
Dynamic Stencil: Effective Exploitation of Run-time
Resources in Reconfigurable Clusters

Xinyu Niu∗, Jose G. F. Coutinho∗, Yu Wang†, Wayne Luk∗
∗ Dept. of Computing, School of Engineering, Imperial College London, UK

† Department of Electronic Engineering, Tsinghua National Laboratory for Information Science and Technology,

Tsinghua University, Beijing 100084, China

Abstract—Computing nodes in reconfigurable clusters are
occupied and released by applications during their execution. At
compile time, application developers are not aware of the amount
of resources available at run time. Dynamic Stencil is an approach
that optimises stencil applications by constructing scalable designs
which can adapt to available run-time resources in a recon-
figurable cluster. This approach has three stages: compile-time
optimisation, run-time initialisation, and run-time scaling, and
can be used in developing effective servers for stencil computation.
Reverse-Time Migration, a high-performance stencil application,
is developed with the proposed approach. Experimental results
show that high throughput and significant resource utilisation can
be achieved with Dynamic Stencil designs, which can dynamically
scale into nodes becoming available during their execution. When
statically optimised and initialised, the Dynamic Stencil design is
1.8 to 88 times faster and 1.7 to 92 times more power efficient than
reference CPU, GPU, MaxGenFD, Blue Gene/P, Blue Gene/Q and
Cray XK6 designs; when dynamically scaled, resource utilisation
of the design reaches 91%, which is 1.8 to 2.3 times higher than
their static counterparts.

I. INTRODUCTION

The last few years have given rise to large computer
infrastructures, such as clusters and data-centres, that provide
ample compute resources. Sharing resources in a cluster where
applications can be launched adds complexity to the develop-
ment process: applications must not only efficiently exploit a
given set of compute resources, but also adapt dynamically
to available resources at run time. In a reconfigurable cluster
with nodes consisting of different FPGAs, the heterogeneous
FPGA nodes are used and released by various computational
tasks at different points in time. More specifically, for a
given design, throughput can be potentially increased if more
resources are available to perform its computation. However,
the effectiveness of current static design methods is limited
by unpredictable run-time conditions. Due to non-deterministic
starting points of applications, node availability and the amount
of computational resources in available nodes are unknown
during compile time.

The basic idea of this paper is illustrated with the following
motivating example (Figure 1). In a reconfigurable cluster, 4
FPGA nodes A, B, C and D are released by other applications
at time 0, 2, 3 and 4, respectively; node A, B and D possess 1
resource unit and process 1 data unit per second, while node
C can process two data units per second; an application with
8 data units to process is launched into the cluster. Linear
scalability is assumed for executed tasks, i.e., execution time
is halved if the number of utilised resource units doubles. In
this scenario, two static designs are illustrated in Figure 1.
The OneNode Design will make use of only one node, so
would take 8 seconds to complete. The FourNode Design will
take all 4 nodes when all of them become available at time

4, and would take 2 seconds to complete. Only half of the
computational capacity in node C is utilised, as the FourNode
Design pre-defines that one resource unit is used in each run-
time node. The Dynamic Design, in contrast, can start at time
0 when node A becomes available; then at time 2, after node
A processes two data units, node B becomes available too, so
both nodes process another two data units in the next second.
At time 3 node A, B and C are available, completing the
processing of the 4 remaining data units.

���
���
���

���
���
���

������
������
������
������

����
����
����

����
����
�����������
�������
�������
�������

0 1 2 3 4 5 6 7 8

idle

9 10

1 FPGA

A B C

D
es

ig
ns

 fo
r

A
pp

lic
at

io
n

w
ith

 8
 d

at
a

un
its

A B C D available nodes

available nodes

OneNode Design

FourNode Design

Dynamic Design

time (sec)

2 FPGAs
3 FPGAs (4 units)
4 FPGAs (4 units)

Fig. 1. Execution of various designs in the cluster, when node A, B, C, and
D are released. The execution time of three designs (OneNode, FourNode and
Dynamic) for the same applications is presented.

In a reconfigurable cluster with various computing nodes,
challenges for developing such dynamic designs include: (1) to
generate optimised designs that exploit intra-node resources
in the cluster; (2) to construct initial designs when appli-
cations are mapped into the cluster, which ensures scalable
performance for utilised nodes and correct functionality for
the applications; (3) to adapt designs to run-time resource
variations.

For parallel applications without inter-processor communi-
cation such as Monte-Carlo Simulation, the run-time solution
is easy to generate as there is no communication operation. For
communication intensive applications, challenges (1), (2) and
(3) described above become tightly coupled: communication
is cycle-accurately scheduled to overlap with computation
operations; variations in device processing capacity, device-
level parallelism and distributed workload bring deviation in
the scheduled timing; if design configurations are not properly
updated, incorrect results can be generated after the dynamic
design scales into new nodes. In this work, stencil computation,
known to be communicationally intensive and difficult to
parallelise, is used as a case study for the proposed approach.
Contributions of this work include:

- a novel design approach named Dynamic Stencil, which
exploits various intra-node resources with compile-time

(0,1)

(0,0)

(a) (b)

halo data

kernel data

time step t time step t+1

input data

(0,1)x−1

x+1
y+1y−1 z+1

z−1

(c) (d) (e)

output data(0,1)

(0,0)

(0,1)

(1,1)

(0,1) (0,1)

(0,1)(0,1)

Fig. 2. (a) 1-D, 2-D and 3-D stencil in space; (b) Halo data within space; (c) Stencil data after spatial blocking [1]; (d) Input and output results for time step
t and t+1 [2]; (e) Data exchange between neighbouring blocks [3].

optimisation, and utilises run-time resources with run-time
initialisation and scaling. These three design stages cooper-
ate with each other to ensure high resource utilisation for
stencil applications in reconfigurable clusters;

- an asynchronous communication model that schedules
communication operations to eliminate communication
overhead based on: intra-node computational capacity,
inter-node communication bandwidth, and available nodes.
The communication model can be dynamically updated to
ensure linear scalability as well as correct functionality
when a Dynamic Stencil design scales;

- a run-time performance model that provides rapid evalua-
tion of benefits and overhead for scaling current Dynamic
Stencil design into FPGAs provisioned during run time.

