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Abstract—With the fundamental trade-off between speed and
sensitivity, existing quantitative phase imaging (QPI) systems
for diagnostics and cell classification are often limited to batch
processing only small amount of offline data. While quantitative
asymmetric-detection time-stretch optical microscopy (Q-ATOM)
offers a unique optical platform for ultrafast and high-sensitivity
quantitative phase cellular imaging, performing the computa-
tionally demanding backend QPI phase retrieval and image
classification in real-time remains a major technical challenge.
In this paper, we propose an optimized architecture for QPI
on FPGA and compare its performance against CPU and GPU
implementations in terms of speed and power efficiency. Results
show that our implementation on single FPGA card demonstrates
a speedup of 9.4 times over an optimized C implementation
running on a 6-core CPU, and 3.47 times over the GPU
implementation. It is also 24.19 and 4.88 times more power-
efficient than the CPU and GPU implementation respectively.
Throughput increase linearly when four FPGA cards are used
to further improve the performance. We also demonstrate an
increased classification accuracy when phase images instead of
single-angle ATOM images are used. Overall, one FPGA card is
able to process and categorize 2497 cellular images per second,
making it suitable for real-time single-cell analysis applications.

Keywords—quantitative phase imaging, cell classification, time-
stretch imaging, image-based single-cell analysis, real-time, ultra-
fast events, FPGA, GPU, acceleration, power efficiency.

I. INTRODUCTION

In biological imaging applications, quantitative phase imag-
ing (QPI), in contrast to other established bioimaging modali-
ties, offers a promising solution for label-free cell or tissue
quantitative assessment with nanometer precision [1]. Fun-
damentally, QPI operates by measuring the optical phase-
shift across the specimen under test. Derived from this phase
shift distribution, quantitative information such as cell vol-
ume, mass, refractive index, stiffness, and optical scattering
properties can subsequently be obtained. Such quantitative
information is invaluable as they may serve as a niche set
of biomarkers for cellular identification and classification.
Unfortunately, with its image acquisition rate intrinsically
limited by the speed-sensitivity trade-off in the CCD/CMOS
image sensors, current QPI techniques are yet to be fully
compatible for high-throughput cellular assays – an unmet
need for both basic research and clinical applications where
large population of cells must be examined.
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Fig. 1: (a)–(d): Four single-angle ATOM images of one Chondrocyte with
four fiber coupling angles. (e): Retrieved phase image of one Chondrocyte
after QPI processing

Recently, a new imaging technique called asymmetric de-
tection time-stretch optical microscopy (ATOM) has been
demonstrated for single-cell imaging with an unprecedented
frame rate up to MHz [2]. Not only ATOM can bypass
the classical speed-sensitivity trade-off in CCD/CMOS image
sensors, it can also be extended to perform QPI such that it
can provide label-free quantitative information at an ultrafast
speed. This new QPI technique, called quantitative-phase
ATOM (Q-ATOM), is able to operate at high-speed data rate
(>GSa/s) in real-time. To fully exploit the potential of Q-
ATOM in real-world scenarios, however, mandates a powerful
back-end computing facility that is able to not only acquire
such high-volume, high-speed data in real-time, but also to
perform complex quantitative phase image retrieval, as well
as application specific cell classification on the retrieved data.

To that end, this paper proposes a fully streamable and opti-
mized architecture on FPGA for Q-ATOM processing and cell
image classification. To demonstrate the effectiveness of our
system, imaging data of three live and label-free (no staining
agents for internal details visualization) cells, namely human
chondrocytes, human osteoblasts and mouse fibroblasts, were
used. The first part of the system produces one phase image
of a cell from four single-angle ATOM images (Figure 1).
Subsequently, the generated images are processed through a
support vector machine (SVM) for classification.

