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Abstract. Pervasive workflows focus on encoding human-centric pro-
cesses in pervasive domains, such as patient care. One of the main char-
acteristics of these processes is that they have a number of support tasks,
which are recommended but not mandatory. However support tasks’ ini-
tiations are dependent not only on intra-workflow events, but mainly on
inter-workflow and external contextual events. Current workflow models,
however, do not address the issue of encoding task instantiations as a
result of narrative of contextual events, nor do they support the notion
of sharing a task between different processes.
This paper presents a language for encoding support tasks initiations
based on C+. Our approach is divorced from any particular workflow
model and can be used to complement the current workflow models.
Furthermore, we also introduce two support task modalities, should and
must, to differentiate between their urgencies. However, based on the
context these modalities can change dynamically and are not static like
the concept of a task.
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1 Introduction

Workflow models and languages have been successfully applied in encoding and
enacting business processes and service compositions. Their defining characteristic
is that they tend to be well defined and understood. Workflow languages and
models can be roughly split into two groups: (1) structured workflows where the
structure of the workflow process is well defined and thus it is used to implicitly
drive the execution, and (2) constraint-based workflows where the structure is
not the dominant driving force but the inter-task constraints are well defined
and understood and thus they are the driving force. Pervasive workflow models
have simply adopted these two approaches to encode processes for pervasive
domains [20].

Both structured and constraint-based workflows tend to view a workflow
as set of tasks, such that task executions are not shared between a group of
different workflows, in other words the task constraints are defined only over the
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intra-workflow dependencies. These assumptions are well suited for the business
and service domains, however in pervasive domains where workflows attempt to
encode human-centric processes, these assumptions can rarely be made.

One of the main characteristics of human-centric processes is that they have
a number of assistance tasks, which are recommended but not mandatory, whose
initiation is dependent not only on intra-workflow events, but also on inter-
workflow and external contextual events, and furthermore can depend solely on
these external events. For example, in patient care tasks such as: administrating
drugs and prescribed treatments, and obtaining consents are tasks that are
strictly needed to ensure that the patient is taken care of. However, during the
execution of these mandatory tasks, it is also desirable to change the bedding
every so often, clean the medical instruments, check the nutrition intake and so
forth. These tasks are not mandatory but overall their completion contributes
towards a better care.

In this paper we introduce the term support task to refer to tasks that do
not directly contribute to the workflow’s goal but contribute towards a better
quality of the service provided by that workflow or a group of workflows. Current
workflow models do have a notion of an “optional” task which is a task that may
be omitted due to different paths a workflow may take towards its completion. In
this sense support tasks subsume this notion, and extend it further by allowing
a support task to be shared between workflows, to be instantiated through a
wider range of events (constraints) and finally insisting that every support task
is instantiated with a certain modality. Where a modality indicates what the
consequences of ignoring a support task are. Optional tasks do not have this
notion since ignoring them means that the workflow will take another path to its
completion, while in the case of a more general support task, a user needs to be
aware of how much the quality of the achieved goal will suffer.

One candidate for encoding support tasks within workflows would be constraint-
based workflows [13,16], where the constraints are specified over the intra-workflow
task dependencies. However even if the constraints were extended, the underlying
semantics of these languages, based on LTL, would still make encoding support
tasks’ constraints (such as the ones presented in Section II) much harder and less
intuitive than the approach this paper advocates. Another appropriate candidate
are Event-Condition-Action (ECA) rules-based workflows [10,11]. These models
are based on “traditional” ECA rules as found in active databases [14]. This
paradigm considers each rule as an independent entity that can initiate an action
as soon as the correct event narrative is recognised and the rules do not have a
semantic model to encode how and which states are persisted in the absence of
events. This makes traditional ECA rules a low-level enforcement tool rather than
a high-level language which is needed to capture the support task executions.

This paper’s contribution is to advocate the C+ language [9] as a syntactic
and semantic model for encoding conditional initiation and termination of sup-
port tasks. However instead of proposing yet another formalism for specifying
workflows, we see this language as an add-on to the current workflow models
thus supplementing them to in order to cater for the specific needs of support
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tasks. The language C+ is an AI formalism for reasoning about the causal effects
of actions on the system’s states. It has a very simple rule-based syntax that can
easily and intuitively capture various instantiation conditions and modalities. We
further propose two base modalities should and must for support tasks to encode
their urgencies. C+ is used to encode how various event narratives initiate and
terminate support tasks and also how they influence their modalities.