II. BACKGROUND

A. Stencil Computation

Stencil computation refers to a class of iterative operations
to update array data with a fixed pattern, named as a sten-
cil. Stencil computations are commonly used in simulating
dynamic systems, such as fluid dynamics and heat diffusion, as
well as in solving Partial Differential Equations (PDEs). As an
example, to capture dynamic properties within target systems,
a PDE can be formulated as follows:

A
∂2f(s, t)

∂t2
= B

∂2f(s, t)

∂s2
+ C

∂f(s, t)

∂s
(1)

where A, B and C are PDE parameters, and f(s, t) denotes
simulated properties at space s and time t. Finite difference
is a numerical method to approximate derivative expressions.
In this example, the target space s includes three dimensions
x, y, z and derivatives are replaced with first-order finite dif-
ference expressions. The system status can be propagated
as shown in Figure 3. α, β and γ are constant coefficients
calculated with finite-difference method. The corresponding
3D stencil is shown in Figure 2(a). As neighbouring data are
required to support the calculation, as shown in Figure 2(b),
boundary data are not updated during computation, named as
halo data. In each time step t, the constructed stencil sweeps
over kernel data to propagate f(s, t) in time dimension. The
number of arithmetic operations in Figure 3 can be calculated
as nt ·nz ·ny ·nx ·Nar, where Nar is the number of arithmetic
operations for each data point.

As neighbouring data at multiple dimensions are required
for each computation, spatial locality reduces as the dimension
size and the number of dimensions increase. If the dimension
size is 1024, data accessed in the stencil in Figure 3 span 8 MB
data. Limited by the sparse data access patterns, performance
of stencil computations is limited to 1.8 GFLOPS [4] on a 4-
core Intel i7-870 CPU for a fifth-order stencil. Propagating the
stencil for 1000 time steps in 1024∗1024∗1024 space requires
63.4 Tera floating-point operations, and takes 10 hours to finish.

1: for t ∈ 0 → nt do
2: for z ∈ 1 → nz − 1 do
3: for y ∈ 1 → ny − 1 do
4: for x ∈ 1 → nx− 1 do
5: f[t+1][z][y][x] = (f[t][z][y][x−1] + f[t][z][y][x+1]) * α
6: + (f[t][z][y−1][x] + f[t][z][y+1][x]) * β
7: + (f[t][z−1][y][x] + f[t][z+1][y][x]) * γ
8: - f[t−1][z][y][x];
9: end for

10: end for
11: end for
12: end for

Fig. 3. An example of a stencil code pattern supported by Dynamic Stencil.

The high-performance requirements limit the usage of stencil
computations in scientific research and industrial development.

Parallelism in stencil algorithms can be exploited with
optimisation techniques such as design parallelisation, spatial
blocking (loop tiling, domain decomposition), temporal block-
ing and communication scheduling. In general-purpose proces-
sors such as CPUs and GPUs, stencil designs are parallelised
through spatial blocking, which refers to dividing involved
data into multiple blocks to improve temporal data locality. As
shown in Figure 2(c), for a 3-D stencil application, blocking
the lowest two dimensions (x and y) in half reduces data
distance between neighbouring data at the highest dimension
(z) by 75%, which allows four parallel cores to process
data blocks with improved data locality. When performance
of parallelised designs is bounded by memory bandwidth,
temporal blocking is used to propagate multiple time steps
with one memory pass. As shown in Figure 2(d), propagating
stencil data for time steps t and t+1 can be accomplished
by either executing the unblocked designs twice, or buffering
the intermediate results on-chip to eliminate the redundant
memory access operations. Communication operations, as
shown in Figure 2(e), are required to exchange halo data
between neighbouring devices, when stencil applications are
mapped into multi-device clusters. If not properly scheduled,
the communication overhead increases with the number of
involved devices, which severely limits design scalability.

B. Related Work

Stencil computations have been extensively studied across
various platforms including many-core processors, hardware
accelerators such as GPUs and FPGAs, and large-scale clusters.
In large-scale CPU clusters, communication patterns of stencil
computations are customised to fit into communication infras-
tructures [5], [6]. Data reuse method, workload distribution and
communication scheduling are optimised for various GPU ar-
chitectures [7]–[9] to exploit the massive parallelism and high
memory bandwidth. For reconfigurable platforms, streaming
architectures with customised memory architectures and data-
paths are proposed [10], [11] to exploit available resources.
These hardware architectures, efficient as they are, require
high-level expertise and manual optimisation. Moreover, the

design effort to apply these approaches to optimise computa-
tional resources and enable efficient cooperation between them
during run time is very high.

Automatic design frameworks are proposed to enable non-
expert developers to utilise the various platforms for stencil
computations. Optimisation techniques are often technology
dependent, and vary with availability of resources and algo-
rithm properties. Parallel GPU codes are generated in [12] to
optimise stencil applications based on properties of GPU ar-
chitectures. Spatial blocking is optimised to balance workload
among parallel threads [13], and auto-tuners are built to search
for the optimal blocking strategies for various resources [14]
and data structures [15]. Temporal blocking is supported with
a blocking algorithm [2], and the design space is searched
with various searching algorithms to minimise execution time
for CPU and GPU designs. The auto-tuners, which are widely
used for general-purpose processors such as CPUs and GPUs,
require a long execution time to traverse their search space.
Run-time construction and adaptation of designs require rapid
update in design configurations, therefore the auto-tuning
process is not suitable. MaxGenFD [16] provides a design
interface for users to specify design parallelisation and spatial
blocking ratios during compile time. This semi-automatic ap-
proach requires running a time-consuming synthesis toolchain
multiple times to optimise designs, and the optimised designs
are statically configured.

