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Abstract—This paper presents a runtime system for re-
configurable accelerators that supports elastic management: it
enables effective sharing of accelerator resources across multiple
applications. For each application, this runtime system allocates
an appropriate amount of resources to satisfy its quality-of-service
requirements, while minimising the overall execution time for a
collection of applications. The effectiveness of this runtime system
is due to a set of scheduling algorithms and strategies customised
for different types of workloads. We demonstrate our approach
by implementing a dynamic Monte Carlo bond options pricing
design.

I. INTRODUCTION

FPGA based dataflow engines (DFEs) can achieve in-
creased performance and energy efficiency for a number of
applications [1]. However, despite the order of magnitude
increase in performance and energy efficiency described in
these works, FPGA based acceleration is neither considered
mainstream nor used extensively for high performance com-
puting in industry. We believe this is due to:

• Large technical barrier – application developers com-
ing from more traditional software engineering back-
ground have a hard time adapting to FPGA develop-
ment;

• Slow development cycle – with compilation of circuits
taking as much as several days for the largest available
commercial chips, the development cycle is much
slower when compared to traditional software;

• Limited runtime management – FPGAs and other
hardware accelerators are largely invisible to the op-
erating system, and only minimal management func-
tionality is provided;

• Large initial investment – FPGA based solutions re-
quire a large initial investment;

• Reduced utilisation – given that, compared to CPUs,
FPGAs are less suited for general purpose tasks, peak
utilisation may be significantly larger than the mean
leading to the risk of FPGA-based devices being
under-utilised.

Cloud computing can offer a solution to the above chal-
lenges and improve adoption of FPGA-based acceleration by
1) providing higher level APIs allowing users to compose ap-
plications, 2) improving development speed by providing pre-
compiled implementations, 3) providing runtime systems that
manage heterogeneous resources, 4) reducing initial investment
and commitment and 5) maximising resource utilisation by
allowing resources to be shared by multiple tenants.

A key enabler for cloud computing is the ability to provide
and manage elasticity within the cloud environment. We refer
to elasticity as the ability to provision and release resources
at runtime based on computational demands, providing cloud
tenants with the illusion of unlimited resources, and enabling
effective sharing of the underlying hardware resources.

Elasticity underpins the dynamic of two conflicting needs:
(1) the need to satisfy the user’s application requirements
as fast and as cost effective as possible, and (2) the cloud
provider’s need to maximise resource utilisation and increase
profit. An elastic system is self-adaptive, and contains two
types of components:

• an elasticity manager which translates the needs of an
application and the feedback from resource managers
into a set of provisioned resources that can meet the
required computational demand;

• a resource manager which makes low-level decisions
on how to best allocate provisioned resources to
maximise overall throughput and quality of service
(QoS). In addition, this component is responsible
for providing monitoring information to assist the
elasticity manager.

In this paper, we focus on the challenges of enabling
elasticity for reconfigurable accelerators in multi-tenant en-
vironments. In our approach, multi-tenancy is handled by a
scheduler component, capable of sharing a number of available
physical DFEs between a much larger number of competing
tenants, with different Job-Level Objectives (JLOs). We define
a JLO as an objective associated to a job that needs to be
satisfied by the scheduler component. An example of a JLO
is, for instance, the desired maximum execution time for a
submitted job. The goal of the runtime system is to satisfy these
JLOs (within bounds of available resources) with a minimum
allocation of resources.

The structure of this paper is as follows: First, we present
the design of Hydrogen, a novel elastic management system
for reconfigurable accelerators that operates on a multi-tenant
cloud environment (Section III); Second, we show how various
scheduling strategies can easily be used with Hydrogen in
order to achieve load balancing, reduce average waiting based
on priority and realise elasticity by allocating, at runtime, DFEs
based on the task demand (Section IV); Third, we describe our
current implementation of Hydrogen (Section V); and finally,
we evaluate our system using a dynamic implementation of a
Monte Carlo bond option pricing application (Section VI).
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II. BACKGROUND AND RELATED WORK

Elasticity has long been recognised as a key feature of
cloud computing [2]–[5], to allow resources to be time-shared
between cloud tenants. In [6], the authors refer to elasticity as
the dynamic provisioning (and de-provisioning) of resources
for applications based on workload and service level objectives
(SLOs). In [7], elasticity is more rigorously defined as “the
degree” to which the available resources (provisioned by the
system to a specific task) match the current demand, and a
number of metrics are proposed to measure the elasticity of a
system.