In summary the contributions of this paper are primarily twofold: (1) Defining
an extended notion of a “non-compulsory” task called “support” tasks for use
in pervasive workflows, and (2) Proposing a formal model using the language
C+ to encode the enactment of support task in a more flexible way than current
workflow models provide.

2 Case Study: Pervasive Patient Care

Before we give a more detailed definition of a support task, we would like to
illustrate their defining characteristics in pervasive domains with focus on patient
care in a hospital’s surgical ward and in particular we draw upon the investigations
done within the ALLOW project (funded by the EU FP7 programme) for the
Surgical Hospital in Hannover. As a running example, we shall use the workflow
depicted in the Figure 1.

Fig. 1. Patient’s Workflow of Nursing Procedures for a Day Shift

The presented workflow is done either by the patient’s primary nurse or an
assigned nurse and it schedules four medical procedures to be done within the
current shift:

1. Epidural Analgesia – is a pain management procedure which consists of
administrating analgesics into the epidural space of the spinal cord. A nurse’s
role is to administrate the drug, such as diamorphine, and monitor for any
allergic or unexpected effects.

2. Lumbar Puncture – a procedure which involves withdrawing cerebrospinal
fluid. The nurse’s role includes preparing the patient, and doing the follow-up
monitoring.

3. Blood Transfusion – a nurse’s role consists of checking that the patient’s
record and the blood are in accord, and setting up the apparatus.

4. Preoperative Care – a nurse’s role in this procedure consists of skin prepara-
tion, checks of various forms and consents that need to be signed.
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This is an example of one workflow focused on a particular patient, but the patient
can have many other similar workflows given to patient’s doctor or other care
givers. However simply carrying out these medical procedures (i.e. executing the
given workflow) without recognising the “humanity” of a patient is not nursing [8].
It is additional little things, such as: cleaning and helping with the patient’s
hygiene, that have been described as having a profound effect for recovery and,
indeed, for cure. In addition to these the Hannover hospital also insists on the
following normative regulations regarding the patient care:

1. A nurse should take a photo after every procedure on patients with flesh
wounds. This must be done at least once per day for patients with open flesh
wounds.

2. A nurse must use appropriate masks, gloves and gowns if dealing with
patients with highly-infectious diseases.

3. A nurse should check daily the patient’s weight and food in-take.
4. A nurse should update a patient’s record after all drug injections and blood

transfusions, recording any side effects. This must be done before the start
of a new shift.

We hope that this subset of regulations gives a feel for the kind of tasks that
pervade every patient-care workflow. It is precisely these kind of tasks that we
consider as support tasks since their execution is not tied into a particular goal
oriented workflow such as the one presented in the Figure 1. or any other patient
care workflows. But clearly there is a strong dependency between these tasks and
all other patient care workflows.

3 Support Tasks and Norms

The previous section attempted to descriptively introduce a notion a support task
and this section gives a more precise definition of such tasks and their modalities.
We also provide an overview of how support tasks can be used with existing
workflow engines. First we introduce some preliminary definitions regarding
workflows and their goals that will help us clearly mark the difference between
support tasks and typical workflow tasks.

Fig. 2. A simple workflow

Definition 1 A workflow instance w is represented by a set Sw
P of workflow

paths Pw where each path is a finite sequence of tasks.
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Definition 2 A workflow path Pw is defined by a workflow goal Gw that it leads
to. It follows that a workflow instance has a set of goals Sw

G that it can achieve.

Clearly different paths may share some of their tasks and they may also lead to
a same goal.

Definition 3 A workflow w’s task is a goal task if its removal from all the paths
that contain it, prevents the workflow from reaching the goals defined by those
paths.

Definition 4 A support task is a workflow task such that its removal from all
the paths that contain it, does not prevent the workflow from reaching the goals
defined by those paths.

The workflow depicted in Figure 2 consists of two paths namely {a, b, c, d} and
{a, c, d} and let us take the execution of the task d as the goal of the workflow.
In this case skipping the task b does not influence the reachability of the goal but
it can influence the way the goal has been reached and thus the overall quality of
the service provided by the workflow. Hence in this example b is considered to be
a support task. However if the two paths had different goals then b would be a
goal task instead. Viewed in this light support tasks share a lot of with optional
or non-compulsory tasks as found in both structured and constrained-based
workflows.