When stencil computations are mapped into multiple de-
vices, communication operations are scheduled to provide
scalable performance. A programming model is proposed for
stencil computations to implicitly translate stencil descriptions
into scalable GPU implementations [17], and a multi-FPGA
design approach for 1-D stencil computations in FPGAs is pro-
posed in [18]. Communication patterns of these approaches are
statically configured, and cannot adapt to run-time variations
such as: the design parallelism, the communication bandwidth,
the number of involved nodes and the distributed workload.

In this work, we propose a novel approach in which three
models: an optimisation model, a communication model and
a performance model, are used to systematically derive an
optimised design that can automatically scale at both compile
time and run time to exploit available resources during the
life cycle of the design. Results from the related work are
compared with the proposed approach in Section IV.

III. METHODOLOGY

The proposed approach, known as Dynamic Stencil, starts
with a description for stencil computations, as shown in
Figure 3, and ends up as a reconfigurable design that can adapt
to available resources at run time. The development process
of a Dynamic Stencil design is demonstrated in Figure 4,
which includes three steps: compile-time optimisation, run-
time initialisation and run-time scaling. The compile-time op-
timisation step first translates a stencil kernel into a data-flow
graph. This data-flow graph captures all the kernel operators,
the operator dependencies and memory access patterns. This
intermediate kernel representation is used with the optimisation
model to generate a stream-based architecture supporting multi-
ple inter-connected FPGAs to form a Dynamic Stencil. Design
parallelisation, spatial blocking and temporal blocking are inte-
grated into our optimisation model which facilitates evaluation
of their impact on the optimised architectures. Differences
in FPGA nodes are expressed as variations of available re-
sources. Bounded by available resources, the basic hardware

TABLE I. VARIABLES AND SELECTED PARAMETERS IN THE DYNAMIC

STENCIL APPROACH (INDICES: I=DIMENSION, N=NODE, J={FRONT,END})

variables parameters
optimisation model

parn design parallelism A available resources
ski spatial blocking ratio BW available bandwidth
tk temporal blocking ratio wi stencil size
sl size of a data slice D stencil dimension

communication model
dcn computation delay F number of FPGAs
dmn,j memory delay parn design parallelism
trn,j arrival time for halo data ski,tk blocking ratios

dwn distributed workload
wi stencil size

performance model
rtb run-time benefit F number of FPGAs
rov reconfiguration overhead parn design parallelism

ski,tk blocking ratios

architecture is automatically optimised to achieve maximum
throughput, and then synthesised with back-end vendor tools to
generate executable bitstreams. Run-time initialisation refers
to constructing the initial Dynamic Stencil design when the
application is launched into clusters. Interconnections between
FPGAs are required to support data exchange with neighbour-
ing devices, as shown in Figure 2(e). A topology where FPGA
nodes are chained with point-to-point connections or connected
host CPUs is referred to as an FPGA path. Synthesised designs
for various nodes are loaded and linked to occupy the longest
FPGA path among available FPGA nodes. An asynchronous
communication model is developed based on properties of
mapped designs, resource status and communication band-
width. Communication operations among utilised nodes are
scheduled to run in parallel with communication operations,
with data dependency expressed as timing constraints in the
model. Run-time scaling is triggered if a Dynamic Stencil
design finds available nodes to expand. Benefits and overhead
for expanding current design into the new nodes are evaluated
with a run-time performance model. Once the benefits out-
weigh the overhead, a run-time scaling algorithm is executed to
reconfigure new nodes, switch context into the scaled Dynamic
Stencil design, and dynamically update design configurations
to ensure correct functionality for the scaled Dynamic Stencil
design. Variables and parameters for a Dynamic Stencil design
are presented in Table I. Variables for the optimisation model
are used as parameters in the communication model and the
performance model.

Run time

stencil
description

resource
characterisation

resource
status

control units (CPUs) compute units (FPGAs)

optimisation
model

asynchronous
communication
model

run−time
performance
model

Compile time

optimised & synthesised
design

(3) run−time

(1) compile−time

(2) run−time
initialisation

scaling

optimisation

Fig. 4. The Dynamic Stencil design approach has three steps: compile-time
optimisation, run-time initialisation and run-time scaling.

A. Compile-Time Optimisation

The basic streaming architecture for stencil computations
is shown in Figure 5(a). Arithmetic operations in stencil
descriptions are mapped to pipelined data-paths, and a memory

architecture is built based on the extracted data access pattern
(stencil shape). At each clock cycle, the stencil moves one step
forward in the fastest (x) dimension, one data unit is streamed

from off-chip memory, and
∑D

i=1 wi · 2 + 1 stencil data units
are loaded from the on-chip memory, where wi indicates the
number of data units in a stencil at dimension i. In the example
in Figure 5(a), wz is 1. Design parallelisation variable par
indicates the number of replicated data-paths. For a streaming
architecture with par = 4, as shown in Figure 5(b), the
replicated stencil moves four steps forward in the x dimension
at each clock cycle. The same memory architecture is used
to share accessed data, while four data-paths are replicated to
process data in parallel. Resources consumed by a pipelined
data-path can be estimated by accumulating resources con-
sumed by each arithmetic operator, with Rop∈⊙={+,−,•,÷}
and Sop indicating resource utilisation for operator op and the
number of operator op in the stencil description, respectively.
Theoretically, n valid results can be generated per clock cycle
for a streaming architecture configured as par = n if the
design can be accommodated in a single device and if memory
bandwidth permits.

st
en

ci
l d

at
a

x

y
z

st
en

ci
l d

at
a

z−1

z
y

x

z

z+1

ny

nx
(a)

data−path

on−chip memory

ny

z−1

z

z+1
nx

(b)

data−paths

on−chip memory
data−access pattern(stencil)data−access pattern(stencil)

Fig. 5. Data access patterns, memory architectures and data-paths in
streaming architectures for stencil computations with (a) a single data-path
(par = 1) and (b) four replicated data-paths (par = 4).

