokia
Series 60 smart phone running the ContextPhone application [Raento et al. 2005].
Its correct detection ratio was only 34.1%. In [Patterson et al. 2004], vehicular
journeys are much better recognised than pedestrian ones. The multipath effect is
indeed known to be easier to eliminate when the user is in a moving vehicle.

Some applications such as Google Latitude [Google, Inc. 2009b] illustrate the
high interest that service providers have in the GPS technology. However, the use
of GPS in activity recognition is conditioned on the availability of high-capacity
batteries. The 1Hz update rate used in [Liao et al. 2007] could indeed easily drain
the battery of a mobile phone in a few hours. In addition, GPS must be sup-
plemented by other technologies in indoor environments. Lastly, the cost of GPS
receivers is still high and GPS-enabled mobile phones are therefore unlikely to be
common around the globe in the very short term. With multilateration, GSM po-
sitioning achieves relatively high precision at no supplementary cost and already
has billions of potential users.

4.1.2 Recognising Body Postures and Motions Using Accelerometers. Beside GPS,
another technology could well bring new advances in motional activity recognition.
Many high-end smart phones are now equipped with accelerometers which measure
the phone acceleration in several directions to allow more natural forms of inter-
action with the user. Moving the phone upwards or downwards can for example
scroll the screen on the Apple iPhone. Accelerometers help recognise body move-
ments, such as standing up, sitting down, laying down, climbing stairs or taking a
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lift, which cannot be achieved using cellular signals alone. CenceMe, for example,
recognises when the user is sitting, standing, walking and running [Miluzzo et al.
2007], [Miluzzo et al. 2008]. Accelerometers have also been used for activity recogni-
tion on body-sensors [Ward et al. 2006] and custom activity recognition platforms
such as the Mobile Sensing Platform (MSP) [Choudhury et al. 2008]. However,
wearing body-sensors can be inconvenient for the user and custom sensing plat-
forms represent an additional investment and device to carry.

The most important technical challenge with accelerometers is their sensitivity
to placement. Body-worn accelerometers were shown to achieve higher posture
recognition when worn at the hip [Bao and Intille 2004] whereas a mobile phone is
often left in a pocket, in a bag or on a desk. Therefore, CenceMe has difficulties
distinguishing between sitting and standing or walking and running when the phone
is held in a trouser’s pocket, at the belt or at a lanyard position. In [Reddy et al.
2008], augmenting an N95’s accelerometer data with GPS information allowed to
determine whether the user is stationary, walking, running, biking, or in motorised
transport without strict position/orientation requirements. However, this work was
based on only twenty hours of data from six users.

Processing accelerometer data induces a significant computational overhead. In
order to make their system work on mobile phones, the designers of CenceMe used
lightweight features and a very simple classification technique which performs 20%
lower than state-of-the-art accelerometer-based behaviour inference [Lester et al.
2006].

Accelerometer-based activity recognition is primarily motivated by healthcare
and assembly applications. In both cases, wearing special equipment is a reasonable
assumption. For everyday activity recognition using mobile phones, placement
seems to be an important constraint which strongly affects recognition accuracy.
In addition to uncertainty relative to the user’s activity, mobile phone systems
would have to handle uncertainty about the placement of the phone.

4.1.3 Activity Recognition through Object Uses and Radio-frequency Identifica-
tion. Radio-frequency Identification (RFID) is a technology which allows the de-
tection of an object using radio waves. Integrated circuits called RFID tags are
incorporated into objects in order to make them detectable by an RFID reader.
There are two types of tags. Active tags embed a battery and can be read from
several metres away while passive tags are inexpensive, have no battery and a
shorter range of about 10 centimetres. Commercial applications of the RFID tech-
nology have been in the field of logistics and include the detection and tracking of
products, animals or people.

RFID has recently been used to recognise activities from object uses in smart
homes [Wu et al. 2007], [Patterson et al. 2005]. Detecting that the user has been
close to certain ingredients and kitchenware, for example, is an indication that
he is currently cooking. The sequence in which objects are used is also useful
information which allows the distinction between close activities such as preparing
different meals. No other existing technology allows such a fine granularity in
activity recognition.

Certain recent phone models such as the Nokia NFC (Near Field Communica-
tion) embed an RFID-compatible reader and tag which allows its users to make
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contactless payments, share media, read tagged posters or use their mobile phones
as tickets. Although no activity recognition system for mobile phones makes use of
the RFID technology at the moment, it is very likely that the new opportunities
offered by RFID-enabled phones will be exploited in the near future.