The performance of our implementation was compared
against a GPU and a CPU implementation of the same algo-
rithm. With an imaging and classification throughput of 2497
images per second, our implementation on single FPGA card is
9.4 times faster than our optimized C implementation running
on a 6-core CPU, and 3.47 times faster than an equivalent
GPU implementation. In terms of power-efficiency, the FPGA
implementation is 24.19 and 4.88 times more efficient than978-1-4673-9091-0/15/$31.00 c©2015 IEEE



the CPU and GPU implementation respectively.
In addition, when compared to a similar imaging system

without QPI, the additional QPI processing improves the clas-
sification accuracy by 2% to 4%. The improved classification
accuracy illustrates the benefits of QPI processing, which
motivates this acceleration work.

As such, we consider the main contributions of this work
are in the following areas:
• We have design and implemented a novel ultra-fast

quantitative phase imaging processing and classification
system on FPGAs that is faster and more power efficient
than its equivalent implementation on GPU and CPU.

• We have demonstrated the potential of a multi-FPGA im-
plementation of the same algorithm that provides further
speedup and is viable for real-time applications.

• We have demonstrated the benefit of QPI processing in
terms of increased cell classification accuracy.

II. BACKGROUND AND RELATED WORKS

A. QPI Processing Algorithms

Various algorithms for QPI processing has been proposed
by researchers [3], [4]. Research [5] has accelerated a QPI
algorithm on GPU, and there is no normalization of intensity
performed on images. Frequency domain medical imaging
algorithm on FPGA is demonstrated in [6]. Algorithms such
as [4], [5] and [6] use interferograms which introduce an
iterative and computationally intensive phase unwrapping step.
QPI in Q-ATOM does not require phase unwrapping and is
more suitable for FPGA acceleration. Intensity loss in optical
delay lines of Q-ATOM introduce an intensity normalization
step which is non-iterative and easy to be implemented on
FPGA. In [6], researchers demonstrates advantages of FPGA
in processing images in frequency domain. Both [6] and
our QPI processing in Q-ATOM involves low pass filtering,
forward and inverse FFT. Compared to [6], FFT in our system
processes complex numbers as input and consumes more
hardware resources.

QPI algorithm proposed in [3] extracts phase images from
bright-filed images similar to the ATOM images. Thus we use
algorithm in [3] as a guideline to develop our QPI processing
algorithm.

B. Linear SVM

Given a set of instances with labels, linear SVM [7] solves
the unconstrained optimization problem

min
w

1

2
wT w + C

l∑
i=1

ξ(w; xi;yi), (1)

where ξ(w; xi; yi) is the loss function and C is the penalty
parameter. If the instance-label pairs are linearly separable
into two regions on a two dimensional representation, we
can maximize the margin between the regions using two
hyperplanes. The training phase maximize the margin and
generate one hyperplane w. In the testing phase, we classify a
instance x as positive if wT x > 0 and negative otherwise [7].

Researchers have used SVM to classify blood cells in bone
marrow and demonstrates a high accuracy [8]. Results of [8]
inspires us to classify QPI processed phase images of human
cells using SVM.

III. DESIGN APPROACH

A. Top Level Architecture

Our QPI system is composed of a spatial domain module
and a frequency domain module as shown in Figure 2. Pixel
values of four ATOM images are streamed into FPGA in
each clock cycle. In each module, there are several kernels
to perform different mathematical operations on images.

We denote the four input single-angle ATOM images as
I{1, 2, 3, 4} and the output phase image as φ. These retrieved
phase images are subsequently streamed into an SVM classi-
fication kernel to compute a decision value.

Data is streamed into and out from FPGA via PCIe for
Xilinx FPGAs and Infiniband for Altera FPGAs.

All computation are performed on FPGA except that SVM
models are pre-computed on CPU. We pre-compute a group
of models and save them in on-board memory. To classify
different types of cells, we simply reload the on-board ROM.

B. Spatial Domain Module

Spatial domain processing module is composed of back-
ground subtraction kernel, intensity normalization kernel and
complex phase shift extraction kernel.