The idea of elasticity has also been studied in the context
of reconfigurable computing. For instance, a different concept
of elasticity named elastic computing has been introduced [8]
which supports portable designs (the ability to run one function
on multiple platforms) but augmented with a selection model
which can choose the best available implementation based on
application properties, and pre-compiled performance models.
The authors extend their work in [9] which introduces a heuris-
tic for generating parallel implementations for heterogeneous
computers.

In this work we look more specifically at supporting
elasticity on dataflow engines (DFEs). Dataflow machines
emulated on FPGAs can achieve orders of magnitude improved
performance [1]. A dataflow design is usually statically sched-
uled into a deep hazard-free pipeline through which data is
streamed. This leads to ideal throughput rate of one result per
clock cycle and eliminates the fetch-decode-execute cycle of
von Neumann architectures.

Scheduling has been studied extensively and given its
classification as an NP hard problem [10], many heuristic based
solutions have been developed, which result in good empirical
performance.

Classical Monolithic Schedulers such as the O(1) sched-
uler [11] and the Completely Fair Scheduler (CFS) [12] are
commonly used in modern operating systems (e.g. the Linux
kernel) and in cloud compute clusters.

Two Level Schedulers are designed to scale to enormous
loads and cluster sizes and as such their performance with
a very small number of nodes and medium length job size
suffers. Hadoop On Demand [13] and Mesos [14] can provi-
sion multiple Hadoop clusters on one physical cluster, each
having its own scheduler to allow for better resource segrega-
tion. However these schedulers suffer from having insufficient
information about the physical network and as such can lead
to poorer resource allocations [15].

Omega [15] is an example of distributed/shared state
scheduler. Each node in the network contains global state
information, as such each node has information about every
other node in the network. While this may be deemed effec-
tive for large compute clusters it does mean that there is a
significant amount of overhead at each compute node. The goal
for our system was to remove the burden of scheduling from
the compute resources, allowing them to expend more cycles
doing useful work, and fewer cycles determining schedules.

In the context of reconfigurable computing, scheduling
has been used to allow the execution of large designs in

time-multiplexed FPGAs [16], [17]. Time-multiplexed FPGAs
could provide a more efficient way of implementing time-
slicing. Efficient preemption schemes for FPGAs have been
studied extensively and a number of solutions have been
proposed that rely either on customised FPGA architectures
or partial reconfiguration [18]–[20]. However tool support for
both time-multiplexed FPGAs and preemption is limited and
for this reason we have decided to adopt the simpler (albeit
less efficient option) of using a software based time-sharing
approach as discussed in Section III-C.

III. SYSTEM ARCHITECTURE

In this section we describe Hydrogen, a lightweight archi-
tecture that can efficiently manage DFEs to meet the demand of
multiple applications. Hydrogen has been designed to support
a cloud computing platform as described for example in
the HARNESS project [21]. Figure 1 provides an overview
of Hydrogen. Each Hydrogen instance manages a pool of
resources that is shared across multiple applications. In par-
ticular, applications submit jobs to a Hydrogen instance, and
the resource manager associated to each instance allocates
resources such as to satisfy their JLO. Based on information
provided by the resource managers, the Elasticity Manager is
able to provision or release specific reconfigurable resources,
based on the observed demand, as measured by a JLOmetric,
thus achieving elasticity.
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Fig. 1. Overall architecture diagram of Hydrogen.