As in the case of accelerometers, the placement of RFID readers may be a problem
on mobile phones. Passive tags only have a very short range of a few centimetres.
Therefore, detecting objects used when the phone in a trouser’s pocket is very
unlikely. The recent availability of watch phones could however make embedded
RFID readers much closer to objects held in hand.

4.2 Multimedia Activity Recognition

Mobile phones have become multimedia platforms capable of recording audio and
video streams. Many mobile phones are already equipped with one or two cameras
and the number of cameraphones is expected to boom in coming years [Mawston
2008]. Cameras and microphones have both been shown to help identify a person’s
activity. However, for a variety of reasons, few mobile-phone-based activity recog-
nition systems take advantage of audio and video at the moment. In this section,
we give an overview of what is currently achieved in video and audio-based activity
recognition, analyse why these techniques have not been used so far together with
mobile phones and anticipate future applications.

4.2.1 Vision-based Activity Recognition Using Cameraphones. The literature in
vision-based activity recognition is so rich that vision-based activity recognition
can be considered a domain of its own. Vision-based systems apply computer vi-
sion techniques to detect human bodies and their activities usually on videos from
standard surveillance cameras [Robertson and Reid 2006], [Niu et al. 2004], stereo-
cameras [Harville and Li 2004] or infra-red cameras [Han and Bhanu 2005]. Many
vision-based systems such as [Park and Kautz 2008] focus on Activities of Daily
Living which have been shown to be useful in a number of healthcare situations.
One other typical application is to detect falls [Nait-Charif and McKenna 2004],
[Williams et al. 2007] in home settings. A third set of vision-based systems address
office situations and recognise activities in meetings [Wallhoff et al. 2004], [Mc-
Cowan et al. 2005]. Lastly, a large part of vision-based systems attempt to track
pedestrians and detect abnormal or suspicious behaviours, for example, on critical
sites [Bodor et al. 2003].

Although many of the phones sold each year around the world are now cam-
era phones, cameras are still little used by activity recognition systems for mobile
phones. There are several reasons for this. First, unlike surveillance cameras,
embedded cameras are not turned on continuously to preserve the battery of the
phone. Therefore, images available for inference are either captured occasionally
by the user [Cho et al. 2007] or can be captured at regular intervals [Miluzzo et al.
2008]. In any case, most visual inputs are fixed images, not video streams. In
practice this makes computer vision problems such as body or face detection much
harder because many false alarms cannot be filtered out. Secondly, certain image
processing tasks, including segmentation, body detection and tracking are compu-
tationally expensive. Running them in the background of a mobile phone together
with another application in the foreground is challenging. Lastly, images captured
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by camera phones are unconstrained. This is a very important difference with
surveillance cameras which are usually fixed or have a predefined movement. On
such cameras, the background can be subtracted to identify new elements in the
image. This cannot be performed on pictures taken anywhere, at any time and in
varying lighting conditions.

Integrating visual information into activity recognition on mobile phones is a
challenge which has not been seriously taken up so far. The only use of visual
information has been limited to reading the metadata of a photograph [Cho et al.
2007] and computing the overall brightness of an image captured from a mobile
phone using a backend processing tool on a desktop computer [Miluzzo et al. 2007],
[Miluzzo et al. 2008]. With a large part of mobile phones embedding one or two cam-
eras and featuring high computational capabilities, a lot more could be achieved.
However, capturing images automatically throughout the day raises important pri-
vacy issues. In addition, many images would be of little use, for example, when the
phone is in a pocket or in a bag. Opportunistic strategies could be implemented to
take advantage of any image or video captured by the user himself. Alternatively,
the time interval between consecutive snapshots could vary dynamically depending
on context. A better idea may however be to integrate into the activity recognition
process visual information captured by other cameras such as fixed surveillance
cameras or webcams.