Firstly, background subtraction in each line is performed by
subtracting the mean pixel value of the line from each pixel.
Secondly, due to the different intrinsic loss of optical delay
lines, the four captured ATOM images are of different average
intensity. Therefore, normalization of each individual image is
required to eliminate the effects of intensity variation between
the four images, which can ultimately affect the phase retrieval
accuracy. Intensity normalization of each image is performed
by

Ig norm =
Ibgs −min(Ibgs)

max(Ibgs)−min(Ibgs)
(2)

where min/max(Ibgs) is the minimum, maximum value of
the background subtracted image and Ig norm are the intensity
normalized images.

Differential phase gradient contrasts images (I5, I6) and
absorption contrasts images (I7, I8) can be obtained by sub-
traction and addition of these normalized images, which are
calculated by

I5 = I3g norm − I4g norm,

I6 = I1g norm − I2g norm,

I7 = I3g norm + I4g norm,

I8 = I1g norm + I2g norm.

(3)

The wavefront tilt (θx, θy) and local phase shift (∇φx, ∇φy)
introduced by the flowing cells are calculated based on the
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Fig. 2: Top-level Architecture. All matrices are decomposed into data
streams. I{1,2,3,4} are original single-angle ATOM images. Ibgs {1,2,3,4},
Inorm {1,2,3,4}, Idiff , Iab, θ, ∇φ, G represent background subtracted
images, intensity normalized images, differential phase gradient contrast and
absorption contrast, wave front tilt, local phase shift and complex phase shift
respectively.

differential phase-gradient contrast and absorption contrast
images I{5, 6, 7, 8} by

θx =
NA

I7 ∗ (I5−min(I5))
,

θy =
NA

I8 ∗ (I6−min(I6))
,

(4)

∇φx =
2π

λ
∗ θx,

∇φy =
2π

λ
∗ θy,

(5)

where NA is numerical aperture of our system and λ is the
mean illumination wavelength. Lastly, the complex phase shift
G in spatial domain is calculated by

G = ∇φx + i ∗ ∇φy. (6)

Hardware implementation of the three kernels are shown in
Figure 3.
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Fig. 3: Architecture of Kernels in Spatial Domain Processing Module

C. Frequency Domain Module

Frequency domain processing involves 2-D forward and
inverse FFT and a low pass filter [3] to reduce high frequency
noises. According to [3], the final retrieved phase image
(Figure 1(e)) φ(x, y) is given by

φ(x, y) = Im

[
F−1

{ F{G(x, y) ∗ FOV }
2π(kx + ixy)

, |k 6= 0|

C , |k = 0|

}]
,

(7)
where F and F−1 correspond to forward and inverse FFT and
kx,y corresponds to a low pass filter implemented as a linear
ramp. FOV is the field of view of the imaging system and the
value is 80 microns. Forward/inverse 2-D FFT of 256×256
points (Figure 4) consists of two 256-point 1-D FFT/IFFT.
Each radix-16 256-point FFT consists of two 16-point FFT
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Fig. 4: Architecture of 2-D Fast Fourier Transform

and is expressed by

X(k) = X(16r + s) =

15∑
m=0

Wmr
16 Wms

256

15∑
l=0

x(16l +m)W 16
sl ,

r = 0 to 15, s = 0 to 15,
(8)

where W is the complex twiddle factor calculated by

Wms
256 = cos(

2πms

256
)± jsin(2πms

256
),

m, s = 0, 1, 2, 3, ..., 255.
(9)

D. Memory Management

All the images we use in the system are of 256×256 size. A
large amount of temporary data will be generated (Table I) in
order to unwrap loops and solve data dependencies. In back-
ground subtraction kernel, one column of the image matrix
needs to be buffered and the subtraction can be performed
after the mean value is calculated. In intensity normalization
kernel, the whole matrix needs to be buffered because the
maximum and minimum pixel value are obtained after the
whole matrix is streamed to FPGA. In complex phase shift
extraction kernel, differential phase gradient contrast I5 and
I6 are obtained by subtraction which contains negative values.
We need to subtract the minimum value from the contrasts to
make every value positive before calculating wave front tilt
θx,y and local phase shift ∇φx,y . Again, the whole matrices
of I5 and I6 need to be buffered.