Spatial blocking is applied to reduce memory resource
consumption. While the number of buffered data slices is
algorithm-specific, the slice size depends on the size of the
corresponding dimensions (nx and ny in Figure 5). When
the number of dimensions increases, memory resource con-
sumption can easily exceed resource constraints. Blocking
dimensions in memory slices regroups streaming patterns in
the blocked dimensions, which effectively reduces slice size
and memory resource consumption. As shown in Figure 2(c),
to protect data dependency of boundary data after blocking,
one layer of halo data is distributed to blocked data. In a
dimension i with ni kernel data (as shown in Figure 2(b))
and blocking ratio ski, the size of blocked dimension can be
expressed as ni

ski
+ 2 · wi. Since halo data are distributed to

each data block, spatial blocking increases the overall data size
compared with unblocked designs.

Temporal blocking is applied to reduce memory bandwidth
requirements. For a given memory bandwidth, there will be a
point where the memory system cannot afford to load and to
write par data units per clock cycle. As shown in Figure 2(d),
when memory channels are saturated, output data of current
time step can be stored as intermediate data accessed as
input data for the next step, eliminating redundant memory
access and accomplishing multiple time steps in one memory
pass. The memory architecture is replicated to accommodate
the intermediate data, and the attached data-paths are also
replicated to process the intermediate data in parallel. Mean-
while, for the spatially blocked data, accomplishing one more
time step on-chip introduces one more layer of halo data for
data blocks, to ensure halo data of intermediate results can

be properly updated without synchronising with neighbouring
blocks. Therefore, the size of blocked dimension i with spatial
blocking ratio ski and temporal blocking factor tk can be
expressed as ni

ski
+ 2 · wi · tk, where tk layers of halo data

are represented as 2 · wi · tk. The size of one slice data after
spatial and temporal blocking is:

sl =
D−1
∏

i=1

(

ni

ski
+ 2 · wi · tk

)

(2)

An optimisation model is developed to determine design
parallelism par, spatial blocking ratio sk and temporal block-
ing ratio tk to achieve minimum execution time, i.e., the ratio
between overall data size and computational capacity. Overall

data size is expressed as nsteps · sl ·
∏D−1

i=1 ski · nD, where

nsteps is the number of time steps,
∏D−1

i=1 ski indicates the
number of data blocks, and nD is the size of the slowest
dimension corresponding to the number of data slices (nz

in Figure 5). Computational capacity par · tk increases with
design parallelism and temporal blocking ratio, while slice size
and number of data blocks increase with temporal and spatial
blocking ratios. Bounded by available on-chip resource A and
off-chip bandwidth BW , the model is expressed as:

minimise:
nsteps · sl · (

∏D−1
i=1 ski) · nD

par · tk
(3)

subject to:
∑

op∈⊙

Sop ·Rop · par · tk + ILT/FF/DP ≤ ALT/FF/DP (4)

ws · tk · sl · 2 · wD + IBR ≤ AM (5)

par · ws ·max (IOin, IOout) · fq ≤ BW (6)

Infrastructure resource consumption ILT/FF/DP/BR indicates
the LUTs, FFs, DSP and BRAM resources consumed by
communication infrastructures. Eq. 4 expresses the data-path
resource consumption which increases linearly with par and tk.
The memory resource consumption is estimated in Eq. 5, with
tk on-chip memories implemented, and 2wD data slices stored
in each on-chip memory. Design parallelism par does not
affect memory resource consumption, as the replicated data-
paths share the same memory architecture. ws is the width of
each data unit (for single floating-point stencils: ws=32 bits).
The impact of temporal blocking on memory bandwidth is
expressed in Eq. 6, where an increase in tk does not contribute
to memory requirements. IO indicates the number of input /
output arrays, and fq is the operating frequency.

B. Run-time Initialisation

When a stencil application is mapped into a reconfigurable
cluster, optimised designs for available FPGA nodes are loaded
and connected to form an initial Dynamic Stencil design. Inter-
node communication channels are required between neighbour-
ing nodes to exchange halo data, as shown in Figure 6(a).
Among available FPGA nodes, we extract the longest con-
nected path to accommodate the initial Dynamic Stencil design.
Design properties of an occupied node i are abstracted with
its computational capacity par[i], i.e., the number of data
processed per clock cycle. As demonstrated in Algorithm 1,
after workload distribution (line 2), arrive times of remote
halo data can be calculated (line 3), where i indicates the
involved FPGA, and j indicates the halo data region. To meet
local timing constraints, an initial delay dco can be inserted
before computation starts (line 5-10), and a memory delay

dme can be inserted in each iteration to postpone the time to
update halo data in local memory (line 11-15), as illustrated
in Figure 6(b) and (c). In the following, we elaborate on the
workload distribution, the local timing constraints, and the
scheduling operations.

For F available FPGA nodes, the slowest dimension with
size nD is decomposed to balance the distributed workload
dwn based on the computational capacity of involved nodes:

dwn = sl ·

(

D−1
∏

i=1

ski

)(

nD
∑F

k=1 park
· parn + 2 · wD

)

(7)

As shown in Figure 6(b), the decomposed data are processed
simultaneously in the three involved FPGAs. In an FPGA node,
the distributed workload are processed with par data per clock
cycle, propagating a time step with dwn

parn
cycles. Results for

kernel data are transmitted to neighbouring nodes to update
the corresponding halo data used in next time step. Communi-
cation operations between involved FPGAs are performed in
parallel with the computation operations to eliminate communi-
cation overhead. To satisfy data dependencies in a stencil com-
putation, halo data from remote devices must arrive: (a) after
the halo data in current time step are consumed, and (b) before
the halo data in next time step are used. In the unscheduled
design in Figure 6(b), the end halo data for FPGA0 and FPGA1
arrive too early and overwrite the existing end halo data before
they are used, rendering all subsequent computations incorrect.
An asynchronous communication model is built to facilitate
translation of data dependencies into timing constraints, and
expression of arrival times in terms of computational capacity
and communication bandwidth. Variables and parameters for
this model are presented in Table I.

Algorithm 1 Communication scheduling algorithm for a Dy-
namic Stencil design

input: the number of FPGAs in detected FPGA path: Dev

output: scheduled computation delay dco and memory delay dme for each
FPGA.