4.2.2 Listening to Activities through the Mobile Phone Microphone. One sensor
which has been present in mobile phones since their inception is the microphone.
The amount of information about a person’s activity that can be inferred by a
human listener from a conversation or an audio record is considerable. Bugging
has therefore become common in espionage and police investigations. With its
communication capabilities and built-in microphone, the mobile phone has all the
properties of a covert listening device. Surprisingly, built-in microphones have been
very little used in activity recognition. CenceMe [Miluzzo et al. 2008] uses Matlab
processing on the back end to generate a noise index from audio samples captured on
N80 and N95’s microphones. Using a voice detection algorithm on audio streams
captured from a phone in the user’s pocket in custom experiments, the system
correctly detects if the user is engaged in a conversation with an accuracy of almost
80%. Other examples of mobile microphones used for activity recognition include
the MSP [Choudhury et al. 2008] and body-worn microphones [Ward et al. 2006] in
industrial environments where certain activities such sawing, hammering, or drilling
have a distinctive audio fingerprint. However, low recall and precision rates of 66%
and 63%, respectively, were obtained.

Capturing and processing audio faces similar privacy and technical issues as pro-
cessing video streams. Capturing audio through the phone’s built-in microphone
is battery-consuming and processing the input to detect speech or activity finger-
prints involves heavy signal processing. However, unlike cameras, microphones do
not necessarily need to be oriented accurately and their placement seems to be less
critical for certain tasks such as conversation detection [Miluzzo et al. 2008]. The
main obstacles to activity listening are therefore the battery capacity and processing
capabilities of mobile phones, which will inevitably increase in the coming years.
It can therefore be expected that built-in microphones will be used for activity
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recognition in the short term with great benefits.

4.3 Discussion

As more and more sensing technologies are integrated into high-end mobile phones,
the question of their use in activity recognition cannot be avoided. GPS, accelerom-
eters and RFID used independently of any mobile phone, have been shown to al-
low the distinction of activities which have not been distinguished using cellular,
Bluetooth or Wi-Fi signals alone. It can be expected that in the coming years,
fine-grained locational and motional activities will be distinguished using GPS and
accelerometers, respectively. The case of RFID is somewhat different since inte-
grated RFID readers are constrained by the fact that mobile phones are most often
carried in a pocket or handbag and therefore out of RFID range for passive tags
incorporated in everyday objects. In addition, the use of RFID is actually condi-
tioned on the wide integration of RFID tags in everyday objects, which is still to
happen.

In order to go beyond locational and motional activity recognition, multimedia
technologies already present in today’s phones seem to be the best way. Today’s
smart phones feature computational capabilities equivalent to that of standard desk-
top machine only ten years ago. It therefore becomes possible to process video and
sound signals directly on the device. The major limitations then become battery
power and privacy issues. The increase in capacity of mobile phone batteries in re-
cent years indicates that it is only a matter of time before continuous audio streams
can be recorded and processed throughout the day. Audio processing could provide
not only voice and event detection but also speaker and speech recognition, opening
the way to text mining on transcriptions – even if those transcriptions are incom-
plete or noisy. The Google Voice application for mobile phones already allows the
transcription of voicemail into text [Google, Inc. 2009c]. Supplementing location
and co-presence with information about the content of conversations would allow
the recognition of new activities such making a presentation, introducing somebody,
chatting about a particular topic, or even saying a prayer, with obvious privacy
implications.

Existing activity recognition systems for mobile phones only capture information
from embedded sensors. For certain sensors, such as cameras, the built-in placement
may not be optimal. Integrating external sensors such as webcams or computer
microphones into activity recognition through network connectivity may need to
be considered. Such an approach actually better corresponds to the original visions
of ubiquitous computing [Weiser 1991] and would be a sign of the shift from mobile
to ubiquitous computing.

In any case, the integration of additional sensors has a cost in terms of battery,
memory and computational resources. It is therefore necessary to balance this cost
with expected benefits for activity recognition. In certain cases, the information
provided by two sensors can be redundant. GSM localisation for example can
achieve high accuracy in cities through multilateration without the need of GPS.
In other cases, sensor readings can be complementary. For example, multimodal
sensing has been shown to offset the information lost when sensor readings are
collected from a single location [Maurer et al. 2006], [Lester et al. 2006]. Also,
combining several location-sensing modalities increases coverage [Papliatseyeu and
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Ibarra 2008]. Lastly, considering two cues can help differentiate between more
activities. Combining accelerometer data and GSM localisation can for instance
help differentiate between several sitting activities such as reading at the library,
working at the office computer, or having lunch at the restaurant. Determining the
subset of sensors which are most useful and least redundant for the recognition of
a given set of activities is an important question which has not been methodically
addressed yet.