2-D FFT in frequency domain processing module involves
a row major transformation followed by a column major
transformation. In a fully streamable implementation, we have

only one complex number streamed into FFT kernel in each
clock cycle. Thus, two matrix buffers are needed to perform
matrix transpose in FFT. When the previous matrix is read in
column major, current matrix is written into memory in row
major.

Each SVM model have the same size as the retrieved phase
image. Number of models to be stored in on-board ROM
depends on user specification. Moreover, we have to shift the

TABLE I: Temporary data in each kernel

Kernel Data Size1 Memory Type2

Offset Data Stream vary in kernels Register

Background Subtraction 256x4 real Register

Intensity Normalization 2x256x256x4 real BRAM

Matrix transpose before FFT 2x256x256 complex BRAM

Matrix transpose after FFT 2x256x256 complex BRAM

FFT Shift before LPF3 2x256x256 complex BRAM

FFT Shift after LPF3 2x256x256 complex BRAM

SVM 256x256 real BRAM
1 real and complex represent real and complex number. 2 SVM model are
preloaded into read-only ROM before each run. Both ROM and RAM are
implemented using on-board BRAM. 3 Memory consumption of FFT shift is
eliminated.

four quadrants of the frequency spectrum (FFT shift) so the
low frequency components are at the center of spectrum before
filtering and at the four corners after filtering. Rearranging of
2-D spectrum in a data stream costs a considerable amount
of on-board RAM to store the temporary spectrum. To save
memory usage, we rearrange the low pass filter and apply
the new filter directly on the data stream of original spectrum
using a counter chain (Figure 5).

(a) (b)
Fig. 5: (a) original LPF: low frequency components at center of spectrum, (b)
rearranged LPF: low frequency components at four corners of spectrum

In order to handle the large amount of temporary data,
we introduce a mixed memory configuration composed of
registers and block RAMs (BRAM) (Figure 6). In each kernel,
matrices are saved in on-board BRAM pixel by pixel in row
major and offset data stream are implemented using buffer
register. In order to reduce memory consumption, we convert
the data in 45-bit fixed point number to 32-bit floating point
number before writing data to BRAM and convert in reverse
after reading data from BRAM.

IV. DESIGN OPTIMIZATION

A. Number Representation Scheme

Floating point number representation is used for verification
of QPI algorithm on Matlab. However, floating point number
arithmetic consumes much more hardware resources than fixed
point arithmetic on FPGA. The whole system cannot be placed
on FPGA using full floating point number representation.
Dynamic range of all the numeric operations are estimated on
CPU. The largest number appears in the frequency spectrum
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D_IN1 
Matrix Memory 1 (writing) 

W_ADDR1 

Matrix Memory 2 (reading) 
W_EN2 

R_EN1 

R_EN2 

SELECT 

D_OUT1 

D_IN2 

D_OUT 

SELECT 

D_OUT2 

W_EN1 

W_ADDR2 

Column 

Major Read 

Address 

Generator 

     

     

     

     

     

     

     

     

     

     

D_IN1 
Matrix Memory 1 (writing) 

W_ADDR1 

Matrix Memory 2 (reading) 
W_EN2 

R_EN1 

R_EN2 

SELECT 

D_OUT1 

D_IN2 

D_OUT 

SELECT 

D_OUT2 

W_EN1 

W_ADDR2 

Column 

Major Read 

Address 

Generator 

(b) Matrix transpose memory in 2-D FFT kernel. While we write data into one
memory block, another memory block is read in a transposed sequence.

	
Intensity		

Normalization	

2MB 

Matrix	

Transpose	

Before	FFT	

1MB 

Matrix		

Transpose		

after	FFT	

1MB 

SVM	Model	

256KB 

Kernel	1 

Kernel	2 

Kernel	3 

Kernel	N 

    

    

    

    

Registers Kernels Interface BRAM 

�ixed	(25,15) 

�ixed	

-�loat		

converter 

�loat	32 

	
Intensity		

Normalization	

2MB 

Matrix	

Transpose	

Before	FFT	

1MB 

Matrix		

Transpose		

after	FFT	

1MB 

SVM	Model	

256KB 

Kernel	1 

Kernel	2 

Kernel	3 

Kernel	N 

    

