
A DYNAMICALLY TUNED FINITE DIFFERENCE METHOD FOR RECONFIGURABLE
SYSTEMS

Xinyu Niu and Wayne Luk

Dept. of Computing, School of Engineering
Imperial College London, UK

Email: {nx210, wl}@doc.ic.ac.uk

ABSTRACT

This paper introduces a novel adaptive method applicable
to all algorithms based on finite difference method. The al-
gorithm is tuned adaptively and incrementally in terms of
data presentation and computation structure. Computational
accuracy is dynamically predicted and controlled, and hard-
ware resource consumption is analysed to explore run-time
potential of target applications. The design flow involves
algorithm update, precision estimation, hardware analysis,
runtime scheduling and dynamic learning.

1. INTRODUCTION

Run-time reconfigurability of reconfigurable systems is ca-
pable is tuning applications while running. By optimising
hardware implementations according to specific requirements
during run-time, the performance of reconfigurable systems
can be pushed forward. Effective as the technique is, exist-
ing algorithms and applications tend to be static, and current
runtime reconfiguration methods are limited to applications
with varying properties [1, 2].

Bit-level optimisation works as an important design tech-
nique in the field of reconfigurable computing. By customis-
ing the data presentation to algorithm characteristics and
user requirements, significant area saving can be achieved,
which in turn improves system concurrency and thus in-
creases system throughput. Existing tools to perform bit-
level optimisation are limited to either static precision anal-
yses [3, 4, 5] or Monte-Carlo methods [6]. The concept of
run-time reconfiguration is missing from current tools.

In this paper, we aim to introduce an approach to dy-
namically tune algorithms based on finite difference method.
Our approach actively generates runtime design space from
target algorithms, and the error propagation is dynamically
controlled.

The major contributions of this work include:

- An adaptive approach to control computational error
due to reduced data presentation. Instead of passively

estimated, the error propagation is actively controlled
by tuning the parameters.

- A novel methodology to turn static algorithms into
dynamic implementations. The runtime properties of
algorithms and reconfigurability of systems are ex-
plored to adaptively improve system performance.

2. BACKGROUND

2.1. Precision Analysis

As a FPGA-exclusive optimisation technique, bit-width op-
timisation has been widely used in the field of custom com-
puting. Various algorithm presentations and precision anal-
ysis methods were proposed to generate circuits with guar-
anteed accuracy [3, 4, 5]. These work depend on passive
analyse of the target algorithms, the capacity of tuning data
presentation during runtime is not explored. A runtime com-
pensation method was proposed in [6]. However, this method
is limited to Monte-Carlo methods, where error is bounded
within one path and only the final result matters.

2.2. Runtime Reconfiguration

Runtime reconfiguration is an emerging area to improve sys-
tem performance during runtime. Given runtime informa-
tion is properly utilised, the implemented operators can be
further optimised during specific time slots. The slowly
varying properties of input data were captured in [1] to im-
plement arithmetic operators with constant input. The al-
gorithm parameters were dynamically approximated to op-
timal constants for the operators in [2], to further reduce
the upper bound of implemented operators. Besides cus-
tomising implementations, the tuning process also impacts
the computational precision. However, the interactions have
not been explored.

2.3. Finite Difference Method

Finite difference method is a widely used numerical
method to approximate solutions to differential equations.
The approximation error depends on the step size and the
approximation order.

∂u2(a)

∂x2
≈

α · u(a− x) + β · u(a) + γ · u(a+ x)

x2
(1)

This static approximation process can be dynamically ac-
complished, with coefficients actively varied. The potential
benefits include reduced computational effort, as well as op-
portunity to dynamically tune the algorithm.

3. MOTIVATION

The run-time potential of application depends the varieties
of the application in time dimension. Previous work are lim-
ited to applications [7, 8, 9, 10] with varying properties. The
proposed approach exploit the run-time potential of applica-
tions by actively tuning application configurations. Our aim
is to show that, with proper run-time design methods, appli-
cations with static properties can explore reconfigurability
to improve system

The explored properties in current approach include data
presentation and constant coefficients. The data presentation
involves achieving optimal bit-width optimisation for arith-
metic operations, while varied coefficients impact resource
usage and error propagation. The interaction between the
updated properties and system performance is formulated to
incrementally tune the target applications.

