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ABSTRACT
This paper describes Effective Utilities for Run-timE Config-
uration Adaptation (EURECA), a novel memory architec-
ture for supporting effective dynamic data access in recon-
figurable devices. EURECA exploits on-chip configuration
generation to reconfigure active connections in such devices
cycle by cycle. When integrated into a baseline architec-
ture based on the Virtex-6 SX475T, the EURECA memory
architecture introduces small area, delay and power over-
head. Three benchmark applications are developed with
the proposed architecture targeting social networking (Mem-
cached), scientific computing (sparse matrix-vector multipli-
cation), and in-memory database (large-scale sorting). Com-
pared with conventional static designs, up to 14.9 times re-
duction in area, 2.2 times reduction in critical-path delay,
and 32.1 times reduction in area-delay product are achieved.

Categories and Subject Descriptors
C.0 [Computer System Organization]: System architec-
tures

General Terms
Design; performance

Keywords
On-chip configuration generation; runtime reconfiguration;
dynamic data access

1. INTRODUCTION
Field-Programmable Gate Arrays (FPGAs) provide a plat-

form to implement customised data-paths for target appli-
cations. Orders-of-magnitude improvements in performance
and power efficiency have been achieved over software de-
signs, for applications such as financial modelling [21] and
signal processing [15]. The applications that can maximally
exploit the potential processing capability of FPGAs tend
to favour static implementations: the connections between
memory data and data-paths, as well as the operations in
data-paths, are predefined during compile time and stay the
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same during runtime (see Figure 1(a)). In these applica-
tions, the static data connections and operators are often
pipelined. At each clock cycle, all the implemented hardware
resources are active, generating one result per data-path.
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Figure 1: Current FPGA support for applications
with (a) static data access and (b) dynamic data
access.

While the processing capability of FPGAs has been
demonstrated, the lack of support for dynamic operations,
especially dynamic data access, limits the use of FPGAs as
mainstream data processors. Dynamic data access refers to
the capability of providing efficient parallel access to dy-
namic data structures such as linked lists. As shown in Fig-
ure 1(b), when data access operations a[k]->b[k] depend
on runtime variable b instead of fixed offsets, each data ac-
cess operation requires various connections between data-
paths and memory. In hardware, all such connections need
to be statically implemented, while only one of the connec-
tions is active in each cycle. As the number of connections
for a dynamic data access operation increases, the benefit of
hardware over software implementations diminishes.

Efficiently supporting such dynamic data access is a long-
standing challenge for FPGA-based designs. Applications
with dynamic data access are common in social networking
(Memcached), scientific computing (sparse matrix-vector
multiplication), graph traversal (breadth-first search), in-
memory database (sorting, selection), and embedded sys-
tems (H.264). Previously, researchers proposed solutions
to work around the dynamic data access in these applica-
tions, such as compromising memory management flexibility
(Memcached [5]), replicating on-chip memory buffers (sparse
matrix-vector multiplication [28]), and limiting parallelism
(large-scale sorting [10]). As discussed in Section 5, these so-
lutions either limit the market acceptance of the developed
applications, or affect the application performance.

The objective of this work is to address the dynamic data
access challenge in hardware designs, without affecting the



current support for static applications. We propose a mem-
ory architecture known as EURECA that can be integrated
with FPGAs, which meets the following requirements.
R1: to efficiently accommodate intensive dynamic data ac-

cess (thousands of parallel wires, each with hundreds of
possible runtime connections), without sacrificing ap-
plication functionality or performance.

R2: to be compatible with existing synthesis tools and
hardware languages, and to be transparent to appli-
cations without dynamic data access.

R3: to have overhead as small as possible when integrated
with the relevant reconfigurable architectures.

Section 7 explains how these requirements are met by EU-
RECA. The proposed memory architecture is underpinned
by a novel runtime reconfiguration approach: instead of
physically storing all possible configurations, the configu-
rations are generated on-chip from user logic. At each cycle,
the generated configurations update the implemented con-
nections, ensuring implementation of only the active con-
nections during runtime, while enabling applications with
dynamic data access to be implemented with the same effi-
ciency as static designs.

Outline. Section 2 discusses the related work. Section 3
presents an overview of the EURECA memory architecture
in three aspects: (1) configuration flow, (2) architecture in-
tegration, and (3) EURECA-based designs. Section 4 shows
the circuit details of a EURECA module. Section 5 studies
the use of EURECA architectures in three benchmark ap-
plications: Memcached, sparse matrix-vector multiplication,
and large-scale sorting. For each benchmark application, we
discuss the design challenges, the improvements, and the im-
pacts on applications with similar data access patterns. Sec-
tion 6 evaluates the proposed architecture in terms of archi-
tecture efficiency, with the benchmark applications synthe-
sised, placed and routed on a commercial FPGA enhanced
with EURECA support. Measured results are based on EU-
RECA circuits developed using Cadence Virtuoso with 65nm
technology. Section 7 discusses the potential and the limi-
tations of the proposed approach.

2. RELATED WORK
Previous work has explored communication operation sup-

port in reconfigurable system. Coarse-grain architectures
such as Matrix [12], Tilera [23] and Ambric [3] implement
distributed general-purpose processors and dedicated com-
munication networks on-chip. Instruction execution of these
architectures can involve dynamic data access, with the sup-
port of local memories and global communication networks.
These architectures need new programming models to coor-
dinate distributed processor execution, and fine-grain paral-
lelism is not always captured in designs targeting these archi-
tectures. Another direction to improve communication effi-
ciency in reconfigurable designs is to build high-level mem-
ory abstractions and optimisation tools. Memory abstrac-
tions such as CoRAM [7] decouple memory management
from computation, and provide virtualised memory inter-
faces to users. However, CoRAM maps dynamic data access
into separate local caches in processing elements, which can
reduce data locality. While some high-level synthesis tools
adopt polyhedral transformation [17] to improve memory
bandwidth utilisation, such polyhedral approaches do not
support dynamic data access. In contrast, this work en-
hances reconfigurable architectures with efficient support for
dynamic data access, with fine-grain parallelism in reconfig-
urable designs preserved.