5. RESEARCH CHALLENGES

Given the extended sensing and computational capabilities of today’s smart phones
and the potential benefits of activity recognition, one could legitimately ask why ac-
tivity recognition systems have not made it into the mainstream market yet. There
are of course certain privacy issues associated to following people’s behaviour con-
tinuously through their mobile phones. However, it is striking to observe that
location-based services, which face similar privacy issues, are gaining considerable
momentum at the same time. In this section, we discuss obstacles to the develop-
ment of mobile-phone-based activity recognition and make out some directions for
future research.

5.1 Handling Missing Data

There are many reasons for a mobile phone to stop collecting data. Some of these
reasons are due to fundamental constraints of mobile phones such as limited battery
life. GSM signals may also be unavailable in certain indoor locations. Lastly, the
user may decide to shut down his device, for example, in a theatre. In all these
cases, whether logs are kept locally on the phone or remotely by the operator makes
no difference. Local logging also has to face specific problems such as memory con-
sumption, unstable operating systems and conflicts with other applications which
may cause the logging daemon to crash or malfunction. In order to recognise the
user’s activity over long intervals of missing data, one has to make use of long-range
information.

5.2 Exploiting Long-range Dependencies

Looking several hours back in time can often help recognise a user’s activity [Chou-
jaa and Dulay 2009]. For example, the user commuting to work in the morning is
a strong indication that he will commute back home in the evening, whatever he
may do in the meantime. Similarly, if the user came back home late at night, he is
unlikely to wake up and go to work early the next morning.

This type of common-sense reasoning performed by early logic-based plan infer-
ence systems is paradoxically out-of-reach for current statistical activity recognition
models which ignore any long-range relationship between activities. For example,
most probabilistic activity recognition models only consider dependencies between
variables at a small number of subsequent time slices, typically one or two. In par-
ticular, this is the case of Hidden Markov Models and Dynamic Bayesian Networks
designed for activity recognition. By ignoring longer-range dependencies, research
in activity recognition misses out one of the specific advantages of the mobile phone
platform, that is, its ability to record sensor data continuously throughout the user’s
day.
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5.3 Exploiting Interpersonal Dependencies

There are many reasons why the behaviours of individuals belonging to the same
group or community should be related. Students attending the same classes have to
be at the same lecture halls at the same times. Friends having lunch together meet
at agreed times on a regular basis and go to the same restaurant. Work meetings
gather work colleagues at a given place for the same duration. In [Pentland 2007],
affiliations and ’close’ friendships in the Reality Mining dataset were accurately
identified from the conditional probability of a participant’s activity given other
participants’ activities at the previous time slice. Combined with proximity data,
the conditional probability structure of location data was also shown to help predict
whether two conference attendees were affiliated with the same company [Gips and
Pentland 2006]. However, the extent to which a person’s activity can be predicted
from related people’s activities throughout the day and the week requires further
research.

5.4 Overcoming Temporal Variations in Human Behaviour

The time spent on activities varies from one day to the next, even if those days
follow the same daily pattern. For example, a user may stay longer at work on a
particular working day because of extra work or technical difficulties in the public
transport system. Similarly, a user may spend longer at the restaurant if he has
a guest. The reasons behind temporal variations are diverse and not necessarily
detectable in mobile phone data.

Temporal variations make the comparison of human behaviours more difficult.
Simple approaches such as comparing the user’s activity at fixed times on different
days do not work well. The standard approach to accommodate for temporal
variations in human behaviour is to consider coarse-grained time slots. In [Farrahi
and Gatica-Perez 2008a], for example, the following eight coarse-grained time slots
are introduced: 0-7am, 7-9am, 9-11am, 11am-2pm, 2-5pm, 5-7pm, 7-9pm, and 9-
12pm. These coarse-grained time slots do remove some minor temporal differences
between daily routines but this is achieved at the price of a much lower temporal
resolution and the boundaries of these time slots are arbitrary. Accommodating for
temporal variations without sacrificing temporal accuracy is an open problem.

5.5 Evaluating Activity Recognition in Applications

The present basis for the evaluation of activity recognition systems is the exact
match. This criterion is appealingly simple but suffers some serious drawbacks. For
example, let us consider an activity recognition system that distinguishes between
staying stationary, walking and running. Outputting walking instead of running is
considered equally erroneous as outputting staying stationary. However, if the final
application is to estimate the user’s physical expenditure, the first error is clearly
less critical than the second.