However as presented in the case study the support tasks are instantiated
based on the narrative of both contextual events and workflow events (describing
a workflow’s execution progress), and they are tasks that can be executed as part
of any workflow whose goal is “enhanced” through the execution of that support
task. It is important to notice that once executed, a particular support task may
not have to to be re-executed in all the workflows that share the same goal. In
other words one instance of a task can be shared by a group of workflows. This
is most clearly seen in the patient-care domain where the goal is to treat the
patient and as such the patient is the focus of many workflows, therefore changing
the bed could be done in any workflow instance focused on that patient. Thus
the main difference between optional tasks and support tasks lies not in their
“non-compulsory” nature which they share, but in the way they are instantiated
and attached to workflows. We can summarise these differences as:

1. Instantiation – Optional tasks are not instantiated by constraint-based
workflow models. In structured workflow models they are instantiated only
when a particular workflow execution point has been reached (e.g. an if or
parallel construct. On the other hand, support tasks are instantiated by
a narrative of context and workflow events, not necessarily tied to a fixed
execution point.

2. Attachment – Optional tasks are treated as typical workflow tasks belonging
to a particular workflow instance. On the other hand support tasks are usually
not confined to a workflow but to a set of workflows.
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3. Modality – Each support task has an associated modality indicating how it
effects the quality of the goal. There is no such notion for optional tasks. We
expand on the modalities in the next sub-section.

For these three reasons we have chosen to introduce the term “support” task
to highlight the differences with the established notions underpinning the “non-
compulsory” tasks found in structured and constraint-based workflows. We
further introduce a notion of a support norm which, intuitively, represents a
policy that specifies under which conditions a support task is either instantiated
or terminated and what modality the support task has once instantiated. For
example, in the presented use-case, each regulation can be considered a support
norm.

3.1 Support Task Modalities

This paper uses the term modality as an indicator of what the effects are of
ignoring a particular instantiated support task. It then follows that whenever a
support task is instantiated it must always be done so with a certain modality. In
this paper, we have identified two distinct modalities for support tasks’ executions,
namely: should, and must. The Table 1 summarises the differences between their
potential effects and thus it gives semantic interpretations of the modalities with
respect to the quality of the provided service.

Table 1. Task modalities and the effects of delaying/ignoring those support tasks.

Modality Ignoring/Delaying

Should No effect

Must Negative effect

Ignoring or delaying a should task will have no effect on the quality of the
service, but ignoring the must task has a negative effect on the quality. The
negative effect means that the quality achieved solely by the goal tasks will
be further devalued by this ignorance. Please note that the goal can still be
achieved even if all the must and should tasks are ignored. Clearly the number of
modalities and their quantification is highly domain specific, but we feel that the
mentioned two modalities can be taken as core modalities which can be further
specialised and their effects quantified in a particular domain.

4 Architecture Overview

As it has been aforementioned, support norms are not meant to replace a particular
workflow language but rather to supplement them by providing a way to encode
their initiations which, as argued, are not easily captured with the workflow
languages. Following this ethos we propose that this separation is extended into
the implemented system’s architecture, as depicted in Fig. 3.
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Fig. 3. System Architecture

The Workflow Services in Figure 3 essentially partitions support tasks’ and
goal tasks’ initiations between the Norms engine and the Workflow engine respec-
tively. The Workflow Engine drives the execution of workflows defined through a
workflow language, while the Norms Engine collects the events from the environ-
ment (as well as from the Workflow Engine) and initiates or terminates support
tasks. Both of these engines notify the Task Engine about which tasks have
been initiated. The Task Engine is a separate, standalone component supporting
creation and management of tasks carried out by a person. Therefore the Task
Engine serves as a broker between tasks emerging from workflows and users
performing these tasks. The Task Engine is provided with task execution context
which further contains the workflow identifier (of which the task is part of), the
role or the user for which the task is intended and possibly other information.
This contextual information is used by the Task Engine to schedule and notify
users about the new tasks that have become available.

Following the presented case study, the Data Services in the Figure 3 represent
knowledge bases containing patient data, hospital records and environment data.
The environment data is the contextual data containing information such as
physical actions that nurses are doing and what the state of the environment is.
The physical actions are either recorded manually for example by ticking the
actions on a mobile device or recorded automatically by a context recognition
system (cf. [20]). Beside the nurses’ actions the system can also capture additional
information such as heart monitoring and so forth.