Runtime reconfiguration techniques provide opportunities
to unfold dynamic data access in time dimension. In [27],
partial reconfiguration is applied to update a wide crossbar

by reusing the routing multiplexers. It takes 220 µs to re-
configure a crossbar running at 150MHz. For dynamic data
access in high-performance applications, the implemented
connections need to be updated every iteration. In this
case, the reconfiguration time dominates the overall execu-
tion time of a reconfigurable design. To reduce reconfigu-
ration time, DPGA [20] and time-multiplexed FPGAs [22]
are proposed. In these architectures, configuration memo-
ries for reconfigurable logic are replicated to store multiple
configurations on-chip. The 3D programmable architecture
from Tabula [19] replicates the configuration of logic blocks
as well as interconnect. Configurations of implemented de-
signs thus can be updated within a cycle. The replicated
configuration memories, however, introduce large area and
power overhead. The inefficiency in previous runtime re-
configuration approaches is due to the need for storing all
possible configurations, either on-chip or off-chip. The EU-
RECA approach adopts a new configuration flow that only
stores the active configurations in each cycle.

3. EURECA MEMORY ARCHITECTURE
The configuration flow in FPGAs defines how they can

be reconfigured to implement different customised designs.
As shown in Figure 2(d), the EURECA configuration flow
includes Static Configuration Memory (SCM), Configura-
tion Generator (CG), and Dynamic Configuration Memory
(DCM), where the SCM defines the operations of the CG,
the CG generates configuration data based on runtime vari-
ables, and the output of the CG writes into the DCM. In
this work, we couple the DCM with routing multiplexers,
and group the runtime reconfigurable multiplexers into EU-
RECA modules. This new configuration flow brings three
benefits: (1) the necessity to store all possible configurations
is eliminated, since the DCM only stores the active config-
uration; (2) generating and adapting configurations on-chip
significantly reduces reconfiguration time, allowing runtime
reconfiguration operations to finish within one cycle; (3) im-
plemented in user logic, CGs are customised to application
requirements. For static designs without dynamic data ac-
cess, no CGs will be necessary.

The configuration flow for static designs is demonstrated
in Figure 2(a) and (b). Static Data-Paths (SDPs) are spec-
ified with a single configuration. Idle operators are intro-
duced when dynamic operations are required.

In previous approaches, multiple configurations are pre-
pared in advance, as shown in Figure 2(c). This configura-
tion flow is inefficient because only one of the configurations
is used. When stored off-chip (partial reconfiguration), the
large reconfiguration time prohibits fine-grained reconfigu-
ration [27]. When stored on-chip, the increase in memory
capacity introduces large area overhead [20, 22]. Moreover,
the additional memory area is fixed once FPGAs are fabri-
cated. Static designs are implemented with the same area
overhead, although only one of the replicated configuration
memories is required.

Architecture overview. Integrating the EURECA mem-
ory architecture into an existing reconfigurable architecture,
as demonstrated in Figure 3, includes three steps: (1) divide
on-chip memory blocks into memory groups, and couple each
memory group with a EURECA module; (2) implement on-
chip memory controllers as hard blocks, and couple each
memory controller with a EURECA module; (3) arrange
the EURECA modules in columns, and insert the EURECA
columns into existing routing and logic fabrics. A EURECA
module is the basic building block in the EURECA mem-
ory architecture. The module provides I/O ports (1) to take
CG output to update the DCMs in a EURECA module, and
(2) to provide reconfigurable connections between user logic
and memory elements. The EURECA modules, when cou-
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Figure 2: Data and configuration flow of (a) static
design supporting static operations, (b) static design
supporting dynamic operations, (c) dynamic design
with prepared configurations, and (d) dynamic de-
sign reconfigured with EURECA approach.

pled with memory groups, provide access to on-chip mem-
ory, while those coupled with memory controllers provide
access to off-chip memory. The I/O ports of memory groups
and memory controllers are hard-wired into EURECA mod-
ules, while the connections between user logic and EURECA
modules are statically reconfigurable. In the current archi-
tecture, the interconnections between EURECA modules are
mapped into routing channels.
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Figure 3: EURECA memory architecture overview.

EURECA-based reconfigurable designs are devel-
oped with hardware languages such as Verilog and VHDL,
and synthesised with existing tool chains. A EURECA-
based design contains SDPs, CGs and instantiated EURECA
modules, where SDPs implement the static operations of an
application, while CGs and EURECA modules support dy-
namic data access. Figure 4(a) and (b) respectively demon-
strate the pseudocode and the hardware implementation of
the algorithm in Figure 1(b). In this example, the SDPs
are parallel multiply-and-accumulate modules, and the dy-
namic operations refer to the data access to a. We store a
in a BRAM group, and instantiate the corresponding EU-
RECA module. To reconfigure the EURECA module, we
develop a CG that takes b as runtime input, and generates
corresponding configurations con. As shown in Figure 4(a),
the EURECA module takes con to update its DCM, and
provides the SDPs the dynamic connections to a. This ex-
ample design is a simplified sparse matrix-vector multiplica-
tion kernel. The application will be discussed in more detail
in Section 5.2.

(a) (b)
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endmodule

module top(clk, in, out...);

end

for(i=0; i<32; i=i+1) begin

......

cg cg0(.rst(rst)...

eureca eu0(.rst(rst)...
.con(con), dat(dat));

...... .in(b), .out(con));

   d[i] = d[i] + dat[i] *c[i]; 

out

static operators

b
a

c

dynamic data access

dat

con

Figure 4: A EURECA example design in Verilog,
for the application in Figure 1(b).

4. EURECA MODULE
The EURECA modules play a key role in our runtime re-

configurable design: to take runtime configurations and to
update data connections correspondingly. As shown in Fig-
ure 5, a EURECA module consists of runtime reconfigurable
multiplexers, configuration control units, and a configura-
tion distribution network. A EURECA module supports
both dynamic read and dynamic write. We use the dynamic
read to illustrate the functionality of a EURECA module.
The development of a EURECA module follows three prin-
ciples: (1) grouping dynamic connections to reduce routing
complexity; (2) sharing runtime configurations to minimise
CG resource usage; (3) supporting both static data access
and dynamic data access with various data widths

1

2

3

configuration control units

C
D

N

user logic configuration generator

memory I/Os initialisation ports

Figure 5: A EURECA module with (1) runtime re-
configurable multiplexers, (2) configuration control
units, and (3) Configuration Distribution Network
(CDN).