In reconfigurable computing, data presentation refers to
bit-width optimisation. The data are presented in customised
formats to reduce resource consumption. As a consequence,
generated results differ from the results of original presen-
tation. If the original results are assumed as accurate, inac-
curacy is introduced at the time when data presentation is
varied, and propagates through the computational space, as
shown in Figure 1. By dynamically introducing and com-
pensating variable inaccuracy in different time slots, an op-
timal run-time data presentation can be achieved.

Besides data presentation, algorithm optimisation dur-
ing run-time involves reconstructing the target algorithms
according to dynamic requirements of applications. Figure2
demonstrates the structure of a one-dimensional finite differ-
ence method. Propagation of generated results between time
steps can be dynamically controlled, by varying the mapping
constant. For algorithms based on finite difference method,
coefficients are decided by approximation orderO, stencil
sizeS, step size in timedt and step size in spaceds. The
computational process for a one-dimensional finite differ-
ence method is shown in Figure 2.

(α, β, γ...) ⇐ f(O,S, dt, ds) (2)

α

β

γ

α

β

γ

u(a−x,t+1)

u(a+x,t+1) u(a+x,t−1)

u(a,t−1)

u(a−x,t−1)

u(a,t+1)

u(a+x,t+1)

u(a,t+1)

u(a−x,t+1)

dt dt

ds

ds

Fig. 2. Structure of one-dimensional finite difference
method in time.

With dynamic data presentation and algorithm structures
in different time steps, the target algorithms can be dynami-
cally tuned.

4. ADAPTIVE APPROACH

The proposed approach is presented in Figure 3. It works
as an iterative method to adapt the target algorithm into dy-
namically optimised operators. The algorithm is constantly
tuned as computation goes through involved grid space.
Tuned coefficients are fed into a precision estimator to pre-
dict accumulated errors. The precision model analyses ac-
curacy of the specific data presentation and constant values,
while the hardware model calculates resource usage of the
configuration. Two analytical models cooperate to estimate
the benefit of possible reconfiguration opportunities. Tar-
get accuracy and available hardware resource work as con-
straints for possible configurations.

The error for a specific point accumulates from neigh-
bouring points in space and previous calculations in time.
Affine Arithmetic [11] (AA) was proposed to estimate the
computation range and precision. It can be used here to es-
timate the dynamic precision.

xre = x+ 2−MA−1
· λ, λ ∈ [−1, 1] (3)

Ei = 2−MAi−1
· λi (4)

Ej,t =
n∑

i=0

λ<i,t−1> · E<i,t−1> (5)

wherexre denotes the data presented with reduced preci-
sion, andMA is the mantissa size. Computation error in-
troduced in a specific time step is expressed asEi, while the
error propagation is formulated as Eq 5.Ei is estimated with
data presentation, and the propagation is controlled with dy-
namic constants. Therefore, the impacts of varied algorithm

 5 10 15 20 25 30 35 40 45 5
 10

 15
 20

 25
 30

 35
 40

 45

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

’result.txt’

arithmetic operations transformation ratio

LUTs/FFs usage

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 5 10 15 20 25 30 35 40 45 5
 10

 15
 20

 25
 30

 35
 40

 45

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

’result.txt’

arithmetic operations transformation ratio

LUTs/FFs usage

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 5 10 15 20 25 30 35 40 45 5
 10

 15
 20

 25
 30

 35
 40

 45

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

’result.txt’

arithmetic operations transformation ratio

LUTs/FFs usage

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 5 10 15 20 25 30 35 40 45 5
 10

 15
 20

 25
 30

 35
 40

 45

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

’result.txt’

arithmetic operations transformation ratio

LUTs/FFs usage

-0.2
 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4
 1.6
 1.8
 2

Fig. 1. Error propagation in computation space and time.