    

    

    

Registers Kernels Interface BRAM 

�ixed	(25,15) 

�ixed	

-�loat		

converter 

�loat	32 

	
Intensity		

Normalization	

2MB 

Matrix	

Transpose	

Before	FFT	

1MB 

Matrix		

Transpose		

after	FFT	

1MB 

SVM	Model	

256KB 

Kernel	1 

Kernel	2 

Kernel	3 

Kernel	N 

    

    

    

    

Registers Kernels Interface BRAM 

�ixed	(25,15) 

�ixed	

-�loat		

converter 

�loat	32 

(c) Overall memory configuration. Each kernel has its own memory interface to
access BRAM.

Fig. 6: Memory configuration

after 2-D FFT at 106 scale, which requires 23 integer bits.
We run simulations using different number of fractional bits.
Simulations show the accuracy of the final retrieved phase
image are not influenced when more than 12 fractional bits are
used. Thus, the dynamic range requires a (23, 12) fixed point
number representation for sufficient accuracy. For a higher
accuracy redundancy, we select a (25, 15) fixed point number

TABLE II: Design model parameters

model parameters
Ndp number of replicated kernels/datapaths
i, f number of exponent (integer) and mantissa (fractional) bits
Nfpga number of used FPGAs

design properties
Usage hardware resource usage
BW bandwidth requirements
latency computation delay/latency
TH computation throughput

design constants
Ur usage of resource type r. r ∈ FFs/LUTs/BRAMs/DSPs
op⊕,ker number of operation ⊕ ∈ {+−×÷} in kernel ker
kernels number of kernels in a data-path
Ar available resources of type r
freq operating frequency
Nops number of arithmetic operations

representation.

B. Design Models

In order to optimize designs under resources and bandwidth
constraints, we develop design models to estimate the through-
put, resource usage, and data bandwidth requirements with
design parameters. Table II lists the design parameters and es-
timated design properties. In the hardware design, we pipeline
the design kernels to ensure that after an initial delay, one
application data-path (i.e. pipelined design kernels) processes
one image pixel set per clock cycle. In our application, each
image pixel set contains 4 images pixels, one for each single-
angle image. Given an optimized design with Ndp data-paths
in each FPGA and Nfpga FPGAs, throughput TH can be
expressed as:

TH = freq ·Nfpga ·Ndp ·Nops (10)

where freq indicates the design operating frequency, Nops

indicates the numbers of arithmetic operations to process one
image pixel set.

In practice, bounded by the available resources and band-
width, the theoretical throughput described in Eq. 10 cannot
always be achieved. In order to properly optimize the hardware
design, we further develop design models for resource usage
and bandwidth requirements. For a hardware design using rep-
resentation format t with i integer bits and f fractional bits, the
resource usage for arithmetic operations can be estimated by
accumulating the resources used by each arithmetic operator,

ULUTs/FFs/DSPs =
kernels∑
ker=1

op⊕,ker∑
op∈⊕

ULUTs/FFs/DSPs + ILUTs/FFs/DSPs

(11)

where ILUTs,FFs,DSPs indicates the resource usage of com-
munication infrastructures, such as PCI-e drivers and off-chip
memory controllers.

The on-chip memory usage is determined by the kernel data
dependencies. As shown in Table I, the dependent data are



buffered as data stream in. This consumes on-chip memory
resources, and introduces an initial delay to fill in all the
data buffers. In order to save memory usage, we convert fixed
point number of 40 bits to 32-bit floating point number before
writing to memory. The memory usage can be estimated with
the kernel buffer size, and expressed as:

UBRAM =

kernels∑
ker=1

depker ·R/C · (i+ f) + IBRAM (12)

where depker indicates the dependent data size as list in
Table I, and (i+ f) indicates the number of bits for each data
item. Real/Complex is 1 for real numbers, 2 for complex
numbers.