Runtime reconfigurable multiplexers refer to the dy-
namic connections between memory I/Os and user logic.
A reconfigurable multiplexer contains a routing multiplexer
and runtime writable SRAM cells (named as multiplexing
SRAM cells) that define the implemented connection. We
set the minimum data width supported in a EURECA mod-
ule to be 1 byte, and divide the reconfigurable multiplexers
into connection groups, with each group containing 8 multi-
plexers (bit-level dynamic connections are implemented with
user logic due to the relatively small area usage). Figure 6
shows an example connection group with 256 input wires
from memory, labelled as i0 to i255. The 256 input wires
correspond to 32 input bytes. Correspondingly, routing mul-
tiplexers m0 ∼ m7 in the connection group have 32 input
wires. External designs use the output of the routing mul-
tiplexers o0 ∼ o7 as an 8-bit dynamic connection.

We align the connections between memory elements and
routing multiplexers, such that the multiplexers in a con-
nection group can share the same multiplexing SRAM cells.
For the example in Figure 6, the wires in the first input
byte (i0 ∼ i7) are correspondingly connected to the first
input wires of m0 ∼ m7. Similarly, the second input byte
(i8 ∼ i15) are connected to the second input wires of m0 ∼
m7, in the same order. During runtime, to connect to the



second input byte, m0 ∼ m7 share the same configuration
value (00001). To dynamically reconfigure the connection,
CGs only need to generate one configuration for a connec-
tion group, which reduces the resource usage of CGs by
8 times. The connections between EURECA modules and
memory I/Os are fixed, while the connections to user logic
are configurable. This reduces the routing complexity of
EURECA-based designs, and preserves full configurability
between user logic and dynamically accessed data.

o4 o5 o6 o7

multiplexing
SRAM cells

...... ...... ...... ......

i0 i1 i2 i3

m1m0 m2 m3

o0 o1 o2 o3

i0~i255

m4 m5 m6 m7
...... ...... ...... ......

i4 i5 i6 i7

i8 i9 i10 i11

i12 i13 i14 i15

(i8) (i9) (i10) (i11)

(i12) (i13) (i14) (i15)

(00001)

Figure 6: 8 reconfigurable routing multiplexers in a
EURECA module, sharing the same SRAM cells.

Configuration control units operate EURECA mod-
ules in 4 different modes, to support static data access as
well as dynamic data access with different data widths. In
a EURECA module, we use SRAM cells to store configura-
tion information, and organise the SRAM cells in rows. In
the example case with 256 input wires, each row contains the
multiplexing SRAM cells for 6 connection groups (30 SRAM
bits). Figure 7 shows the SRAM organisation, and the cir-
cuit details of a multiplexing SRAM cell. In an SRAM cell,
the WL port controls whether the cell value can be updated.
A Write-Enable (WE) row is inserted below the multiplex-
ing SRAM rows, and a column of shift registers is added.
Each bit in the WE row controls the WL ports of an SRAM
column, and each shift register controls the WL ports of an
SRAM row. The input of an SRAM cell is multiplexed be-
tween the initialisation ports and the configuration ports.
A EURECA module also contains a state bit, to indicate
whether the current module operates in static or dynamic
mode.

(b)
input

configuration

WE row

(a)

state bit

for initialisation
initialisation port

initialisation 

for connection group1 for connection group6

shift register
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runtime 
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Figure 7: (a) The control units for the multiplexing
SRAM cells in a EURECA module. (b) The circuit
details of a multiplexing SRAM cell.

In the initialisation mode, the first 32-bit configura-
tion data from the initialisation ports write the state bit to

’1’, and push a ’1’ bit into the shift registers. In a multiplex-
ing SRAM cell, the initialised state bit selects initialisation
port data as input, and use shift register output as the WL
signal. As the ’1’ bit shifts through the registers, the config-
uration data are written into SRAM cells row by row, which
define the initial connections within a EURECA module.
The state bit and the WE row are initialised last, with the
values determined by the following operation mode.

To operate a EURECA module in the static mode dur-
ing runtime, we set the state bit to ’1’, and push ’0’ into the
shift registers, so that the connections between user logic
and accessed data are fixed during runtime. This mode is
used for applications with only static data access. No CG is
implemented, and the EURECA modules become transpar-
ent to the implemented data-paths.

In the dynamic mode, all multiplexing SRAM cells are up-
dated by CG output in parallel. The state bit is set to be ’0’
to select runtime reconfigurations as input, and use WE row
bits to control the WL ports. All bits in the WE row are
initialised to be ’1’. In this mode, the dynamic connections
in a EURECA module get full reconfigurability, i.e., the con-
nections can be connected to all input bytes. The dynamic
mode is used when the data involved in dynamic data access
are 8-bit wide. As an example, in Memcached, due to the
flexible key width, dynamic pointers implemented in hard-
ware can point at any byte in the fetched off-chip memory
data. The dynamic mode is therefore used.

In the partially dynamic mode, part of the multiplexing
SRAM cells are updated during runtime, while the others
remain static. In this mode, certain bits in the WE row
are configured to be ’0’, turning off the WL ports of the
corresponding SRAM columns. The partially dynamic mode
is used when application data width is larger than 8 bits,
and therefore not all possible connections for 8-bit data are
required. More details for this mode will be given next.
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Figure 8: 16 reconfigurable routing multiplexers in
partially dynamic mode, providing a 16-bit dynamic
connection.