A. System Characterisation

In this context, we view jobs as requests for a particular
computation (e.g. solve a system of equations, perform a con-
volution etc.) which are made by clients via Remote Procedure
Call (RPC) services (for which the API is provided in the client
interface). The API functions correspond to available high
performance implementations for available accelerators. This
achieves virtualisation of resources behind a single interface
and enables Hydrogen to be applied not only to manage DFEs
but, potentially, heterogeneous accelerators in general. From a
user application perspective, a single heterogeneous resource
(the best available as deemed by the system) is presented
to them. Programmers only have to manage wrapping up
their computation into jobs which the elastic framework can
manage.
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TABLE I. JOB AND RESOURCE CHARACTERISATION USED IN

HYDROGEN.

Item Parameter Description

job min Min resources to start computation

max Max resources a job can benefit from

cost function Total execution time of the job

priority Determines job precedence over resources

resource id The unique identifier for the resource

idle time The time the resource spends in idle state

utilisation total time−idle time
total time

At this stage, the proposed system only supports DFE based
implementations, but there is no inherent restriction on the type
of accelerators which can be used. Accelerators will be referred
to as resources and it is the job of the runtime to manage
elastic applications and assign resources to them. The runtime
can dynamically select scheduling algorithms to efficiently
distribute the load over the resource cluster (Section VI).

B. Components

The Hydrogen architecture allows the resource pool to grow
and shrink at runtime. This framework has an overall goal or
strategy, which includes minimising the total completion time
of all incoming jobs or minimising job start latency. The main
components of the proposed design are:

• An implementation library containing efficient
dataflow designs, associated performance metrics
(both measured and estimated), and scalability
information such as how many DFEs can the
implementation scale and what is the required
topology;

• A scheduling library which contains algorithms for
producing an out of order execution schedule that
maximises customisable objectives;

• An elasticity manager which is responsible for decid-
ing on an algorithm from the scheduling library that
will minimise the objective function from the current
Strategy, and adjusting the resource pool size;

• A resource manager which allocates jobs to provi-
sioned resources based on the scheduling algorithm.

This approach has a number of benefits. First, it greatly
improves ease of use of (heterogeneous) accelerators; in par-
ticular for DFEs this is a major concern when considering
the increased compilation time (hours, even days) for a high
performance implementation. Second it enables effective shar-
ing of implementations in a portable and transparent way to
the users. Finally it enables effective sharing of multiple DFE
accelerators; this is important since DFEs are on the one
hand extremely expensive but on the other hand they offer
increased performance and energy efficiency and can often
remain unused for long periods of time.

The framework operation comprises the following main
stages:

1. Initialisation - Hydrogen is provisioned with a num-
ber of physical reconfigurable accelerators (e.g. by
the cloud platform)

2. Job Service - wait for incoming jobs and on receipt:

a. insert the job into the Ready-Queue

b. generate an execution schedule

c. wait for resources to become available:

i. dispatch job for execution on DFE

ii. remove it from the Ready-Queue

iii. insert it into the Run-Queue

iv. wait for results (all resources)

v. return resources to the Resource Pool

vi. send results to client

3. Adapt - based on the observed JLO metrics:

• Adjust the size of the resource pool

• Send a request to the cloud platform for more
or less resources

C. Job Preemption

Supporting preemption is one of the challenges of using
DFE based resources in a cloud environment. On one hand pre-
emption is required to ensure fairness with an online, weighted
scheduling approach. Without preemption long running jobs
may “starve” shorter (and potentially higher priority jobs) from
completing and the runtime system would have no means of
ensuring their JLO is met. On the other hand, expensive addi-
tional hardware support is required to support preemption since
unlike CPUs, FPGAs have not been traditionally designed to
support rapid preemption.

In Hydrogen we propose to circumvent this issue by
using time-sharing. In this approach, we would allow dynamic
designs to cooperate and willingly give over resources (if
requested by the scheduler) after achieving one “unit of
work” which is entirely algorithm dependent. For example
in an iterative seismic imaging algorithm (such as Reverse
Time Migration [22]) the unit of work may be consider one
iteration of the outer loop. In case of sorting this could be
sorting one subset of the entire input array and so on. One
limitation of this approach could be the potential fragility of
the solution, since one misbehaving implementation can slow
down the entire system. In our approach we rely on the fact
that dynamic designs are not provided by end-users, but by
qualified developers.