In our current prototype implementation we have used the iCCalc tool3

together with Yap Prolog version 64 (both of which are publicly available) as our
Norms Engine. The evaluation of a particular norm can result in different events
in the system. If a nurse has checked the patient’s weight only once, a support
task is instantiated at the Task Engine telling that nurse that the patient’s
weight should be checked at a later time as well. The evaluation can also result
in a change of a task’s modality. For example whenever the nurse conducts a
procedure on a patient with a flesh wound, the support task “take a photo” is
instantiated with modality should. If the system detects that the nurse conduct’s

3 http://www.doc.ic.ac.uk/˜rac101/iccalc/
4 http://www.dcc.fc.up.pt/˜vsc/Yap/
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the last procedure on that patient on this day and still has not taken a photo of
the wound, the modality of the task is changed to must. The next two sections
will detail how the norms are encoded and evaluated.

For the implementation of the Workflow engine, we use the Apache ODE5

open source engine. In our current prototype all contextual events are simulated
and in for our future work within the Allow project, we are currently assessing
how our current prototype implementation can be deployed and tested in the
real world environment.

5 Specifying Support Norms: Syntax and Semantics

Management of support tasks’ executions is encoded as a set of support norms. In
essence the norms are declarative rules that govern the Norms Engine’s interaction
with the Task Engine and this interaction can be summarised as two operations:
add a support task, and remove a support task. However, it is often useful to
specify integrity rules as well to indicate which support tasks (and with which
modality) cannot be initiated at the same time. Therefore we define three types
of support norms, namely:

– Initiation Norms – Specify under which conditions a support task is
initiated, i.e. added to the Task Engine.

– Termination Norms – Specify under which conditions a support task is
terminated, i.e. removed from the Task Engine.

Clearly support norms will be based on the context information and workflows of
the application. Therefore we need a notion of a system state , which intuitively,
represents a snapshot of the context and workflow execution information.

To formally capture a system state, we use a multi-valued propositional
signature σ, which is a set of constants, where each constant has a non-empty
set dom(c) of values called the domain of c. An atom of a signature σ is an
expression of a form c = v (c has value v) such that c ∈ σ and v ∈ dom(c). A
boolean constant has {true, false} as its domain. We write ¬c for c = false,
and c for c = true. A formula ψ of σ is any propositional formula of atoms of
σ. An interpretation of a σ is a function that maps every constant c to a value
in dom(c). An interpretation, I satisfies an atom c = v if I(c) = v, written as
I |= c = v. The satisfaction relation is extended to formulae of σ according to
the usual truth tables for propositional connectives. I(σ) stands for the set of all
interpretations of σ. Please note that two interpretations that assign the same
values for all σ’s constants are indistinguishable and in fact represent the same
state.

It follows that the Norms Engine needs to determine which state the system
is in (i.e. form an interpretation) and simply evaluate norms against it. We will
freely employ variables which have a finite domain when specifying constants. So

5 http://ode.apache.org/
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for example to say that a system state contains constants that describe locations
of all nurses we can simply say:

X ∈ {nurseA, nurseB}
dom(location(X)) = {ward, reception, operating theatre}

Furthermore, in order to enable the Norms Engine to correctly relate event
occurrences in the environment to the new system state (that the system may
have moved to), we need to specify Domain rules. Intuitively a domain rule
specifies how system constants change, from one state to another, in response
to events and actions in the environment. These three aspects: support norms,
system states’ signature, and domain rules define all the necessary information
that the Norms Engine needs in order to dynamically initiate and terminate
support tasks and to this end we define a support policy as:

Definition 5 A support policy P is a triple (πP , σP , δP ) where πP is a finite set
of support norms, σP is a multi-valued propositional signature, and δP is a finite
set of domain rules.

Definition 6 Support policy P ’s signature σP is defined as: σs
P ∪σd

P ∪σa
P where

all three subsets are disjoint.

σa
P contains constants that describe various actions and events that the Norms

Engine is subscribed to. For example constant start(Ag, T,W ) says that an event
has been fired to say that agent Ag has started executing task T within the
workflow W. σd

P contains constants that capture values of the domain-specific
properties, such as locations of nurses, or historic information regarding workflow
executions such as done(T,W ) which specifies which tasks have been executed
within workflow W. Both of these sets are defined by the policy writer and are
quite domain specific.