1: for i ∈ 0 → Dev , j ∈ (0,1) do
2: dw[i] = workload distribution()
3: tar[i,j] = unscheduled arrive time()
4: end for
5: for i ∈ 0 → Dev , j ∈ (0,1) do
6: if latest arrive time() < tar[i,j] then

7: dco,i = max(tar[i,j]− latest arrive time())
8: tar[i+1,j]+ = dco[i+1]
9: end if

10: end for
11: for i ∈ 0 → Dev , j ∈ (0,1) do
12: if earliest arrive time() > tar[i,j] then

13: dme[i] = max(earliest arrive time() - tar[i,j])
14: end if
15: end for

Timing constraints can be expressed with the consume time
of halo data in the current time step and in the next time step,
as shown in Figure 6(b). For the halo data j in node n, the
arrival times trn,j are bounded as follows: with j = front
indicating the front halo data and j = end indicating the end
halo data:

{

0 ≤ trn,front ≤
dwn

parn
dwn−sl·wD

parn
≤ trn,end ≤

2·dwn−sl·wD

parn

(8)

where dwn

parn
is the computation time for one time step, and

dwn − sl · wD indicates the distance between front halo data
and end halo data.

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����

����
����
����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

(b)

computation time

kernel data

end halo data

data dependency
data dependency violation

scheduled memory delay
scheduled computation delay FPGA0 FPGA1 FPGA2

slices of data at z dimension

F
P

G
A

2
F

P
G

A
1

F
P

G
A

0

t t+2 time

de
vi

ce

arrive time

valid arrive time
consume time consume time

(c)

F
P

G
A

2
F

P
G

A
1

F
P

G
A

0

t t+2 time

de
vi

ce

computation time
arrive time

valid arrive time
consume time consume time

(a)

front halo data

workload distribution

dc

dc

dm

dm1

2

1,1

0,1

Fig. 6. (a) Decomposed data for an FPGA path with three interconnected
FPGAs, and the corresponding communication and computation operations in
time dimension if (b) unscheduled and (c) scheduled. Each grid in the figure
represents one data slice. Data dependencies, valid times and scheduled delays
are labelled in this figure. The three FPGAs process 3 data units per clock
cycle, and communication channels can transmit 1 data unit per clock cycle.

Arrival times of halo data are determined by computational
capacity in neighbouring nodes and the communication time.
The front halo data at node n are derived from the kernel
data (dwn−1 − 2 · wD · sl, dwn−1 − wD · sl) at node n − 1.
Similarly, end halo data at node n are generated from the kernel
data (sl · wD, 2 · wD · sl) at node n + 1. As there are wD·sl

parn
cycles delay between when the kernel data are loaded and
when the correspondingly results are generated, unscheduled
arrival times of halo data j in node n can be expressed as:

trn,j =

{

dwn−1−wD·sl
parn−1

+ wD·sl
bwn

·m j = front
2·wD·sl
parn+1

+ wD·sl
bwn+1

·m j = end
(9)

where bwn indicates the communication bandwidth between
node n− 1 and node n, m is the margin factor for communi-
cation operations, and wD·sl

bwn
·m is the communication time.

Communication scheduling refers to configuring memory
delay dm and computation delay dc to satisfy the timing
constraints. If halo data arrive too early, a memory delay dm is
inserted to postpone the update time of the halo data in local
memory. On the other hand, when halo data arrive too late,
since computation operations are initially scheduled to start as
early as possible, there is no space to schedule the halo data to
arrive earlier. Instead, the starting time of the communication
operations is delayed to postpone the latest timing constraints.
The actual arrival times after scheduling are trn,j + dmn,j .
Since the inserted computation delay postpones the timing
constraints, if we keep the timing constraints the same as in
Eq. 8, the arrival times can be expressed as trn,j+dmn,j−dcn.

C. Run-time Scaling

Once initialised, a Dynamic Stencil design investigates
run-time status variations to utilise FPGA nodes provisioned
during its lifetime. The mapped FPGA path can be expanded if
available FPGA nodes can be connected to either the first node
or the last node in the current FPGA path. Scaling a Dynamic
Stencil design involves run-time evaluation, context switching,
run-time reconfiguration and configuration update. Context
switching refers to redistributing the intermediate results from
the current Dynamic Stencil design into the FPGAs of the
new scaled Dynamic Stencil design. Input and output arrays
of the current FPGAs are loaded from off-chip memories
back to the host memories; appropriate bitstreams are used

to configure the newly-available FPGAs; and the intermediate
arrays are redistributed into the FPGAs of the expanded
Dynamic Stencil design, thus ensuring that the context of the
current stencil computation is preserved in each FPGA. A
control unit for the Dynamic Stencil design is implemented
on the host CPU, which executes run-time evaluation, design
scaling and configuration update.

Run-time benefit rtb refers to the reduction in execution
time for the remaining stencil computation when a Dynamic
Stencil design expands into more FPGAs. Remaining workload
for a stencil application is calculated with its remaining time
steps nsteps and distributed workload dwn. If available nodes
are employed, the distributed workload is reduced to dw′

n, and
the reduction in execution time is expressed as:

rtb =
nsteps

tk
·
(dwn − dw′

n)

parn · fq
(10)

where dwn − dw′
n indicates the reduction in workload. As

distributed workload is proportional to parn (Eq. 7), rtb is the
same for each node.

The scaling overhead refers to time consumed to reconfig-
ure devices and redistribute data, and can be estimated as:

rov = max

(

R · φ

θ
,
dwn

bwpci

)

+
dw′

n

bwpci
(11)

where dwn

bwpci
and

dw′

n

bwpci
respectively indicate the time to load

and redistribute memory data, through PCI-E channels with
bandwidth bwpci. The reconfiguration time can be estimated
with bitstream size and throughput of reconfiguration interface
θ. The bitstream size is calculated with resource consumption
R and bitstream size per resource unit φ. Since memory
controllers and streaming architectures are configured into the
same FPGA in current designs, context data can only be
written into new FPGA nodes when run-time reconfiguration
is finished. The loading of context data, on the other hand, is
executed in parallel with reconfiguration operations.