With this approach there would be a tradeoff between the
overhead introduced by the “package mechanism” (i.e. splitting
jobs into quanta sized units) and the latency in processing
requests. Another issue is that this approach could negate per-
formance benefits achieved by iterative applications [22] which
rely heavily on the ability to use on-board DRAM to store
large amounts of intermediary results between iterations (this
is common in stencil computation) or time invariant matrices
(common in iterative solvers for linear equations). The band-
width to DRAM is significantly larger than on PCI-Express,
so forcing applications to send workpackets through the slow
PCIe connection would result in a significant performance
degradation. An alternative solution to this problem could be
to provide direct network access to the DFE implementations.
Recent generations of DFEs (such as the MPC-N box [23])
support direct connection to multiple 10GBit Ethernet streams
thus potentially allowing Hydrogen to bypass the slow PCIe
connection, resulting in improved latency and bandwidth. In
some applications, spare on-chip resources could be used for
the TCP interface.
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D. Runtime Reconfiguration

Another challenge of time-sharing DFEs is the overhead of
runtime reconfiguration. Unlike CPU cores, in which context
switching can incur an overhead of about 30μs, the time
to reconfigure a DFE is about 1s. Moreover, in the current
generation of Maxeler DFEs, all DRAM data is lost after
reconfiguration since to achieve reconfiguration, the entire card
is reset. This means all data (including potentially large, time-
invariant matrices for example in the case of sparse iterative
solvers) will have to be re-transmitted to the DFE.

To minimise this overhead, the scheduler could keep track
of the configuration associated to each provisioned DFEs
across multiple runs, and support an allocation strategy that
minimises the number of required reconfigurations at the
beginning of every run. For the context of this paper, we do
not minimise the runtime reconfiguration overhead and our
hardware experiments reflect its full cost.

IV. SCHEDULING STRATEGIES

An important component of Hydrogen is the scheduler
which enables multi-tenancy and supports elasticity. Using
standard terminology [24], the scheduler is solving the problem
of allocating a set of jobs R to multiple machines (DFEs)
running in parallel (Pm). A job rj can run on one or more
machines in Mj ⊆ Pm as soon as the job is available.
Switching machines from one subset to another incurs a
penalty and the objective function we wish to minimize is the
total weighted completion time of each job ΣwjCj . Specific
to DFEs we include in our analysis the reconfiguration time
(when a currently unavailable function is requested by a client,
or when resources need to scale to match user demand). This
can be thought of as an added constant Δs.

We use a set of strategies to score allocations produced by
the scheduling algorithms. We use these scores to determine
the final scheduling allocation. Additionally we also bound the
impact of running several scheduling algorithms by providing
a window size on which they operate. It is simple to add
and remove scheduling algorithms for comparison in the
elastic framework. Hydrogen also allows for more detailed cost
functions to be developed on a per job basis. For this paper,
we simplified the cost functions for every job to:

f(j) =
j.defaultTime

j.allocatedResources
(1)

The defaultTime is a parameter which governs what the
default runtime for a job would be given its allocation to
one resource. Therefore the cost function of Equation 1 as-
sumes a linear scaling of performance with the number of
allocatedResources for a job. This assumption is realistic only
for applications which do not incur a penalty (e.g. induced
by additional communication overhead) when extending to
multiple resources, such as some Monte Carlo applications.
In practice, a more generic and accurate performance model
for a specific implementation could be determined either via
machine learning (e.g. linear regression) or could be estimated
by high-level analysis of the original design. Machine learning
could work well in the wider context of cloud computing,
since performance models could be improved based on a

wealth of available data such as measured execution times
in correlation with other parameters (system load, application
specific parameters, data size etc.). High-level analysis itself
could also be a promising approach, since the performance of
some dataflow designs can be estimated accurately (e.g. for
stencil computation).

A. Strategies

Scheduling can either be fixed with one algorithm or run
in Managed Mode, whereby the Scheduler uses information
about the first Window Size jobs in its ready queue to make a
scheduling decision. Scheduling happens in O(w) time, as the
decision is bounded exactly by the window size. As the win-
dow size initially is fixed this means that scheduling decisions
happen in O(1) time. Algorithm 1 shows the algorithm for the
managed mode and Algorithm 2 shows some of the algorithms
we have used with our approach.