Configuration distribution network (CDN) shares
runtime configurations among connection groups, when ap-
plication data width is wider than 8 bits. As data width
increases, a dynamic connection contains multiple connec-
tion groups. These connection groups are connected to the
same input data during runtime, with static offsets. There-
fore, we operate EURECA modules in the partially dy-
namic mode, to fix the static configuration bits, and share
the remaining dynamic bits in the connection groups. Fig-
ure 8 shows the data connections for a 16-bit dynamic data
access, which contains two connection groups m0 ∼ m7 and
m8 ∼ m15. In the dynamic data access, m0 ∼ m7 provide
the lower 8 bits, and m8 ∼ m15 provide the higher 8 bits.
In other words, there is a 1 byte offset between the two con-
nection groups. We thus fix the lowest configuration bit for
the first and the second connection group to be ’0’ and ’1’,
respectively. As an example, to dynamically connect to the
second input data (i16 ∼ i31), m0 ∼ m7 are configured with
”00010”, and m8 ∼ m15 are configured with ”00011”. Since
the lowest bit is fixed, the same runtime configuration ”0001”



Algorithm 1 Key searching algorithm in Memcached.

input: char *key, nkey
output: item *it

1: hv = hash(key, nkey);
2: it = primary table[hv];
3: while it do
4: if nkey==it→nkey && strcmp(key, it→key) then
5: return it;
6: end if
7: it = it→next;
8: end while
9: return NULL;

can be shard via the CDN, from port0. In this work, we use
8-to-1 multiplexers in a CDN, to support applications with
8-bit to 64-bit data width. The configurations for the CDN
are static, and are initialised in the initialisation mode.

Critical path. For a EURECA-based design, the execu-
tion process within a clock cycle is as follows. First, CGs
output configuration information based on runtime variables.
Second, the CDN distributes the configuration information
to the multiplexing SRAMs in a EURECA module, which
reconfigures the implemented connections. Third, when the
connections are reconfigured and memory data appear at the
EURECA I/O ports, SDPs start data processing. Therefore,
as shown in Figure 8, there are two potential critical paths
in a EURECA module: (1) between CG, multiplexers in
CDN, multiplexing SRAMs, and routing multiplexers; and
(2) between memory data and routing multiplexers.

5. CASE STUDIES

5.1 Memcached
Our first benchmark application, Memcached, is a dis-

tributed memory caching system widely used in the servers
of web service companies (Facebook, Twitter, YouTube,
Wikipedia, etc.). A Memcached server stores frequently ac-
cessed data in memory to provide quick responses to web
requests. Memcached uses hash tables to index stored data,
and uses slab allocation to allocate data chunks. Each hash
bucket contains one to multiple hash entries, and each hash
entry stores the address of its slab data. In hardware, as
shown in Figure 9(a), we store a primary hash table on-chip
to keep track of hash bucket addresses, and keep the hash
data and the slab data in off-chip memory. Algorithm 1
presents the kernel operations to search for a hash entry.
Once a request packet arrives, the packet decipher takes
the Memcached command (e.g. get news21), and the hash
function generates a hash value hv based on the key value
(news21) and key length (6) (line 1). The algorithm then
fetches the hash bucket address it based on hv (line 2), and
traverses all hash entries in the bucket (line 3∼8). Once a
hash entry with matched key value and key length is found,
the corresponding slab data are fetched, and Memcached
returns a response packet.

Design challenge. In Memcached, the key length varies
from 1 byte to 256 bytes. When pointed to by dynamic
pointers, the hash data have unaligned starting addresses,
which lead to design challenges in hashed item search. As an
example, if we assume a 6-byte memory channel, and data
address it aligns with the channel width (i.e. it%6 = 0),
the data can be directly fetched and compared (see Fig-
ure 9(b)). Due to the variable key length, the accessed data
are unaligned during runtime. As shown in Figure 9(c),
when it%6 = 2, the loaded data are in wrong order 21news.
The search module continues searching as 21news != news21,
although this hash entry stores the target hash data.

Previous solutions. In an FPGA implementation [4],
the key size nkey is fixed at 64 bytes. Fixing the key size
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Figure 9: (a) A EURECA-based Memcached design.
Off-chip data access operations with (b) aligned and
(c) unaligned starting addresses.

aligns the runtime data. However, this design compromises
functionality as keys smaller than 64 bytes need to be
padded, and keys larger than 64 bytes cannot be supported.
It is argued in [11] that this restrictive memory management
will limit the market acceptance, based on recent industry
trends. An architecture with soft processors and reconfig-
urable fabric is proposed in [11]. Parallel processing is im-
plemented in hardware, and memory data are managed in
soft processors. This approach consumes large on-chip area
to integrate the processors, and introduces intensive com-
munication between hardware and software.

EURECA solution. In a EURECA architecture, we
instantiate a EURECA module to align the off-chip data
access it → (nkey, key). The EURECA module is cou-
pled with a memory controller. Since Memcached accesses
data at byte level, we operate the EURECA module in the
dynamic mode. As shown in Figure 9(a), the search mod-
ule takes the initial it from Memcached commands, and
updates it with the fetched data when traversing the hash
buckets, until the matched hash entry is found. The mem-
ory controller fetches off-chip data pointed by it. The CG
generates configurations for byte-level dynamic connections
based on it as well as the position of a byte in off-chip
memory channels. The CG operations can be expressed as
coni = (it + i)%N , where i indicates the i-th byte in data
bus, and N is the memory channel width (N=6 in the exam-
ple in Figure 9(b)). The generated configurations therefore
are updated cycle by cycle in the search process.

Table 1: Comparison of Memcached solutions.
solution complexity functionality throughput
static N2 full N
[4] N compromised < N
[11] N + Ccpu full n/a
EURECA N + Ceureca full N

N : on-chip data bus width (byte).
Ccpu, Ceureca: constant overhead.

Discussion. Unaligned data access is common in appli-
cations with complex data structures. The unaligned data
addresses come from variable data length, such as the hash
key in Memcached, the chromosomes in genetic algorithm,
and the FM-index in DNA sequencing. Table 1 compares
the various solutions. Statically implementing all possible
connections introduces N2 area usage, where N is the data
stream width in bytes. For reconfigurable designs with high
memory bandwidth, this is infeasible to implement. Sacrific-
ing application functionality affects the market acceptance
of the product, and integrating general processors introduces



large area and communication overhead. The EURECA ar-
chitecture enables applications with unaligned data access to
be efficiently implemented, without sacrificing functionality
or requiring general-purpose instruction processors

5.2 Sparse Matrix-Vector Multiplication
Our second benchmark application, Sparse Matrix-Vector

multiplication (SpMV), is widely used in scientific comput-
ing and industrial development. SpMV multiplies a sparse
matrix M with a dense vector vec, as shown in Figure 10(a).
A sparse matrix can be stored in Compressed Sparse Row
(CSR) format. Figure 10(b) illustrates the CSR format for
the sparse matrix in Figure 10(a). The CSR data contain
three vectors: val, col and offset. val stores all the non-
zero elements of a sparse matrix, col indicates which column
each val is in, and offset points to the starting data of each
row. In this example sparse matrix, item A is stored in the
first column of the second row. col[2]=0 indicates A is in
the first column, and offset[1]=2 indicates the second row
starts from the third non-zero element.
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Figure 10: (a) An SpmV problem, stored in (b) CSR
format. SpMV architectures with (c) replicated vec-
tor memory and (d) shared EURECA-based vector
memory.