On the other hand the constant set σs
P is a fixed set consisting of two constants:

should(Ag, Ts,W ) and must(Ag, Ts,W ). These two constants are used to convey
which support tasks Ts are initiated/terminated for an agent Ag, and to which
workflow they are attached to. The notion of an “agent” is not necessarily linked
to a particular person, it can represent a role or a group.

The syntax for support norms π and domain rules δ, as well as the semantics
for automated evaluation of these norms and rules over the system’s states (given
by σ) will be underpinned by the C+ language [9]. C+ falls within the umbrella
of action languages and is used to formulate and describe effects of actions and
events on fluents, where a fluent represents a state of a particular property in the
system that is being modelled. An appealing aspect of C+ is that it has a very
intuitive syntax to specify causal laws which describe how fluents are changed by
a narrative of events and actions. Its semantics can be given in two equivalent
ways: 1) Descriptive – by defining a labelled transition system (LTS) to capture
how the fluents change [4] , and 2) Executable – by translating the language into
a set of propositional sentences [9]. We also refer a reader to a very good and
succinct introduction to C+ as given in [5].
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Definition 7 A 〈S,A,R〉 is said to be an interpretation of P ’s σP iff:

– S – a set of system states, where each state is an interpretation of σs ∪ σd.
– A – a set of transition events where A = I(σa).
– R – a set of labelled transitions; R ⊆ S ×A× S.

This description of an LTS over σP matches the definition of an LTS given by
C+ over the same multi-valued signature (as presented in [4]).

An event ε is executable in the state s when there is a transition (si, ε, si+1).
A path/run of length m of the 〈S,A,R〉 is a sequence s0ε0s1...sm−1εm−1sm, such
that m ≥ 0 and (si, ε, si+1) ∈ R for i ∈ 1..m. Thus given a current systen state s
the Norms Engine semantically interprets the σs constants in the following way:

– s |= should(Ag, Ts,W ) – the support task Ts (attached to W ) is initiated for
an agent Ag with the should modality.

– s |= must(Ag, Ts,W ) – the support task Ts (attached to W ) is initiated for
the agent Ag with the must modality.

– s |= ¬(should(Ag, Ts,W )∨must(Ag, Ts,W )) – the support task Ts (attached
to W ) is not initiated, in other words it is terminated.

The Norms Engine needs to be given one LTS defined over σP , which will provide
a formal semantics (both descriptive and executable) for a support policy P . We
refer to this preferred LTS as a model of P . However before formally defining a
model for a support policy P , we introduce the syntax and the semantics behind
the support norms and domain rules.

Definition 8 An initiation/termination support norm is defined as:

caused [¬][should/must](Ag, Ts,W ) if ψ after φ

where ψ is a formula of signature σd∪σs; φ is a formula of signature σd∪σs∪σa.

If the σs’s atom is preceded by a ¬ sign we refer to it as a termination norm,
and if not then it is an initiation norm. Intuitively, the constant should/must is
caused to be set/unset in a state si+1, after any transition (si, α, si+1) such that
si+1 |= ψ and si ∪ α |= φ. If φ is omitted, T (truth constant) is added implicitly
to indicate that the norm is applied after any transition.

Support norms have a 1-to-1 correspondence with C+’s dynamic laws in both
the syntax and the semantics. Furthermore all support constants are inertial
which means that after following domain rules are automatically added to every
support policy:

caused should(Ag, Ts,W ) if should(Ag, Ts,W ) after should(Ag, Ts,W )

caused ¬should(Ag, Ts,W ) if ¬should(Ag, Ts,W ) after ¬should(Ag, Ts,W )

and similarly for the must constant. Intuitively these laws indirectly persist an
initiated or terminated task unless they are explicitly changed by some transition.
This represents a form of non-monotonic reasoning since by default all tasks’
initiations/terminations continue persisting until known otherwise. This is clearly
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a very useful property to have since this means that the policy writer does not
have to burden himself of making sure that initiated tasks remain initiated until
terminated, this is now implicit.