Algorithm 1 Managed mode algorithm.

1: function MANAGER(queue)
2: for Alg ∈ SchedulingAlgorithms do
3: allocations[a]← Alg(queue,WindowSize)
4: end for
5: for alloc ∈ allocations do
6: scores[alloc]← score(alloc)
7: end for
8: SelectedSchedule← selectMaxScore(scores)
9: ElasticityManager(SelectedSchedule)

10: end function

The scoring process is determined according to the frame-
work’s current strategy. If maximising fairness then the sched-
uler puts a higher priority on minimising the number of late
jobs weighted by their priorities, i.e. a high priority late job
incurs a bigger penalty than a low priority late job. When
focusing on the total completion time the scheduler focuses
on maximising the total number of completed jobs whilst
minimising the makespan, the time taken between the first job
starting and the last job finishing, of the allocation.

Previous work has shown that it is possible to determine
acceptable schedules whilst maintaining a bound on the num-
ber of jobs considered in the calculation [25]. There are a few
trade-offs to this approach. First, the larger the window size the
longer the computation takes to allocate jobs. The smaller the
window size the quicker a job gets allocated, but the quality of
the allocation may suffer. Second in order to use this scheduler
effectively, a library or API must be created in order to wrap
the tasks into Jobs submitted to the framework, additionally
it relies on good performance profiles and cost functions for
each Job. If Job parameters are unknown then this approach
may not be optimal. However in the cloud environment, it can
be quick to build up cost models of commonly used jobs using
historical data.

B. Elasticity

The objective of Hydrogen is to achieve elasticity by
reducing the number of resources allocated at all times while
maintaining JLOs (i.e. their target execution times). In our
approach elasticity is achieved by adding more resources of
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Algorithm 2 Scheduling algorithms used with our approach.

1: function FCFSMAX(ReadyQueue)
2: for job ∈ ReadyQueue do
3: if availableResources > job.max then
4: allocate(job, job.max)
5: end if
6: end for
7: end function
8:

9: function FCFSMIN(ReadyQueue)
10: for job ∈ ReadyQueue do
11: if availableResources > job.min then
12: allocate(job, job.min)
13: end if
14: end for
15: end function
16:

17: function FCFSAMAP(ReadyQueue)
18: for i← (0..windowSize)) do
19: job← ReadyQueue[i]
20: if availableResources > job.min then
21: allocate(job, job.min, job.max)
22: end if
23: end for
24: end function
25:

26: function SJTF(ReadyQueue)
27: repeat
28: minJob = q.getMinJobByCost()
29: if availableResources > minJob.min then
30: allocate(minJob,minJob.min)
31: end if
32: until availableResource > minJob.min()
33: end function

a particular type when, based on an execution schedule, we
estimate that at least one job would fail to meet its JLO based
on the number of resources it has been allocated as shown in
Algorithm 3. Similarly, when all jobs meet their JLO and at
least one job exceeds its JLO (by a term β, a simple means of
specifying a preference for scaling up to meet user demands
rather than scaling down to reduce costs for the cloud provider)
the framework will decide to remove resources of that specific
type.

The jloMetric indicates whether the JLO has been met
and to what degree: a positive jloMetric means that all jobs
for a specific resource meet their JLO; a negative jloMetric
means that not all jobs meet their JLO; the magnitude of
jloMetric should show by how much do jobs miss their JLO; so
a higher jloMetric could mean Hydrogen should provision / de-
provision more than one resource. We consider the jloMetric
from the moment jobs enter the queue (i.e. ignoring some of
the network transfer). Therefore the Elasticity Manager can
decide whether to provision or deprovision resources based on
the jloPos and jloNeg metrics which are the sum of per job
positive and negative JLOs as shown below.

jloPos = max(
∑
ji>0

ji − β, 0), jloNeg =
∑
ji<0

ji

Algorithm 3 Elasticity manager loop.