Challenge. The design challenge comes from the ran-
dom data access to the dense vector. As shown in Algo-
rithm 2, in each row, SpMV multiplies the val[j] with cor-
responding vector value vec[col[j]] (line 4). Since col
are runtime data, the vector data access becomes random.
To avoid the long latency of off-chip random data access,
designers normally buffer vec on-chip. In FPGAs, the dis-
tributed BRAMs can be grouped as a unified memory ar-
chitecture, which provides replicated SpMV data-paths the
parallel data access to vec. Due to the randomness of the
vector data access, each data-path needs to be able to access
all BRAMs in the memory architecture. As an example, if
a shared vector memory provides 4 output ports to 4 par-
allel data-paths, each data-path needs to connect to all the
memory blocks in this vector memory, i.e., all of the 4 out-
put ports. For an SpMV design with N data-paths, this
leads to N2 possible runtime connections.

Previous solution. To address this issue, the SpMV ar-
chitecture in [28] assigns each data-path a separate copy
of the vector data, as shown in Figure 10(c). Given an
FPGA with mem on-chip memory capacity, the architec-
ture supports vector size up to mem/N , and needs to block
the sparse matrix data access when the vector size exceeds

Algorithm 2 Sparse matrix-vector multiplication.

1: for i ∈ 0 → num rows do
2: res[i]=0;
3: for j ∈ offset[i] → offset[i+1] do
4: res[i] += val[j] * vec[col[j]];
5: end for
6: end for

this limit. This architecture is sensitive to matrix sparsity.
When the blocked matrix rows contain fewer than N non-
zeros in the data-paths. In Table 2, we calculate the effi-
ciency as the ratio between measured performance and the
theoretical peak performance. In [28], the idle cycles reduce
the average efficiency to 42%. As N increases, the efficiency
will further reduce.

EURECA solution. Our EURECA-based SpMV de-
sign instantiates a EURECA module coupled with a mem-
ory group with N memory blocks. The EURECA module
operates at the partially dynamic mode, as the design uses
32-bit data. We save the vector data into a shared on-chip
memory architecture, which is connected withN data-paths.
The data-paths stream CSR data from off-chip memory. A
CG generates the runtime configurations for memory ad-
dress and vector data, based on the value of col, as shown
in Figure 10(d). For a vector data request, the CG first
reconfigures the address connection to direct the address in-
put into the right memory block, and reconfigures the data
connection when the requested data appear at the memory
output ports. The address input and the data output are
pipelined. In this work we use 10 sparse matrices from [8]
to simulate the computation. The average efficiency for the
EURECA solution reaches 85%, when N = 64. The idle
cycles in this solution mainly come from memory conflicts,
where multiple data-paths are accessing data in the same
memory block. As N increases, the memory conflict ratio
decreases, and the computational efficiency increases.

Table 2: Comparison of SpMV solutions.
solution complexity vector size efficiency
static N2 mem 85% (∝ N)
[28] N mem/N 42% (∝ 1/N)
EURECA N + Ceureca mem 85% (∝ N)

Discussion. Random access to parallel data is common
in complex computational kernels such as sparse matrix pro-
cessing and graph traversal. In these applications, the fre-
quently accessed data (dense vector and bit-mask matrix)
are normally stored on-chip to reduce data access latency.
In modern reconfigurable computing platforms, hundreds
of data-paths are implemented to process data in parallel
(N=128 in [6]). Statically implementing a shared memory
architecture for these applications is not feasible, due to the
N2 area complexity. Replicating on-chip data significantly
reduces the effective cache size. The EURECA architec-
ture enables a shared on-chip memory architecture to be
implemented in reconfigurable designs, to support parallel
random data access. The cache miss rate and the data-path
idle cycles can thus be reduced.

5.3 Large-Scale Sorting
Our third benchmark application, sorting, is one of the

most extensively researched subjects because of the need to
quickly organise millions to billions data items in a database.
As shown in Figure 11(a), sorting networks [1, 16] sort small
data set in parallel. When targeting large-scale data, the
sorting operations are divided into a sorting phase and a
merging phase. In the merging phase, as shown in Fig-
ure 11(b), select-and-pop units merge small sorted data
chunks step by step. In each step, the data chunks are



Algorithm 3 Parallel merging of sorted data chunks.

input: sorted data chunk A, B, with size n
output: merged data chunk C, with size 2n
1: a=&A[0]; b=&B[0]; c=&C[0];
2: while c ≤ 2n do
3: for i ∈ 0 → N do
4: if a[i] < b[N-1-i] && a[i+1] > b[N-2-i] then
5: commit = i+1; break;
6: end if
7: end for
8: assign(c, a, commit);
9: assign(c+commit, b, N-commit);

10: sort(c, N);
11: a+= commit; b+= N-commit; c+=N;
12: end while

buffered in on-chip FIFOs followed by the select-and-pop
units.
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select-and-pop units to merge sorted data. FIFOs
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Challenge. The main challenge is to commit multiple
sorted data in each cycle when parallelising the merging op-
erations. Algorithm 3 presents a parallel merging algorithm,
where N data are merged every iteration. The algorithm
first compares the first N data from both A and B, and la-
bels the index for the smallest N data as commit (line 3∼7).
commit indicates the first commit data from A and the first
N−commit from B should be committed into C (line 8∼9).
Finally, we sort the committed N data, and increase array
indices correspondingly (line 10∼11).