In correspondence to the on-chip buffer size, the initial
computation delay can be estimated as the time to fill the
buffers:

latency =

kernels∑
ker=1

depker (13)

After an initial delay, at each clock cycle, each data-path
streams in and processes one image pixel set per clock cycle.
Correspondingly, the data bandwidth requirements can be
expressed as:

BW = freq ·Ndp ·Nimage stream ·Nfpga (14)

When the optimized design uses distribute workload across
multiple FPGAs, each FPGA processes separate image stream
independently. BW indicates the overall bandwidth require-
ments of our target FPGA system.

C. Multiple FPGAs
We further test the scalability and improve the performance

of our QPI and cell classification system by processing images
in parallel on multiple connected FPGAs. Each computing
node has 8 FPGA cards and we use separate channels to stream
data into each FPGA card. When four or less FPGA cards
are used, processing throughput increases linearly. When more
than four FPGA cards are used, throughput stops increasing
because bandwidth limit is reached. To find the optimal
number of FPGA cards for efficient parallelization, a model
is developed. Bounded by available resources ALUT/FF/DSP ,
memory MA and communication bandwidth BW , the model
is expressed by

maximize:
freq ·Nfpga

image size

subject to:
Uops ·Nops ·Ndp + ILUT/FF/DSP ≤ ALUT/FF/DSP

UBRAM bgs sub + UBRAM norm + UBRAM FFT trans · 2
+ UBRAM SV M + IBRAM ≤ ABRAM

Nfpga ·Npipe ·max(4 · IOin pixel, IOout pixel) · freq
≤ BW

(15)

D. Choice of FFT Algorithm

The 2-D 256×256 point FFT is composed of two 256-point
FFT. Each 256-point FFT is composed of two 16-point FFT
which is the basic building block of the whole FFT kernel.
In total, four forward 16-point FFT kernels and four inverse

FFT (IFFT) kernels are needed. The commonly used radix-
2 and radix-4 16-point FFT process data in parallel which
consumes a large amount of hardware resources to implement
16 complex multipliers and data path. To reduce resource
usage, we use 16-point Winograd FFT [9] which requires only
10 complex multiplications and 74 additions. With a pipelined
design, usage of complex multipliers can be further reduced.
Resource usage of one 16-point Winograd FFT (IFFT) on
Altera Stratix V GS 5SGSD8 FPGA in Max4 station is shown
in Table III.

TABLE III: Resource usage of one 16-point Winograd FFT kernel

LUTs FFs BRAMs DSPs

Resources available 524800 1049600 2567 1963

Resources used 9324 14843 9 117

Percentage 1.78% 1.41% 0.35% 5.96%

V. HARDWARE IMPLEMENTATION RESULTS

A. Testing Platforms

TABLE IV: Testing platform details

Platform CPU1 RAM Compiler APIs batch
size2

CPU
1-thread

Intel Xeon
E5-2640 (6
cores, 15

MB cache)

64GB GCC FFTW
(1-thread) 8000x4

CPU
6-thread

Intel Xeon
E5-2640 (6
cores, 15

MB cache)

64GB GCC FFTW
(6-thread) 8000x4

GPU
(Nvidia

Tesla K40C)

Intel Xeon
E5-2650 (8
cores, 20

MB cache)

64GB GCC,
NVCC3

cuFFT,
cuBLAS 3000x4

FPGA
(Altera

Stratix V in
Maxeler
Max4

Station)

Intel Xeon
E5-2640 (6
cores, 15

MB cache)

64GB GCC,
Maxcompiler4

Maxcom-
piler 8000x4

1 For FPGA and GPU implementation, CPU performs as host processor. 2
Number of single-angle ATOM images processed in each run. 3 NVCC:
Nvidia CUDA Compiler. 4 Maxcompiler: Compiler developed by Maxeler
Technologies to compile high level synthesis code.

QPI processing and classification algorithm is implemented
on CPU, GPU and FPGA using single-thread C code, 6-thread
optimized C code, Nvidia CUDA C code and Maxeler maxj
high level synthesis code. Details of each testing platform
are listed in Table IV. A Nvidia Tesla K40C specialised
computing GPU is used as GPU platform. Both CPU and
GPU implementation use 32-bit single-precision floating point
number representation.