Given this syntax we can encode the Regulation 4 from our Case Study
through the following norms:

caused should(N,update record(P ),WP ) if done(N,T,WP ) ∧ drug based(T )

caused must(N,update record(P ),WP ) if ¬inShift(N) after should(N,update record(P ),WP )

caused ¬[should/must](N,update record(P ),WP ) if done(N,update record(P ),WP )

The first rule can be read as: a support task update record for a patient P is
initiated for a nurse N and is attached to WP if drug based task T is done within
that patient’s workflow or workflow groups. The second rule initiates the must
modality for the update record task if the nurse has finished her shift and she
still hasn’t competed the support task. The readings for other rules follow the
similar interpretations. WP can represent either a specific workflow or, as we have
implemented it, a group of workflows that have the patient P as their focus. In
this way any workflow that N is doing for P will have update record as one of its
tasks. Thus a support task does not have to have a “fixed” workflow attachment.

Notice that this encoding can leave the task update record(P ) initiated with
both modalities since once the nurse is not in her shift the must modality is
initiated but the should modality is not terminated. We could attempt to say
that should modality is terminated by the nurse not being in her shift, but this
would be a burden on the policy writer as he has to be careful when specifying
conditions and especially when changing them. What the policy writer would
really like to say is that the must modality overrides the should modality and we
can simply add additional termination norm such as:

caused ¬should(N,update record(P ),WP ) if must(N,update record(P ),WP )

to capture this requirement. Notice that using the same norms we have added
“integrity” constraints that prevent dual modality being initiated and we also
specify which one is preferred. We can use a similar strategy to describe overriding
between support tasks, which can be used to implement priority ordering of tasks.
For example let us imagine that in the presented case study we would like to
instruct the nurse to take photos of a patient’s flesh wounds (constant a) before
the checking of the patient’s food in-take (constant b). This can be encoded using:

caused should(N, a(P ),WP ) if hasF leshWound(P ) ∧ ¬done(a(P ),WP )

caused should(N, b(P ),WP ) if ¬done(b(P ),WP ) ∧ ¬overriden(b(P ),WP )

caused overriden(b(P ),WP ) if should(N, a(P ),WP )

caused ¬overriden(b(P ),WP ) if ¬should(N, a(P ),WP )

Also notice that in these rules even though a support task is initiated for all
nurses, if only one of them needs to do it, as opposed to the update record task.
However we can change this to say that two nurses need to check the food in-take.
To do this we will use domain rules to further refine the done(b(P ),WP constant.
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Definition 9 A domain rule is defined as:

caused c = v if ψ after φ

where c ∈ σd and v ∈ dom(c); ψ is a formula of signature σd ∪σs; φ is a formula
of signature σd ∪ σs ∪ σa.

The semantics follow the same idea as the ones for support norms and we also
make all domain constants inertial as well. And returning to our example we
simply say:

caused finished(N1, b(P ),WP ) if > after finishes(N1, b(P ),WP )

caused done(b(P ),WP ) if finished(N1, b(P ),WP ) after finishes(N2, t) ∧N2 6= N1

A policy writer may wish add additional “meta” norms, that manage global
aspects of how tasks are terminated or initiated. For example it may be the case
that a should support task is terminated after a workflow to which it is attached
has been finished. These kind of concerns can also be captured with a terminate
support norm in the following way:

caused ¬should(Ag, T,W ) if finished(W ) ∧ attached(T,W )

But this will persist any support tasks initiated with the must modality if they
are still waiting execution.

As we have noted at the beginning of this section many LTSs can be defined
over a support policy P ’s signature σP . However, we would like to define an
LTS where all transitions follow the described meaning of support norms π and
domain rules δ. We refer to such an LTS as the model MP of the support policy
P . For a support policy P the following sets can be defined:

E(s, ε, s′) =def {c = v | c = v is a head in πP ∪ δP , s′ |= ψ, s ∪ ε |= φ}

Definition 10 Given a support policy P , an interpretation s is a state of MP

iff s is an interpretation of σs∪d
P .

Definition 11 Given a support policy P , (s, ε, s′) is a transition of MP , where
s and s′ are interpretations of σs∪d and ε of σa, iff s′ |= E(s, ε, s′).

Lemma 1. A support policy P has exactly one model MP .

Proof. First we observe all potential models must agree on all their states by
definition 10. If there are no valid transitions defined by P , then it follows that
there is only one MP . However if there are valid transitions, then let us consider
the case where there are two models M ′P and M ′′P . By definition 11, any transition
of M ′P must be part of M ′′P and vice-versa, and as they both share all the states
and transitions then it follows that M ′P = M ′′P .