Activity recognition is most often an intermediate task contributing to a larger
application. Therefore, two kinds of evaluations can be carried out. First, one
may assess the contribution of activity recognition to a specific application. This
approach is particularly suited when the contribution of activities to the final appli-
cation is indirect or difficult to perceive, for example, when the user’s activity is an
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item of context among others. Secondly, activity recognition systems may be tested
independently of any application on testbeds specifically designed for this purpose.
Most mobile-phone-based activity recognition systems are tested using the second
approach which allows deeper understanding of difficulties and guarantees that an
activity recognition technique can be employed in diverse situations. However, it
also demands a certain consensus on test activities.

5.6 Establishing a Standard Set of Activities

Mobile-phone-based activity recognition is not yet standardised. Many studies in
activity recognition using body sensors and video cameras focus on a subset of the
well-defined Activities of Daily Living (ADL) [Katz et al. 1963], [Katz 1983] which
have been shown to help in healthcare, for example [enotes.com, Inc. 2009]. No
consensual set of activities has yet emerged in mobile-phone-based activity recog-
nition. There are at least two reasons to this. First, mobile phone hardware
evolves so rapidly that authors cannot predict what will be achievable medium
term. For example, a whole new range of opportunities will open up if standard
mobile phones are equipped with accelerometers. Secondly, potential applications
for mobile-phone-based activity recognition are very diverse. Therefore, it is dif-
ficult to define a single set of activities that would be suitable for all of them.
Nevertheless, it seems that identifying some useful activities which can be recog-
nised using today’s mobile phones would have the benefit of setting an objective
and guiding research efforts.

5.7 Collecting Reference Testbeds

Research in mobile-phone-based activity recognition is short of publicly-available
datasets and reference testbeds. Gathering real-life context and activity data faces
four major problems. First, designing an application which needs to run robustly
for long hours on a mobile phone demands specific programming skills. Secondly,
technical difficulties may arise both in hardware and software during data collection.
Thirdly, logging activities requires considerable user involvement and reporting.
Typically, users forget to charge or carry their devices and report sparse or erroneous
information [Eagle and Pentland 2006]. Lastly, some pieces of context information
are personal. Considering potential misuses of personal data, logging an individual’s
successive locations, contacts and activities raises legitimate concerns.

Privacy issues are often used as an argument against the public release of an
existing dataset. This situation prevents a lot of experiments from being repeated.
As a result, it is actually difficult to tell whether mobile-phone-based activity recog-
nition is actually making any progress. Publishing anonymised versions of existing
datasets would be a driver for reasearch in mobile-phone-based activity recognition
and allow existing systems to be compared on the same testbed. In that respect,
the CRAWDAD initiative [Yeo et al. 2006] for location data is exemplary.

6. CONCLUSION

As a research field, mobile-phone-based activity recognition is still relatively im-
mature. In particular, the absence of reference testbeds and the vagueness of its
objective are revealing. However, we believe that the task could be instrumental in
the realisation of the ubiquitous computing vision. First, the mobile phone is one
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of the few truly ubiquitous technologies and features increasing communication,
sensing and processing capabilities. Secondly, human activity recognition plays a
key role in the initial visions of ubiquitous computing. Virtually all intelligent in-
teractions envisioned in ubiquitous computing involve inferring what the user is
doing at some point. Taking up the challenges offered by activity recognition from
mobile phone data could therefore benefit a wide range of researchers.

It is wrong to believe that advances in mobile phone hardware will be sufficient
to succeed in the task. Additional inputs do not always have a positive impact
on inference and initial experiments with expected sensing technologies do not
necessarily generalise well to the mobile phone platform. In order to make full
advantage of available context information, new modelling approaches are required.
In particular, current inference models have difficulties with missing data, ignore
obvious long-range and interpersonal dependencies in human behaviour and are
sensitive to temporal variations.

Ultimately, the development of accurate human activity recognition using mobile
phones is conditioned upon the public availability of large and reliable datasets. In
that respect, examples of collaborations with mobile phone operators for data col-
lection are still very rare. Also, unlike researchers in certain other fields, researchers
in mobile-phone-based activity recognition are not yet accustomed to making their
evaluation data available to other researchers for comparison.
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