The scaling algorithm for a Dynamic Stencil design coordi-
nates the communication model and the run-time performance
model. Resource status is monitored after a Dynamic Stencil
design is initialised at time 0, with run-time benefits and
overhead evaluated for detected available resources. If run-time
benefit rtb outweighs the scaling overhead rov, the scaling
algorithm stalls computation for the next time step in FPGA
nodes, reconfigures available nodes and switches context data
into the new nodes. Parameters of communication model in
Algorithm 1 are updated, and the communication variables are
rescheduled to respond to the design variations. Computation
operations are then resumed for the scaled Dynamic Stencil
design, and the scaling algorithm goes back to the monitoring
phase. The algorithm is executed iteratively to adapt a Dynamic
Stencil design to run-time resource variations.

IV. RESULTS

Starting from a simple stencil description, the proposed
approach generates a run-time scalable design for reconfig-
urable clusters. A benchmark application, Reverse-Time Mi-
gration (RTM), is developed with the proposed approach. The
developed design is evaluated with three aspects: resource
exploitation, design scalability and run-time adaptivity, which
respectively reflect how available resources are exploited for
the optimised single-node design, the initially constructed

TABLE II. SINGLE-DEVICE AND MULTI-DEVICE PERFORMANCE

COMPARISON.

single-device performance

System freq (GHz) TH(Gflops)1 P(Watt)1 E(Gflops/w)1 S1

CPU 2.93 1.8 183 0.01 72x

GPU [7] 1.15 58.8 369 0.159 2.2x

MaxGenFD [16] 0.1 71.3 137 0.52 1.8x

Dynamic Stencil 0.1 130.67 142 0.92 1x

multi-device performance (throughput (Gflops))

System/number of devices 2 4 82 162 322 S

Blue Gene/P [5] 2.98 5.96 11.92 23.84 47.68 87.8x

Blue Gene/Q [6] 38.4 76.8 153.6 307.2 614.4 6.8x

Cray XK6 [9] 181 362 524 1048 2096 2.00x

MaxGenFD3[16] 128.3 196.8 n/a n/a n/a 2.66x

Dynamic Stencil 261.3 523 1045 2091 4184 1x

1 TH, P, E and S respectively stand for throughput, power consumption, power
efficiency and speedup.
2 Limited by available resources, performance for more than 4 FPGAs is
simulated. When 1 to 4 FPGAs are involved, measured performance confirms
the simulated results.
3 MaxGenFD supports up to 8 FPGAs, performance cannot be simulated due
to lack of optimisation details. Measured scalability for 4 FPGAs is 0.69.

Dynamic Stencil design and the dynamically scaled Dynamic
Stencil design. RTM is an advanced seismic imaging technique
to detect terrain images of geological structures, based on the
Earth’s response to injected acoustic waves. The propagation
of injected waves in terrains is modelled with the isotropic
acoustic wave equation [19], which is solved with a fifth-order
stencil in space with three dimensions. Hardware designs are
compiled by MaxCompiler version 2012.1. They operate at
100 MHz, and run on an MPC-C500 compute node from Max-
eler Technologies. The MPC-C500 has four MAX3 dataflow
engines, each of which has a Xilinx Virtex-6 SX475T FPGA.

Resource exploitation in an FPGA is evaluated in terms
of resource consumption and achieved design throughput. Re-
source consumption and design throughput of the optimised
design are presented in Figure 7. The resource consumption
is normalised against available resources, and the resource
consumption when design parallelism is 0 indicates the re-
sources consumed by communication infrastructures. Before
off-chip memory channels are saturated when par = 16, each
replicated data-path generates one result per clock, with design
throughput and data-path resource consumption scaled linearly.
Temporal blocking ratio tk is increased to 2 when the memory
bottleneck is hit. One more on-chip memory with 16 attached
data-paths are replicated, doubling the performance as well
as resource consumption. Design variables par, tk, skx and
sky of the optimised design are respectively configured as 16,
2, 6 and 5. The optimised design consumes 270816 LUTs,
323134 FFs, 952 DSPs and 989 BRAMs, with the optimisa-
tion model estimating the design to consume 255936 LUTs,
357120 FFs, 806 DSPs and 947 BRAMs. The optimisation
model can capture variation in resource consumption wth more
than 90% accuracy, enabling automatic optimisation of stream
architectures for FPGAs with various characteristics.

Design performance is listed in Table II. Reference single-
device designs include parallelised software designs targeting
a 4-core Intel i7-870 CPU, Blue Gene/P [5] and Blue Gene/Q
designs [6], a GPU design optimised by NVIDIA [7] and
customised for NVIDIA Tesla C2070, and an FPGA design
developed with MaxGenFD [16]. Overall performance of the
optimised RTM is reduced from 156.8 GFLOPS to 130.67
GFLOPS, due to the additional data introduced by spatial and
temporal blocking. Performance of CPU and GPU designs
is limited by their general-purpose memory system. Run-
time profiling shows that the optimised GPU design can only
achieve 35% memory efficiency, i.e., loading one data unit

 0

 20

 40

 60

 80

 100

 120

 140

0 1 2 4 8 16 32
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4
sy

st
em

 th
ro

ug
hp

ut
 (

G
F

LO
P

S
)

no
rm

al
is

ed
 r

es
ou

rc
e

us
ag

e

design parallelism

temporal blocking ratio = 1

temporal blocking ratio = 2

LUTs
FFs

DSPs
BRAmS

bandwidth
design throughput

Fig. 7. Design throughput and resource consumption of the RTM design. The
optimisation increases design parallelism to 16 until the bandwidth bottleneck
is hit, and increase the temporal blocking ratio to utilise left resources.

takes 3 clock cycles. Since temporal blocking is not covered
by the automatic optimisation process of MaxGenFD, design
parallelism of MaxGenFD designs is limited to 16, when off-
chip memory channels are saturated. While temporal blocking
can be manually implemented for MaxGenFD designs, to keep
the design effort comparable, we use automatically optimised
parameters for both Dynamic Stencil designs and MaxGenFD
designs. In summary, the optimised design for RTM is up to
1.8 to 72 times faster and 1.7 to 92 times more power efficient
than the reference designs.