1: function ELASTICITYMANAGER(Allocations)
2: jloPos← 0, jloNeg ← 0
3: for (job, resources) ∈ Allocations do
4: jloMetric← job.getJlo(resources)
5: if jloMetric < 0 then
6: jloNeg ← jloNeg + jloMetric
7: else
8: jloPos← jloPos+ jloMetric
9: end if

10: end for
11: if jloNeg < 0 then
12: scheduler.provision(job.resourceType)
13: else
14: if jloPos > β then
15: scheduler.deprovision(job.resourceType)
16: end if
17: end if
18: end function

V. IMPLEMENTATION

We report our ongoing effort to implement the proposed
design on top of Maxeler’s Dataflow Engine software stack.
The important components of our current Hydrogen implemen-
tation are:

• Scheduler - a resource manager that achieves load
balancing, and devises an out of order job execution
schedule to satisfy objectives as best as possible
(described in detail in Section IV)

• Elasticity Manager - aggregates information about
individual jobs in a particular execution schedule and
decides how to minimally resize the resource pool to
best meet execution demands

• Dispatcher - thin layer that has direct access to the
DFEs (and other computer resources) it manages

• Library of dynamic implementations

• Client Interface - the interface through which clients
submit compute jobs to Hydrogen

Figure 2 provides an overview of how these components
integrate.

A. Dispatcher

MaxelerOS manages the communication between the CPU
and the DFEs on the MaxNode. The dispatcher is a thin layer
on top of MaxelerOS. It accepts incoming requests and runs
them on available resources using a bitstream implementation
library which it manages directly. On incoming requests, the
dispatcher will load the required bitstream onto the specified
DFE and start execution.

The dispatcher allows selection between the MaxelerOS
managed pool of devices and direct access to resources on
request. The first method provides some mechanism to share
DFEs at a node level. However this incurs an overhead (use of
synchronisation primitives required to enable non-destructive
sharing of resources) which is not justified in the context of
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Fig. 2. Implementation level diagram of a Hydrogen instance.

Hydrogen (which already knows the status of devices and
can therefore prevent inferences between applications at the
system level). An additional advantage of using the scheduler
in our approach is the possibility to easily changing the
scheduling algorithms to more advanced algorithms (whereas
the MaxelerOS scheduler uses only a simple FIFO based
approach).

B. Dynamic Implementations

To evaluate our approach we manually designed a number
of dynamic implementations. By dynamic design we under-
stand that the design can run efficiently on an arbitrary number
of DFEs as provisioned by Hydrogen. Such a design takes the
number and ids of DFEs to run on as parameters. Then, using
OpenMP, all DFEs are loaded and the corresponding bitstreams
start streaming data in parallel. Finally merging of the results
is done on CPUs (as required by the particular application)
and the overall result is returned to the dispatcher which then
transmits it to the scheduler.

C. Client Interface

The client interface works on behalf of the client sending
requests to the scheduler. It is responsible for data marshalling
and un-marshalling (packing service name, client identifica-
tion, parameters and job data) and keeping track of client
identification information (e.g. user id, client priority, etc.)

Clients can submit jobs through a set of services which cor-
respond to accelerated reconfigurable implementations. This

works through a simple Remote Procedure Call (RPC) mech-
anism implemented on top of the Boost Asynchronous IO
library [26] and provides custom made marshalling and un-
marshalling functions for various types of messages. A mes-
sage contains: 1) a unique identifier which identifies the type
of computation to be performed, 2) data that the computation
operates on, 3) additional (scalar) parameters required for
the computation, 4) data and parameter count (to enable un-
marashalling), 5) client identification. To reduce the message
size, the transmission format is binary (instead of an XML or
ASCII based format).

VI. EVALUATION

We evaluate our approach on a dynamic Monte Carlo
design for bond options pricing implemented as described in
section V-B. Monte Carlo simulations are widely used in the
finance industry to model interest rate to price fixed income
products. In the past two decades, the field has evolved from
modelling a single instantaneous interest rate [27] to modelling
the dynamics of an entire forward rate curve [28]. A forward
rate curve is modelled as:

df(t, T ) = σ(t, T )

∫ T

t

σ(t, u)dudt+ σ(t, T )T dW (t) (2)

where f(t, T ) is the forward rate at time T started from time
t; σ(t, T )T is the forward volatility column vector; W (t) is a
random variable under standard normal distribution. For each
Monte Carlo path, a random W (t) is used to construct a
forward rate curve. The generated forward curves are used
to value fixed income financial products.