We take P ’s MP to denote P ’s semantics. Furthermore we have noted that the
support norms and domain rules are syntactically and semantically based C+’s
definite dynamic causal laws. A set of finite causal laws defined over some fixed
σD is an action description D. Therefore a support policy P defines a unique
definite action description DP over its σP . As demonstrated in [4], every D
defines an LTS over σD.
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Proposition 1. Given a support policy P and its definite action description
DP , then MP and the LTS defined by the DP are equivalent.

We give a proof sketch due to the space constraints. The proof follows by showing
that the definitions of states and transitions of MP exactly match the definitions
of transitions and states of the LTS defined by the DP as given in [4], taking
into account that DP does not contain any static laws but only dynamic ones
and where all fluents are inertial. iCCalc uses C+ executional semantics, which
are equivalent to C+’s LTS semantics (and thus equivalent to MP ), thus allowing
us to use this tool to drive the initiations and terminations of the support tasks.

Definition 12 Given an MP , a start state s0, a narrative of events of type
α0, ..., αn a prediction query answers whether for every path ω = s0ε0s1...snεnsn+1

such that εi |= αi (for all i ∈ {0...n}) it follows that sn+1 |= G, where G is a
formula over σP .

This is a typical deduction query which is used by the Norms Engine (iCCalc)
to manage the support tasks at run-time. After receiving an event or a set of
concurrent events these events are added to the narrative and the prediction
query determines which tasks are to be initiated and terminated in the new state.

5.1 Comparison With Rule-based and Constraint-based Workflows

Rule-based workflows [10,11] encode a workflow execution as a set of “traditional”
ECA rules, as used in active databases [14], and they concentrate on encoding
imperative workflows which have a well-defined structure given as an acyclic
graph. However, the initiation and termination of support tasks does not have a
well-defined structure and thus the ECA rules would need to be used to provide
overriding of different task modalities and different support tasks, and overriding
between concurrently initiated actions is precisely a feature that traditional ECA
rules do not cater for. Furthermore correctly initiating and terminating inertial
constants, like the example of multiple executions of the same task before it can
be considered as finished, is hard and error-prone to encode with these ECA
rules. Notice that a support policy’s MP , once constructed, can be encoded as a
set of ECA rules. The ECAs would only have one action Constant.set(V alue)
and for each one of MP ’s transitions, there would be one rule with multiple
parallel actions, where each action sets one value for a different constant which
that constant is supposed to hold after the transition, in other words in a new
state. Viewed in this light support norms and domain rules can be seen as a
more suitable high-level language to express the interactions between events,
actions and system states, and can be used to generate low-level ECA rules.
Much as [10,11] use imperative structures to generate ECA rules as well.

Recent complex event processing languages, such as RuleML [3], extend the
ECA concept with inference over a narrative of events and determine persistence
of situations, and in this they share the same motivation as that underpinning
C+. To some extent they could also be used to encode support norms, but they
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lack a clear way of encoding overriding between concurrently initiated actions,
nor do they have well-defined declarative semantics like C+.

Constraint-based workflows [13,16] use a set of constraints to express whether
a certain narrative of task executions can be considered as acceptable to recognise
a workflow as successfully completed. However, they do not initiate and terminate
tasks, in other words they are not intended to drive the execution like support
norms do. Also there does not seem to be a clear way to express overriding of
support tasks through constraints and also to express that tasks are inertial. In
other words once initiated they remain initiated until terminated or overridden.
Similarly encoding the example domain rule would not be straight-forward if
possible at all. But given that a policy’s MP is a standard LTS model these two
approaches could be combined for the benefit of both by using the higher-level
LTL-based language to check whether an MP satisfies certain constraints.

6 Background Work

Constraint-based [13, 16] workflow systems share similar motivations to the
work presented in this paper as they provide a declarative way to specify a
workflow process. However, they are focused on specifying constraints over task
dependencies rather than proactively initiating tasks and for this reason it is
difficult to encode support norms like those presented in this paper. In our work
there is no limitation that rules and constraints are only related to activities
and activity states of a single workflow process. Furthermore [16] allows optional
constraints to be violated without any consequences except the generation of
a warning. From our perspective modality cannot be emulated by optional
constraints. As discussed earlier we require that a task is instantiated and
presented at the appropriate person’s tasklist in order to provide them with
freedom to chose whether to do it or not. In case of an optional constraint no
task instance would be generated. Furthermore, our concept allows the change of
the modality during the execution of a task. If mapping the modality to optional
constraints, an adaptation of the workflow would be required. However, these
two concepts can complement each other, and priorities can be used to further
subdivide modalities.