Design scalability reflects the effectiveness of the asyn-
chronous communication model. For the current platform,
inter-FPGA communication operations are either through point-
to-point channels with 3.2 GB/s bandwidth or through 10 Gb/s
Ethernet connections between CPUs, with data moved between
CPUs and FPGAs through 1GB/s PCI-E channels. The lower
bound of inter-node bandwidth bw is 1 GB/s, while on-chip
results are streamed with 48 bytes per clock cycle. In the
asynchronous communication model, the computation delay dc
in involved FPGAs is scheduled to be 5wD = 25 data slices sl
to reduce the bandwidth requirement to 0.8 GB/s, with margin
factor m = 1.25. Memory delay dm is scheduled to ensure
local halo data are consumed before being overwritten. Limited
by available FPGAs in our platform, our current design scales
up to 4 FPGAs. Based on computation throughput of utilised
FPGAs and available bandwidth, performance of the Dynamic
Stencil design when more FPGAs are involved is simulated.
The simulated and measured results are presented in Table II,
which shows that linear scalability has been achieved for the
initialised Dynamic Stencil design. Previous large-scale de-
signs on Blue Gene/P [5], Blue Gene/Q [6] and Cray XK6 [9]
are also introduced to provide a comparison. As shown in Ta-
ble II, the measured results confirm the simulated performance,
and overall design throughput reaches 4.09 TFLOPS when
32 FPGAs are involved, outperforming the reference designs
by 2 to 88 times. Besides throughput, power consumption in
large-scale clusters determines the maintenance cost such as
cooling infrastructures and electricity, and plays an important
role in large-scale designs. Power consumption information
is not provided in previous work [5], [6], [9]. If we make a
conservative assumption that the Tesla X2090 GPUs in Cray
XK6 consume the same power as the Tesla C2070 design in
Table II, the Dynamic Stencil design is 5.2 times more efficient
than the stencil design running on Cray XK6 when including
all host and accelerator power consumption.

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250 300 350 400 450 500
 2

 4

 6

 8

 10

 12

 14

pr
ed

ic
te

d
ex

ec
ut

io
n

tim
e

(s
)

fo
r

re
m

ai
ni

ng
 ta

sk
s

ex
ec

ut
io

n
tim

e
(s

)
fo

r
th

e
ne

xt
 1

0
ite

ra
tio

ns

At each iteration:
remaining execution time for current
design and the scaled design is
predicted, and the difference between
them is the saved execution time
for scaled design (run-time benefits).

current design
if avaiable nodes are included

predicted execution time
measured execution time

busy

ava

 0 50 100 150 200 250 300 350 400 450 500
 0
 0.2
 0.4
 0.6
 0.8
 1

re
so

ur
ce

application iterations

node A
node B

node C
node D

Fig. 8. Evaluation and prediction of the run-time performance model during
one of the test cases, at the application iteration (time step) dimension. The
resource status is measured from target cluster. ’ava’ stands for available.

Run-time adaptivity of the developed design is evaluated
with design performance and device-level resource utilisation
ratio, when the RTM design is mapped into the reconfigurable
cluster. For the available 4 FPGAs, static designs with 1, 2,
3 and 4 device-level parallelism are developed and executed
to provide comparison. Run-time status during 10 separated
time periods is measured and used as 10 test cases in this
experiment. Evaluation process of the run-time performance
model for one of the test cases is demonstrated in Figure 8. The
run-time performance model predicts the execution time for
the remaining tasks of the current design as well as the scaled
design. When new nodes become available, the difference
between the two predictions indicates the run-time benefits.
FPGA node A is available when the application is launched,
and node B, C and D are released by other computational
tasks at 150, 142 and 209 iterations, respectively. Although
node C becomes available earlier than node B, the detected
FPGA path first expands when B is released due to the lack of
communication channels between node A and node C. If node
B and C are included in the Dynamic Stencil design, execution
time for the following tasks is reduced by 357.4s, with 0.71s
run-time overhead introduced. As the benefit outweighs the
overhead, node B and node C are reconfigured to cooperate
with the existing node A. Context data are redistributed, and
design variables are rescheduled using Algorithm 1 to ensure
linear scalability and correct functionality when the Dynamic
Stencil design is expanded. Similarly, node D is employed by
the Dynamic Stencil when it becomes available. As shown
in Figure 8, the measured performance aligns with predicted
execution time for the remaining tasks showing high accuracy
of the performance model. Corresponding results in the test
case are shown in Figure 9. Device-level parallelism for the
static design using one FPGA is limited to 1, while the static
designs using multiple FPGAs need to wait for released nodes
to start. The Dynamic Stencil design finishes 490 time steps in
297 seconds, outperforming the static designs by 1.67 to 2.72
times.

Resource utilisation ratio is calculated with measured per-
formance and the theoretical performance upper bound. The
theoretical performance is calculated as the overall perfor-
mance if FPGAs are fully utilised once released by other ap-
plications. The measured performance and resource utilisation
for the 10 test cases are shown in Figure 10. Averaged resource
utilisation ratio for the Dynamic Stencil design is 91%. The
gap between the achieved resource utilisation ratio and the full

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250 300

fin
is

he
d

tim
e

st
ep

s

Dynamic Stencil scales into B and C

Dynamic Stencil scales into D

Dynamic Stencil design
static design with 1 FPGA
static design with 2 FPGAs
static design with 3 FPGAs
static design with 4 FPGAs

busy

ava

 0 50 100 150 200 250 300

re
so

ur
ce

time (s)

node A
node B

node C
node D

Fig. 9. Performance of a Dynamic Stencil design and a static design with 1,
2, 3 and 4 FPGAs at the time dimension.

utilisation ratio (100%) is introduced by the reconfiguration
overhead and communication infrastructure. As shown in the
test case in Figure 9, node C remains idle until the Dynamic
Stencil design expands into node B, as there are no com-
munication channels between node A and node C. Resource
utilisation for static designs is limited between 40% and 49%.
In other words, limited by pre-defined communication and
computation patterns, 50% of resources in the cluster remain
idle. On average, the high resource utilisation of the dynamic
designs enables them to run 1.8 to 2.3 times faster than the
static designs.