To optimize CPU and GPU implementation, multi-thread
processing on CPU is implemented using OpenMP [10] multi-
processing application program interface (API) developed by
Intel. O3 flag of GCC compiler is turned on for maximum
optimization. FFT is implemented in C code on CPU using
FFTW library [11] which is a standard high performance FFT
library and on GPU using cuFFT [12] which is a GPU ac-
celerated implementation of FFT. FFTW also supports multi-
thread processing using OpenMP and we turned the OpenMP



flag on when compiling FFTW library. Matrix algebra in
GPU code is optimized using CUDA Basic Linear Algebra
Subroutines (cuBLAS). Various optimization techniques are
used in GPU implementation such as reduction to increase
GPU performance.

Hyper-threading is a technology on Intel CPU to virtualize
two logical cores on one physical core. We measure throughput
of CPU when hyper-threading is turned off to prevent thread
migration between physical cores.

Raw single-angle ATOM images are streamed into FPGA
and GPU in batches. Batch sizes are different on FPGA-based
and GPU-based implementation due to different memory sizes
of the devices. Host memory of FPGA is 64 GB. Nvidia Tesla
K40C GPU has 12 GB high speed double data rate type five
synchronous graphics memory (GDDR5).

B. Resource Usage on FPGA

In Table V, we list resource usage of each fixed point
operation ⊕ ∈ {+ − ×÷}, estimated resource usage using
Eq. 11, Eq. 12 and measured resource usage.

TABLE V: Resource usage on single FPGA

LUTs FFs BRAMs DSPs

Resource usage of + 59 59 0 0

Resource usage of - 17 17 0 0

Resource usage of × 68 150 0 4

Resource usage of ÷ 2025 3443 9 0

Estimated Resource usage 93118 192367 1921 944

Measured resource usage 116242 232120 2063 1041

Resources available 524800 1049600 2567 1963

Percentage Usage 22.15% 22.12% 80.37% 53.03%

C. Throughput, Bandwidth and Power Consumption

We measure speed of our QPI processing and classification
system in terms of throughput. Throughput is defined as the
number of QPI phase images that a system generates and
classifies per second (pcs per sec) and floating point operations
per second (FLOPS). Using Eq. 10, optimal throughput of QPI
system on single FPGA can be calculated by

TH = 1.88× 106 × 1× 1×Nops

= 36.85(GFLOPS) = 2868.7(pcs per sec)
(16)

Multiple FPGA cards share a common Infiniband switch to
connect to CPU and we do not use the communication channel
between FPGA cards. Bandwidth consumption is measured by
calculating the product of bandwidth consumption of retrieving
one phase image and measured throughput in pcs/sec. As
shown in Figure 7, throughput stops increasing linearly when
more than three FPGA cards are used, and communication
bandwidth becomes the major constraint. Detailed Infiniband
bandwidth consumption is shown in Table VI. In Figure 7,

TABLE VI: Actual host/FPGA Infiniband bandwidth consumption
# of FPGA card 1 2 3 4 5 6 7 8

Avg. BW (MB/s) 1569 2808 4064 5248 5159 6005 5773 6140

it shows throughput is bounded by available bandwidth. If
bandwidth is infinite and all latency is eliminated, theoretical
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Fig. 7: Throughput of CPU and Multiple FPGA Cards

peak performance of 8 FPGA card can be further improved to
294.8 GFLOPS.

Total power consumption was measured on a node of 8
FPGA cards. We obtained dynamic power of one FPGA board
by subtracting the static power of the unused Maxeler cards
(the average static power per card is 19.6 W).

Performance summary is shown in Table VII. Implementa-
tion on single FPGA card demonstrates a 9.4 times speedup
compared to 6-thread CPU implementation and 3.47 times
speed up compared to GPU implementation in terms of
throughput. FPGA implementation achieve total power ef-
ficiency (FLOPS per Watt) of 24.19 times higher than 6-
thread CPU implementation and 4.88 times higher than GPU
implementation. Dynamic power efficiency of FPGA imple-
mentation is 16.81 times and 5.17 times higher than 6-thread
CPU and GPU implementations respectively (Table VII).