When implemented in hardware, the data connections be-
tween sorted data chunks (A, B) and comparators depend
on runtime computation results. In the example in Fig-
ure 11(c), each sorted data chunk is stored in a FIFO with 4
output ports, and commit=2 in the first cycle. After read-
ing the first two data from A and B, the starting addresses
change from 0 to 2. As shown in Figure 11(d), the output
data from FIFO A become (9,11,5,7) in the second cycle, al-
though the right order is (5,7,9,11). If we statically configure
the connections between FIFO output and comparator in-
put, the comparison operations (line 3∼7) will return wrong
results. During runtime, for a FIFO with N output ports,
the FIFO output data have N different starting addresses.

Previous solutions. In a software implementation, the
committed data are read sequentially, which eliminates the
impact of variable starting addresses. In order to read mul-
tiple data per cycle with correct functionality, a hardware
implementation needs to cover all possible runtime scenar-
ios, which leads to O(N2) complexity for FIFOs with N
output ports. [10] proposes a select-and-pop unit with 2
data committed each cycle. However, the approach is not
scalable for higher parallelism due to the quadratic design
complexity.

EURECA solution. In our solution, we implement 2
EURECA modules, each coupled with a BRAM group. A
BRAM group is implemented as a FIFO with N inputs and

N outputs, where N is the number of committed data in
each cycle. During runtime, we load the sorted data from
the FIFOs, and reorganise the loaded data in the EURECA
modules. A comparison module compares the reorganised
data, commits the smallest N data, updates the commit
variable, and outputs FIFO read enable signals to shift the
committed data out of the FIFOs. CGs for the EURECA
modules calculate the configurations based on the current
starting address, commit, and the position of the reconfig-
ured connections in a FIFO. The CGs and the comparators
in the comparison module form a feedback loop. Operations
in this feedback loop are not pipelined.

Table 3: Comparison of sorting solutions.
solution complexity data size throughput
sorting network C ·N log2(N) small N
merger N2 large N
EURECA N + Ceureca large N

Discussion. The sorting problem is an example of ap-
plications in which data access operations in the current
cycle depend on the computation results from previous cy-
cles. When developed in parallel programming models for
hardware, such a data access operation unfolds into multiple
possible connections. Table 3 compares different solutions
for the sorting application. Sorting networks [1, 16] are only
applicable to small-scale data sets, as the design complex-
ity is proportional to data size. Combining sorting networks
and data mergers solves the data size limitation. However, a
merger with N parallel units suffers O(N2) complexity due
to theN possible starting addresses for read operations. Our
EURECA solution solves both the data size limitation and
the quadratic area complexity, by generating configurations
for the next cycle based on the computation results in the
current cycle.

6. EVALUATION
This section evaluates the EURECA architecture. First,

we enhance a baseline architecture with EURECA support,
and set up an experiment environment to synthesise designs
into the enhanced architecture. Second, we evaluate the
general benefits and the overhead of the enhanced architec-
ture, and compare the EURECA approach with previous
runtime reconfiguration techniques, for supporting dynamic
data access. Third, for the benchmark applications, we de-
velop both EURECA-based dynamic designs and static de-
signs based on the baseline architecture, which are synthe-
sised, placed and routed in the corresponding architectures,
to measure the impacts on application performance.

6.1 Experiment Methodology
Baseline system. The experiment setup simulates a

commercial reconfigurable system in terms of FPGA speci-
fication and off-chip memory systems, to capture the design
realisation in practice. We assume the baseline system to
be the Max3424A from Maxeler Technologies, which con-
tains a Xilinx Virtex-6 SX475T FPGA and provides up to
38.4 GB/s memory bandwidth. As listed in Table 4, the off-
chip memory system contains 4 128-bit DDR3 data chan-
nels, which operate at 303 MHz. We adapt the detailed
architecture file developed in [9] to describe the baseline ar-
chitecture. A CLB in this architecture contains two slices,
each of which contains four Basic Logic Elements (BLEs),
and a BLE contains a fracturable 6-input LUT and two FFs.
We modify the architecture file to align with the architec-
tural details of Virtex-6 SX475T shown in Xilinx FPGA Ed-
itor. The measured average channel width in FPGA Editor
is 150. However, VTR [18], the synthesis tool used in our
experiments, assumes a simplified routing model. Routing



features in commercial FPGAs, such as non-unified chan-
nel width and diagonal wires, are not supported by VTR.
In [13], the channel width is set to be 300 for Stratix IV. In
this work, we inflate the channel width to 256 to approxi-
mate the actual routing capacity.

EURECA implementation. We develop the EURECA
module full-custom at the transistor level in the Cadence
Design Platform Virtuoso, with a 65-nm CMOS technology
from UMC. Inside a EURECA module, multiplexers are im-
plemented with pass transistors, 5T SRAM cells are used to
dynamically configure routing multiplexers, and 6T SRAM
cells are used to statically configure the 8-to-1 multiplexers
in the CDN. In terms of area, the routing multiplexers and
the 5T SRAM cells occupy most of a EURECA module. In
terms of delay, as discussed in Section 4, the 8-to-1 multi-
plexers, the 5T SRAM cells, and the routing multiplexers
are in the critical paths. To balance the module area and
delay, we size the routing multiplexers to minimum width,
optimise the 8-to-1 multiplexers for speed, and insert 4-time
drivers between the 8-to-1 multiplexers and the 5T SRAM
cells. The sizing approach for 5T SRAM in [14] is adopted
to ensure robust read and write operations during runtime.
Circuits outside the critical paths, such as the shift registers
and the 6T SRAM cells, are optimised for area.