on computation accuracy can be adaptively predicted.
The hardware analytical model is built to capture the dy-

namic optimisation opportunities as design configurations
are mapped onto reconfigurable fabrics. Bit-width optimi-
sation impacts resource usage of arithmetic operations lin-
early. In the meanwhile, the varied constants construct the
upper bound of resource usage. As resource consumption
goes down with data presentation, system performance can
be increased after a reconfiguration operation. For a recon-
figurable area with upper bound resource consumption, mul-
tiple time steps can be mapped into it with reduced data pre-
sentation. As shown in Figure 2, the two time steps can be
accomplished with data streamed one time, given the avail-
able resource can accommodate the dynamically optimised
circuits.

maximum
error

available
resources

implementation

learning algorithm

precision prediction hardware analyses

algorithm updates

predicted errors resource consumption
reconfiguration overhead

tuned coefficients tuned coefficients

runtime scheduler

runtime tuning flow
parameters updates

Fig. 3. Tuning process of the proposed approach.

Analysed data are fed into a runtime scheduler to decide
whether the current configuration needs to be reconfigured.
For the implemented circuits, data are sampled back into a
learning algorithm to update module parameters, closing the
tuning process.

5. CONCLUSION

In this paper, we present an adaptive approach to explore
runtime properties of algorithms based on finite difference
method. The computational error is dynamically controlled

and the arithmetic operators are adaptively optimised. Work
in progress and future work include expanding modules in
the turning process, exploring more runtime properties and
building various applications to evaluate the proposed ap-
proach.

6. ACKNOWLEDGEMENT

This work was supported in part by UK EPSRC, by the Eu-
ropean Union Seventh Framework Programme under Grant
agreement number 248976, 257906 and 287804, by the
HiPEAC NoE, by Maxeler University Program, and by Xil-
inx.

7. REFERENCES

[1] K. Bruneel, F. Abouelella, and D. Stroobandt, “Auto-
matically mapping applications to a self-reconfiguring
platform,” in DATE, 2009, pp. 964–969.

[2] Q. Jin, T. Becker, W. Luk, and D. B. Thomas, “Opti-
mising explicit finite difference option pricing for dy-
namic constant reconfiguration,” inFPL, 2012.

[3] J. Zhang, Z. Zhang, S. Zhou, M. Tan, X. Liu,
X. Cheng, and J. Cong, “Bit-level optimization for
high-level synthesis and fpga-based acceleration,” in
FPGA, 2010, pp. 59–68.

[4] D.-U. Lee, A. A. Gaffar, R. C. C. Cheung, O. Mencer,
W. Luk, and G. A. Constantinides, “Accuracy-
guaranteed bit-width optimization,”IEEE Trans. on
CAD of Integrated Circuits and Systems, vol. 25,
no. 10, pp. 1990–2000, 2006.

[5] S. Bayliss and G. A. Constantinides, “Optimizing
sdram bandwidth for custom fpga loop accelerators,”
in FPGA, 2012, pp. 195–204.

[6] G. C. T. Chow, A. H. T. Tse, Q. Jin, W. Luk, P. H. W.
Leong, and D. B. Thomas, “A mixed precision monte
carlo methodology for reconfigurable accelerator sys-
tems,” inFPGA, 2012, pp. 57–66.

[7] L. Singhal and E. Bozorgzadeh, “Multi-layer floor-
planning on a sequence of reconfigurable designs,” in
Proc. FPL, 2006.

[8] K. Bruneel, F. Abouelella, and D. Stroobandt, “Auto-
matically mapping applications to a self-reconfiguring
platform,” in Proc. DATE, 2009.

[9] F. Navaet al., “Applying dynamic reconfiguration in
the mobile robotics domain: A case study on com-
puter vision algorithms,”ACM Trans. on Reconfig-
urable Technology and Systems, vol. 4, no. 29, 2010.

[10] D. Koch and J. Torresen, “FPGASort: A high per-
formance sorting architecture exploiting run-time re-
configuration on FPGAs for large problem sorting,” in
Proc. FPGA, 2011.

[11] J. Stolfi and L. Figueiredo, “Self-validated numeri-
cal methods and applications,”Brazilian Mathematics
Colloquium Monograph, 1997.