D. Precision and Image Quality

Retrieved phase images should have no difference on CPU
and GPU implementations. FPGA implementation converts the
phase image from fixed point number to floating point number
before streaming back to host. Simulation and actual hardware
implementation on FPGAs show the phase image has no major
difference compared to images retrieved by base-line CPU
implementation.

E. Classification Accuracy

Three types of unstained, live-cells images are used to
validate the accuracy of classification, namely human chondro-
cytes (OAC), human osteoblasts (OST) and mouse fibroblasts
(3T3) from cell-line (Figure 8). All three types of cells
look similar and are hardly classifiable with human eyes.
We process 1500 ATOM images for each type of cell to
retrieve the phase images and use single-angle ATOM images
and retrieved phase images of each type of cell to train
SVM models. Accuracy of classifying any two types are
measured using either single-angle ATOM image model or
retrieved phase image model. Cross validation of 10 folds (nine
folds for model training and one fold for model testing) are
conducted using linear SVM to get an average classification



TABLE VII: Performance Summary

CPU (1-thread) CPU (6-thread) GPU 1 FPGA 4 FPGA 8 FPGA1

clock frequency (GHz) 2.5 2.5 0.745 0.188 0.188 0.188

throughput (pcs/sec)2 100.62 265.03 719.21 2497.38 9136.83 22949.74

throughput (GFLOPS)3,4 1.29 3.41 9.24 32.08 117.37 294.80

speedup 1× 2.64× 7.15× 24.82× 90.98× 228.08×
total power (W)5 411 457 250 177.8 227.8 294.46

total power efficiency
(MFLOPS/W) 3.14 7.46 36.96 180.43 515.23 1001.15

total power efficiency
improvement 1× 2.38× 11.77× 57.46× 164.09× 318.84×

dynamic power (W) 38 84 70 47 97 163.67

dynamic power efficiency
(MFLOPS/W) 33.95 40.60 132 682.55 1210.00 1801.19

dynamic power efficiency
improvement 1× 1.20× 3.89× 20.10× 35.64× 53.05×

1 We assume theoretical peak performance and power consumption increase linearly if bandwidth is infinite and all latency is eliminated.
2 Number of phase images (256×256) retrieved per second.
3 Time of data transfer and device configuration is included to calculate throughput.
4 Since FPGAs use fixed-point number with same accuracy as floating point number, we use FLOPS as unit of FPGAs’ throughput.
5 Total power consumption includes both static power (130.8 W) and dynamic power.

accuracy. Classification accuracy of OAC vs. OST, OAC vs.
3T3 and OST vs. 3T3 increased by 3.91%, 3.47% and 2.19%
respectively when we use models trained with retrieved phase
images (Table VIII).

(a) (b) (c) (d) (e) (f)
Fig. 8: (a-c) single-angle ATOM image of OAC, OST, 3T3, (d-f) retrieved
phase image of OAC, OST and 3T3

TABLE VIII: Classification Accuracy

Cell Types linear SVM accuracy

OAC vs. OST (single-angle ATOM image) 86.10%

OAC vs. OST (retrieved phase image ) 90.01%

OAC vs. 3T3 (single-angle ATOM image) 91.20%

OAC vs. 3T3 (retrieved phase image) 94.67%

OST vs. 3T3 (single-angle ATOM image) 89.65%

OST vs. 3T3 (retrieved phase image) 91.84%

VI. CONCLUSION AND FUTURE WORKS

Our novel QPI and SVM classification system on FPGA
demonstrates significant speedup and improvement of power
efficiency against CPU and GPU. Classification accuracy using
QPI processed phase images demonstrates an increase from
using original single-angle ATOM image with classifiers.
Architecture design and optimization techniques in our system
can be adapted to other image processing systems on FPGA.
In the future, we will use off-chip DRAM to buffer data to
support more pipelines. Convolutional neural network can be
implemented on FPGAs as classifier.
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