Table 4: EURECA architecture parameters.

baseline FPGA
CLB: 37,200 BRAM36: 1064
DSP48x2: 1008 tile: 136x360
channel width: 256

DDR3 memory width: 128*4 bits @ 303 MHz

a EURECA module

data I/Os: 1024 con I/Os: 896
address I/Os: 480 con I/Os: 160
area: 593,210 (325,754)
delay: 0.17 ns
power: 96.56 mw @ 150 MHz

on-chip memory
width: 1024*2 @ 150 MHz
memory group: 32 BRAM36

EURECA layout
BRAMs: 7 columns * 4 modules
memory controller: 2 modules

Architecture integration. EURECA modules are inte-
grated with BRAMs and memory controllers. Given the par-
allelism in recent reconfigurable designs, we set each BRAM
group to contain 32 BRAMs. The baseline architecture con-
tains 1064 36Kb BRAMs, which are organised in 15 columns.
Each of the BRAM groups is coupled with a EURECA mod-
ule, which provides dynamic access to up to 32 memory
blocks, or 128 different input bytes. The enhanced architec-
ture therefore contains 7 EURECA columns. A EURECA
column contains 4 EURECA modules, and sits in the mid-
dle of two BRAM columns. The left BRAMs are not con-
nected to EURECA modules due to BRAM group granular-
ity: a BRAM column contains 72 BRAMs, and the upper 8
BRAMs cannot construct a complete BRAM group.

The on-chip data-paths are set to operate at 150 MHz.
The 38.4 GB/s memory bandwidth therefore corresponds to
2 1024-bit on-chip streams. We implement 2 memory con-
trollers to connect the off-chip and on-chip data streams.
Each memory controller is coupled with a EURECA mod-
ule. As listed in Table 4, the off-chip memory system con-
tains 4 128-bit (64 byte) DDR3 data channels. Along with
the 303 MHz bandwidth and double data rate of DDR3, the
64-byte off-chip memory channel provides 38.4 GB/s band-
width. Therefore, the maximum dynamic offset in off-chip
data access is 64 bytes, i.e., a dynamic connection to off-
chip data has up to 64 different input bytes. The routing
multiplexers and 5T SRAMs in the 2 EURECA modules are
customised for the reduced dynamic degree.

Synthesis environment. We use the VTR tool chain to
synthesise designs into the EURECA architecture, with up-
dated area and delay models. Carry chain is not supported
in the current work. To model the design delay, we extract
the delay information of CLBs, DSPs and BRAMs from the
Xilinx TRCE results for the baseline architecture in speed
grade -3, and use the routing delay information in [13], which
is based on the same 40-nm technology node. The delay in-
formation for EURECA modules is measured from Cadence
designs (room temperature and nominal voltage). The area
information is expressed in the unit of minimum-width tran-
sistor area. We use the area model in [2] to estimate silicon
area based on the drive strength of implemented transistors.
The drive strength of the transistors in EURECA modules
is collected from the implemented circuits. Table 4 lists the
EURECA module areas (the area number in brackets is for
the EURECA modules coupled with memory controllers).
We estimate the CLB area based on the circuit specifica-
tions in [26], and adapt the area models for logic blocks
based on those in [2]. To reduce routing complexity, for a
EURECA module, we fix the configuration pins at the mid-
dle of the left and right sides, and spread the data I/O pins.
The placement algorithm is modified such that once a EU-
RECA module is placed, the coupled BRAMs are labelled
as occupied.

6.2 Dynamic Connection Efficiency
This section evaluates the efficiency of the EURECA ar-

chitecture, when supporting dynamic data access. We define
the dynamic connection efficiency E as the ratio between the
number of different runtime connections R supported by the
same routing resources, and the overhead O for enabling
such connections.

E =
R

O
=

R

oa · ot
(1)

For an architecture with enhanced runtime reconfigurabil-
ity (R > 1), the overhead O includes (1) additional sil-
icon area Oa consumed by reconfiguration infrastructure,
(2) additional execution time Ot due to reconfiguration time,
and (3) impacts on static designs. The third overhead is
application-dependent, and therefore is difficult to generally
quantify. Figure 12 compares the maximum channel width
and the critical path of various applications targeting the
baseline and the EURECA architectures. For static designs,
using the EURECA architecture increases the channel width
and the delay by less than 2% in average.
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Figure 12: Impacts of the EURECA memory archi-
tecture on static designs, in terms of critical path
delay and channel width.

An ideal architecture supports unlimited reconfigurability
without area overhead (oa = 1) or time overhead (ot =
1). The efficiency E increases linearly with the number



of possible connections for a dynamic data access opera-
tion, as shown in Figure 13. Based on the area informa-
tion in Table 4, integrating the EURECA architecture in-
creases the overall area of the baseline architecture by 1.17%
(oa=1.017). For the reconfiguration time, since in the same
cycle, the connections in EURECA modules are reconfig-
ured, and data are loaded through the reconfigured connec-
tions, ot=1. The efficiency of EURECA architecture ap-
proximates the optimal level.
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Partial reconfiguration provides unlimited R, as designers
can store all partial configurations off-chip. The efficiency is
limited by reconfiguration time. Given the smallest address-
able configuration size (3232 bits) and the maximum recon-
figuration throughput (400 MB/s) in the latest devices [24,
25], the minimum reconfiguration time is 1.01 µs (151 clock
cycles for the 150 MHz operating frequency). When the im-
plemented configurations need to be updated every cycle, 1
result is generated every 152 cycles (ot=152). The efficiency
for partially reconfiguring the routing fabric, as shown in
Figure 13, is far from optimal.

Multi-context FPGAs enable new configurations to be ap-
plied within a cycle, since possible configurations are stored
on-chip. In this experiment, we replicate the configuration
memory of routing multiplexers in the connection blocks of
the baseline architecture. The number of replicated config-
uration memory increases with R. As R increases, the area
overhead quickly outweighs the increase in runtime recon-
figurability. As shown in Figure 13, the efficiency of multi-
context FPGAs reduces to 7.2 when R = 32, which indicates
an area overhead of 4.42. To achieve the same reconfigura-
bility of a EURECA module, the multi-context FPGAs need
to replicate 128 configuration memory sets.

6.3 Application Evaluation
To further evaluate the EURECA approach, we develop a

static design and a dynamic design for each benchmark ap-
plication. The static design and the dynamic design share
the same SDPs. In the static design, all the possible connec-
tions for dynamic data access are statically implemented into
the baseline architecture, with if-else expressions. The
dynamic design adopts the EURECA solutions proposed
in Section 5, and targets the EURECA architecture. Ex-
cept the feedback loop in the sorting design, operations in
the benchmark applications are pipelined to reduce critical
path delay. Table 5 presents the measured design properties.
Given the 64-byte off-chip memory channel, the Memcached
application has 64 possible connection sets, each 128 bytes
wide. The parallelism for SpMV and large-scale sorting is
set to be 32.