A bond option is a financial instrument which provides the
owner of the option with the right to buy or sell a bond at a
fixed price K in the future. A call option allows owners to
buy asset, while a put option allows owners to sell asset.

The payoff of the bond option at time T v(t, T ) can be
expressed as:

v(t, T ) = max(exp(−
∫ T

t

f(t, u)du)−K, 0) (3)

To accelerate the bond option pricing process, the Monte
Carlo paths and the payoff functions are implemented in
FPGAs. The design uses OpenMP and the Maxler API to
operate on multiple FPGAs in a map-reduce fashion: the
workload is distributed across a variable number of FPGAs
(up to 4 Xilinx Virtex 6 devices, depending on the demand and
the jloMetric) and then reduced on the CPU of the Maxeler
system. The Monte Carlo paths and the payoff functions are
implemented on the FPGA. We use a LUT Optimised uniform
random number generator [29] to feed the Monte Carlo paths.
Design parameters such as volatility and strike price are passed
from CPUs, and the evaluated payoff results are averaged in
CPUs to price the target derivative.

We implemented a design with 4 parallel processing el-
ements which uses 20.25%, 13.59%, 9.40% and 6.75% of
the maximum available lookup tables, flip flop, block ram
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TABLE II. SCALABILITY OF A MONTE CARLO APPLICATION ON THE

PROPOSED ELASTIC FRAMEWORK. EXECUTION TIMES ARE USED AS PART

OF THE PERFORMANCE MODEL FOR DECIDING RESOURCE ALLOCATION.

Paths (1E6) FPGAs Time (s) Speedup Predicted Error (%)

1 1 5.91 1.00 5.91 0.00

1 2 3.16 1.87 2.96 6.52

1 3 2.16 2.73 1.97 8.96

1 4 1.67 3.53 1.48 11.63

2 1 11.78 1.00 11.78 0.00

2 2 6.14 1.92 5.89 4.09

2 3 4.25 2.77 3.93 7.64

2 4 3.35 3.52 2.95 12.06

3 1 17.71 1.00 17.71 0.00

3 2 9.11 1.94 8.86 2.80

3 3 6.43 2.75 5.90 8.22

3 3 5.00 3.54 4.43 11.46

TABLE III. THE SYSTEM CAN ADJUST ITS RESOURCE POOL SIZE

BASED ON THE USER SPECIFIED OBJECTIVE (THE TARGET EXECUTION

TIME

Paths (1E6) Target (s) Expected (s) jloMetric Pool Decision

1 5 5.91 -0.91 1 Scale Up

1 5 2.96 2.05 2 Preserve

2 5.5 5.89 -0.39 2 Scale Up

2 5.5 3.93 1.57 3 Preserve

3 9 17.71 -8.71 3 Scale Up

3 9 8.86 0.14 4 Preserve

2 5.5 2.95 2.55 4 Scale Down

2 5.5 3.93 1.57 3 Preserve

1 5 1.97 3.03 3 Scale Down

1 5 2.96 2.04 2 Preserve

and digital signal processors respectively. The corresponding
execution times including the framework overhead are shown
in Table II. The speedup scales linearly with the number
of FPGAs, although some overhead is introduced by the
framework and by the sequential reduction process.

To demonstrate the elasticity of the framework we evaluate
it on a scenario in which a single client performs repeated
requests of increasing and then decreasing sizes, successively
increasing and decreasing the number of paths explored in
the Monte Carlo simulation. As a jloMetric we used the
difference between the target execution time and the expected
time (predicted based on the results shown above). We include
a condition to not scale down unless the jloMetric is positive
and greater than 2.5 (β = 2.5). This is a very simple
mechanism of specifying a preference for scaling up to meet
client demands over scaling down (for example to reduce
energy consumption). The framework cannot scale beyond its
minimum (1) and maximum (4) available resources.