 0

 100

 200

 300

 400

 500

 600

0 1 2 3 4 5 6 7 8 9

sy
st

em
 th

ro
ug

hp
ut

 (
G

F
lo

ps
)

Dynamic Stencil design
Static design with 1 FPGA
Static design with 2 FPGAs

Static design with 3 FPGAs
Static design with 4 FPGAs

 0

 0.5

 1

 1.5

 2

0 1 2 3 4 5 6 7 8 9re
so

ur
ce

 u
til

is
at

io
n

ra
tio

test cases

Dynamic Stencil design
Static design with 1 FPGA
Static design with 2 FPGAs

Static design with 3 FPGAs
Static design with 4 FPGAs

Fig. 10. Design performance and resource utilisation for 10 test cases.

V. CONCLUSION & DISCUSSION

For large-scale reconfigurable clusters, effectiveness of
conventional static design methods which pre-define commu-
nication patterns and hardware configurations are limited by
unpredictable run-time conditions. In this paper, we propose
Dynamic Stencil, a novel approach that statically optimises
target applications for various FPGA nodes, and dynamically
constructs an executable design that automatically adapts to
resources available at run time. In particular, we achieve high
resource utilisation ratio and significant speedup over reference
designs at each stage of the approach for computationally
intensive stencil applications. Limitations of our current design
approach mainly come from its single-task considerations: a
Dynamic Stencil design tends to occupy all available resources
during its execution, which may not be the optimal solution

when targeting maximum overall performance of multiple
tasks; idle nodes due to lack of communication channels to
existing Dynamic stencil design can be occupied by other com-
putational tasks, which can further increase resource utilisation.
Future work includes supporting dynamic design methods for
multi-task and multi-user environments, which will be built on
top of the current Dynamic Stencil approach, to exploit more
complex run-time scenarios.

Acknowledgement. This work was supported in part by
UK EPSRC, by the European Union Seventh Framework
Programme under Grant agreement number 257906, 287804
and 318521, by 973 project 2013CB329000, National Natural
Science Foundation of China (No. 61373026), by the HiPEAC
NoE, by Maxeler University Program, and by Xilinx.

REFERENCES

[1] D. A. Reed, L. M. Adams, and M. L. Patrick, “Stencils and problem
partitionings: Their influence on the performance of multiple processor
systems,” IEEE Trans. Computers, vol. 36, no. 7, pp. 845–858, 1987.

[2] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey, “3.5-d
blocking optimization for stencil computations on modern CPUs and
GPUs,” in Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE, 2010, pp. 1–13.

[3] M. Ripeanu, A. Iamnitchi, and I. T. Foster, “Cactus application: Perfor-
mance predictions in grid environments,” in Euro-Par, 2001, pp. 807–
816.

[4] X. Niu, Q. Jin, W. Luk, Q. Liu, and O. Pell, “Exploiting run-time
reconfiguration in stencil computation,” in FPL, 2012, pp. 173–180.

[5] M. Perrone et al., “Reducing data movement costs: Scalable seismic
imaging on blue gene,” in IPDPS, 2012, pp. 320–329.

[6] L. Lu and K. Magerlein, “Multi-level parallel computing of reverse time
migration for seismic imaging on blue Gene/Q,” in PPoPP, 2013,
pp. 291–292.

[7] P. Micikevicius, “3D finite difference computation on GPUs using
CUDA,” in GPGPU, 2009, pp. 79–84.

[8] E. H. Phillips and M. Fatica, “Implementing the himeno benchmark
with CUDA on GPU clusters,” in IPDPS, 2010, pp. 1–10.

[9] M. Rietmann et al., “Forward and adjoint simulations of seismic wave
propagation on emerging large-scale GPU architectures,” in SC, 2012,
p. 38.

[10] K. Sano et al., “Scalable streaming-array of simple soft-processors
for stencil computations with constant memory-bandwidth,” in Proc.
FCCM, 2011.

[11] H. Fu and R. G. Clapp, “Eliminating the memory bottleneck: an FPGA-
based solution for 3D reverse time migration,” in Proc. FPGA, 2011.

[12] J. Holewinski, L.-N. Pouchet, and P. Sadayappan, “High-performance
code generation for stencil computations on GPU architectures,” in ICS.
ACM, 2012, pp. 311–320.

[13] S. Krishnamoorthy et al., “Effective automatic parallelization of stencil
computations,” in ACM Sigplan Notices, vol. 42, no. 6. ACM, 2007,
pp. 235–244.

[14] K. Datta et al., “Stencil computation optimization and auto-tuning on
state-of-the-art multicore architectures,” in SC. IEEE, 2008, p. 4.

[15] S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams, “An auto-tuning
framework for parallel multicore stencil computations,” in Parallel &
Distributed Processing (IPDPS), 2010 IEEE International Symposium
on. IEEE, 2010, pp. 1–12.

[16] O. Pell, J. Bower, R. Dimond, O. Mencer, and M. Flynn, “Finite
difference wave propagation modeling on special purpose dataflow
machines,” IEEE Transactions on Parallel and Distributed Systems,
vol. 24, no. 5, pp. 906–915, 2013.

[17] N. Maruyama, T. Nomura, K. Sato, and S. Matsuoka, “Physis: an
implicitly parallel programming model for stencil computations on
large-scale GPU-accelerated supercomputers,” in High Performance
Computing, Networking, Storage and Analysis (SC), 2011 International
Conference for. IEEE, 2011, pp. 1–12.

[18] X. Niu, J. G. F. Coutinho, and W. Luk, “A scalable design approach for
stencil computation on reconfigurable clusters,” in FPL. IEEE, 2013.

[19] M. Araya-Polo et al., “Assessing accelerator-based HPC reverse time
migration,” IEEE Transactions on Parallel and Distributed Systems,
vol. 22, pp. 147–162, Jan. 2011.