The resource usage and the critical-path delay of SDPs
indicate the initial design properties, when dynamic data
access operations are not required. The design properties
of the dynamic designs are at the same level as the initial
design properties. The critical-path delay of dynamic de-
signs is slightly reduced as the EURECA module aggregates
the distributed memory I/O connections into a single mod-
ule, which eliminates some long connections in the SDPs.
When statically implementing the possible connections, the
resource usage is increased by up to 14.9 times, and the de-
lay is doubled. In the sorting design, two memory groups are
used to build the two input FIFOs, the intensive connections
between the memory groups and comparators introduce a
comparatively large initial delay. Overall, the dynamic de-
signs reduce the area-delay product by up to 32.1 times.

Statically implementing all possible connections signifi-
cantly increases the routing complexity of the benchmark
designs, since thousands of N -to-1 connections need to be
routed, where where N = 64 for Memcached, and N=32 for
SpMV and for large-scale sorting. As shown in Table 5, all
the three static designs cannot be routed under the current
routing infrastructure. The average channel width for the
static designs is 356, which indicates the routing difficulty of
the static designs, even on large-scale commercial FPGAs.
In other words, with the EURECA architecture, applications
and design approaches previously considered not suitable for
hardware acceleration can be efficiently implemented. As
discussed in Section 5 and Table 1∼3, the enabled features
include flexible memory management, shared memory ar-
chitecture supporting random and parallel data access, and
parallel merging.

7. DISCUSSION AND CONCLUSION
This work is an initial investigation into the EURECA

approach. We have only scratched the surface in this in-
vestigation, and more questions need to be answered. We
discuss below the potential of the EURECA approach that
has not been addressed in this work, and the limitations of
the current research.

Potential. (1) Supporting a wide range of applications.
Our initial investigation divides the applications with dy-
namic data access into 4 categories: (a) unaligned data
access, such as the hash key in Memcached, the chromo-
somes in genetic algorithms and the FM-index in genetic
sequence alignment; (b) random parallel data access, such
as the dense vector in SpMV and the breadth-first traversal;
(c) data-dependent data access, such as in-memory database
operations (selection, merge join, etc); (d) pre-defined ac-
cess patterns, such as the intra-prediction modes in H.264
and the orientations in histogram of oriented gradients. (2)
Enhancing FPGA programmability. In existing memory ab-
stractions and high-level synthesis tools such as CoRAM,
LegUp and Vivado HLS, memory access of the replicated
data-paths is restricted to avoid inefficient hardware. With
the EURECA architecture, more programmer-friendly lan-
guages can be developed. (3) Applying the EURECA ap-
proach to other reconfigurable architectures. Given the area
complexity of CGs, the EURECA approach is more suitable
to coarse-grain computational units than fine-grain compu-
tational units, to rapidly switch between different runtime
computational operations.

Limitations. (1) Large-scale EURECA-based designs.
When a large number of EURECA modules are used in
a reconfigurable design, the communication operations be-
tween the EURECA modules could potentially increase the
critical-path delay. This problem can be solved by inte-
grating a Network-on-Chip (NoC) with the memory archi-
tecture, where the communication operations between EU-
RECA modules are mapped into the NoC. (2) Experiment



Table 5: Benchmark application performance. Each application contains SDPs and dynamic data access
operations. baseline: a static design implemented in the baseline architecture, with dynamic data access
operations expressed as if-else expressions. EURECA: a EURECA-based dynamic design.

Memcached SpMV Large-scale Sorting
SDPs baseline EURECA SDPs baseline EURECA SDPs baseline EURECA

CLB 227 4399 234 459 3521 465 550 4875 561
DSP48x2 0 0 0 64 64 64 0 0 0
RAM36Kb 64 64 64 1024 1024 1024 64 64 64
EURECA 0 0 1 0 0 1 0 0 2
area1 (106) 1.185 22.97 1.54 2.396 18.39 3.02 2.872 25.46 3.52
critical-path delay (ns) 6.7 13.94 6.46 6.54 12.74 6.17 9.51 11.56 9.51
area-delay product 32.14x 1x 12.57x 1x 8.792x 1x
routable2 3 7 3 3 7 3 3 7 3
channel width 202 3823 211 215 3173 221 211 3683 204
throughput (per cycle) 128 bytes 32 partial results 32 sorted data
enabled feature flexible memory management shared memory architecture parallel merging

1 The design area is estimated by the minimum-width transistor area of consumed CLB and EURECA blocks. The areas
of DSPs and RAM blocks are not included due to the lack of area information.
2 Routable indicates whether the designs can be routed under the current routing infrastructure (channel width 256).
3 Unroutble designs are re-synthesised with variable channel width.

setup. Architecture evaluation involves estimations which
can affect the outcome of our experiments: (a) the VTR
routing model inflates the channel width to match the rout-
ing capability of the actual FPGAs; (b) the minimum-width
transistor area model [18] does not include wire area; (c) the
baseline architecture area does not include the area of DSP
and RAM blocks, due to lack of their area information;
(d) the EURECA module is developed in 65-nm technol-
ogy, while the baseline architecture is in 40-nm technology.
The second limitation leads to underestimated module area,
while the last two limitations overestimate the architecture
overhead. Given the large improvements in design proper-
ties, we expect the impacts of these issues to be minor.

Conclusion. This paper proposes a novel memory ar-
chitecture that supports dynamic data access. Instead of
physically storing configurations during runtime, EURECA
generates the active configuration at each time using recon-
figurable logic, which eliminates inefficiency in previous run-
time configuration approaches. In addressing the require-
ment R1 in Section 1, significant reductions in area and
critical-path delay are achieved for three benchmark appli-
cations with intensive dynamic data access. For R2, static
and dynamic designs are developed in Verilog and synthe-
sised with VTR, into the EURECA architecture. For R3,
we show that a Virtex-6 SX475T device enhanced by EU-
RECA has 1% area overhead. Current and future work in-
cludes laying out the EURECA architecture, enhancing the
EURECA architecture with NoC and coarse-grain compu-
tational units, developing more applications, and building
high-level tools to enable automatic development of appli-
cations targeting devices enhanced by EURECA.
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