Table III shows how the framework could adapt in this
scenario to increase the pool size when the jloMetric is nega-

tive (thus when failing to achieve a user specified objective) or
decrease its pool size when the target objectives are achieved
too easily.

We tested our framework design running in Managed Mode
against four different standalone implementations of common
job scheduling algorithms via discrete event simulation:

• Variants of First Come First Serve: FCFSMax, FCF-
SMin, FCFSAMAP

• Shortest Job Time First (SJTF)

To evaluate the efficiency of the scheduler we implemented
a discrete event simulator for the scheduling algorithms. This
allows us to change parameters easily and investigate their
impact on the overall performance. We observed the following
metrics:

• Number of Jobs Completed (NC)

• Average Wait Time (WT ) - the average time between
when the job is issued by a process, and the time it
is dispatched for processing by the framework.

• Average Service Time(ST ) - The service time is the
time taken for a job to be processed. This can vary
due to the different number of resources allocated to
a job.

• Cluster Utilisation ( Uc =
ΣUr

NoResources )

• Number Late Jobs (NL) - A job is determined as
late, if it has to wait for more than 1 second in the
readyQueue before being dispatched.

Each experiment was repeated 10 times, outliers eliminated
and we report the average values for each metric and results
are shown in Table IV. Each of the scheduling algorithms on
our framework were tested under two different scenarios. For
both scenarios we used a Window Size of 30. We tested the
following scenarios:

• Scenario 1 - Each job is of the same type, the rate at
which jobs are issued is relatively low, and the strategy
the framework tries to minimize is set to Job latency;

• Scenario 2 In this scenario there are two different
job types, shorter lived service jobs (lower resolution
simulation) which use fewer resources, and longer
lived jobs (higher resolution simulation) which can
utilise more resources; the rate of job dispatches is set
relatively high and the strategy the framework uses is
set to minimising completion time.

From a cloud provider point of view, one wants to max-
imise the utilisation of their resources, whilst also providing a
high throughput, from the end user’s perspective, they wish to
achieve some from of acceleration. The framework does a good
job of achieving a high throughput and utilisation of the cluster.
Table IV shows that each algorithm performs well under light
load, our framework is clearly able to accelerate applications
when load is low as seen by the average job service time. The
average wait time is also kept to a minimum and the number of
late jobs were exactly zero for all 10 runs. With an increased
load the FCFSMax algorithm provides good acceleration of
jobs but does not utilise the resources as effectively as the
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TABLE IV. COMPARISON OF SCHEDULING ALGORITHMS AND THE

MANAGED APPROACH BASED ON SIMULATION RESULTS.

Algorithm WT ST Uc NC NL

FCFSMax 0.8415 0.2816 0.609 785.9 0.4

FCFSMin 0.0032 0.7496 0.490 796.8 0.0

FCFSAMAP 0.0204 0.3576 0.644 796.5 0.0

SJTF 0.0085 0.7499 0.477 778.0 0.0

Managed Mode 0.0123 0.3388 0.600 793.0 0.0

FCFSMax 15.988 0.2917 0.8624 1112.4 1065.6

FCFSMin 0.088 0.7486 0.8177 1330.0 1.6

FCFSAMAP 1.499 0.3341 0.979 1315.4 807.7

SJTF 0.682 0.7485 0.815 1328.5 287.1

Managed Mode 0.099 0.5302 0.916 1330.0 0

other algorithms, this leads to fewer job completions and a
large number of late jobs. The SJTF Algorithm fairs better but
does not utilise the resources as well as the elastic framework.

VII. CONCLUSION

We introduce Hydrogen a framework for elastic manage-
ment of reconfigurable accelerators, and describe its design
and implementation. We highlight some of the challenges and
issues such as lack of support for virtualisation or preemption
and show how these could be overcome, in a multi-tenant
environment by using a scheduler component and various
scheduling policies. Future work opportunities include high-
level support for generating dynamic designs (which can
scale efficiently to take maximum advantage on Hydrogen),
experimentation with more scheduling algorithms, different
JLO metrics and more applications.
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