Rule-based workflow systems [10,11] appear syntactically to be very similar
to the presented C+ formalism, however semantically they are quite different.
C+ provides a well-defined semantics on how system states are persisted or
changed in response to either other system states or various actions. ECA rules
are traditionally focused on actions fired by independent events and thus ex-
pressing inter-dependencies between parallel actions requires additional semantic
constructs. In this way C+ can be seen as a formalism to capture ECA rules and
provide a formal way to extend them with integrity rules and conflict-resolution
rules (firing multiple conflicting actions).

Adaptive workflow models [2,6] conceptually are similar to the work presented
here, but are focused on capturing exceptional situations under which the whole
process is adapted, our work emphasises the capture of support tasks and their
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modalities and initiations rather than adaptive workflow processes. However, even
though the concepts appear orthogonal, C+ language could be used to describe
adaptation constraints as well, we leave this investigation as future work.

[12,15,19] detail the basic principles of task management but lack important
concepts like modality, inter-workflow dependencies and instantiations. These
approaches also assign tasks with priorities which in principle are related to
static modalities, but do not consider dynamic changes to priorities at runtime.
Similarly to the constraint-based workflows they can be used to complement our
current approach. Decker et al. [7] describes patterns on process instantiation
rather than tasks. However, the way we instantiate tasks can be considered
as implementation of the creation patterns. In our work tasks are instantiated
as a response to an event occurred in the environment which is similar to the
patterns C-2 to C-5. Our approach allows controlling the complete task life-cycle.
In particular, we allow the termination and completion of a task as a result
of a rule evaluation. Therefore, our work also implements termination patterns
described by Aalst et al. [1, 17]. However, in our case, a task can be terminated,
even if it is not completed. The evaluation of rules including environmental data
can be considerd as an implementation of the external data interaction patterns
described by Russel et al. [18].

7 Conclusion and Future Work

Pervasive workflows usually have a number of non-compulsory assistance tasks,
whose executions contribute towards a better service, but are not necessary
for achieving a workflow’s goal. In the presented case study, tasks such as:
changing the beds, checking the nutrition in-take are not strictly necessary for
the treatment procedures but contribute to the well-being of the patient. We
have further identified that these tasks are typically initiated by the contextual
and inter-workflows events and not just by the intra-workflow events. And they
are initiated with a modality which indicates how much the quality of service
can suffer if the support tasks are ignored. It appears that constraint-based
and imperative workflow models are not well-suited for encoding support tasks’
initiations and terminations. To this end, we use the C+ language to provide a
straight-forward way for capturing support norms which govern the execution of
support tasks. C+’s semantics are defined over a labelled transition system and
thus offer an interesting future research area for combing this formalism with
current constraint-based workflow models. This paper also described our current
architecture which demonstrates how support tasks and their management can
be easily made complimentary to current workflow management systems. In our
future work we will investigate in greater detail how this integration can add
more flexibility to the current pervasive workflow models and engines.
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14. Li, X., Medina Marń, J., Chapa, S.: A structural model of eca rules in active
database. In: MICAI 2002: Advances in Artificial Intelligence, vol. 2313, pp. 73–87.
Springer Berlin / Heidelberg (2002)

15. OASIS: Web Services Human Task Specification Version 1.1, Committee Draft 06
(2009)

16. Pesic, M., Schonenberg, M.H., Sidorova, N., van der Aalst, W.M.P.: Constraint-
based workflow models: Change made easy. In: OTM Conferences (1). pp. 77–94
(2007)

17. Russell, N., Arthur, van der Aalst, W.M.P., Mulyar, N.: Workflow Control-Flow
Patterns: A Revised View. Tech. rep., BPMcenter.org (2006)

18. Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Workflow
data patterns: Identification, representation and tool support. In: ER. pp. 353–368
(2005)

19. Unger, T., Bauer, T.: Towards a standardized task management. In: Multikonferenz
Wirtschaftsinformatik (2008)

20. Wieland, M., Kaczmarczyk, P., Nicklas, D.: Context integration for smart workflows.
In: PerCom. pp. 239–242 (2008)


