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Abstract— During the last few years, there is an increasing
interest in mixing software and hardware to serve efficiently
different applications. This is due to the heterogeneity character-
izing the tasks of an application which require the presence of
resources from both worlds, software and hardware. Controlling
effectively these resources through an integrated tool flow is a
challenging problem and towards this direction only a few efforts
exist. In fact, a framework that seamlessly exploits both resources
of a platform for executing efficiently an application has not yet
come into existence. Moreover, reconfigurable computing often
incorporated in such platforms due to its high flexibility and
customization, has not yet taken off due to the lack of exploit-
ing its full capabilities. Thus, the capability of reconfigurable
devices such as Field Programmable Gate Arrays (FPGAs) to be
dynamically reconfigured, i.e. reprogramming part of the chip
while other parts of the same chip remain functional, has not
yet taken off even in small-scale basis. The inherent difficulty in
using the tools to control this technology has kept it back from
being adopted by academia and industry alike.

The FASTER (Facilitating Analysis and Synthesis Technologies
for Effective Reconfiguration) project aims at introducing a
design methodology and a tool flow that will enable designers
to implement effectively and easily a system specification on a
platform combining software and reconfigurable resources. The
FASTER framework accepts as input a high-level description
of the application and the architectural details of the target
platform, and through certain steps it can enable the full use
of the capabilities of the platform, while at the same time it
should be flexible enough so as to balance efficiently performance,
power and area. One of the main novelties is the incorporation of
partial reconfiguration as an explicit design concept at an early
stage of the design flow. We target different applications from the
embedded, desktop and high-performance computing domains.
In all cases we will demonstrate the effectiveness of the proposed
framework in exploiting the inherent parallelism of applications
and enabling the runtime adaptation of the platforms to the
changing needs of the applications.

I. INTRODUCTION

Combining data-flow and control-flow components, e.g. FP-

GAs and software microprocessors respectively, into a single

platform can offer great advantages for a wide range of

application domains. For this to be viable, it is important

to provide a framework through which the designers will

effectively access such platforms to deploy their applications.

This constitutes an interesting problem, similar to the parallel

programming of multicore and manycore systems, and cur-

rently the field lacks of such solutions. In particular, a tool that

would manipulate rationally the resources in accommodating

the application tasks, trade-off factors such as speed, power

and area according to the application and user needs, and

eventually distribute the computational effort to the resources

fairly so as to avoid their starvation or overloading, is missing.

In fact, a system should be regulated so as to sustain as much

as possible high availability, meaning that the system should

be able to accept - always if possible - arriving tasks of an

application, update or alter existing work, and avoid entering

long periods of unavailability, i.e. downtime.

Furthermore, altering the hardware functionality at runtime

so as to adapt to new requirements offers a new level of

flexibility which can benefit many applications. For example,

this functionality can benefit Network Intrusion Detection

Systems (NIDS), which aim at scanning all incoming packets

for suspicious content [1], [2]. Scanning has to be carried out at

line-speed so that the communications are not slowed down,

while the list of threats to check for may be extended and

updated on a daily basis. Fixed hardware solutions achieve

high performance, and software solutions easily adapt to the

new set of threats, but neither can achieve adaptivity and high

performance at the same time. Reconfigurable logic allows the

definition of new functions to be defined in hardware units,

combining hardware speed and efficiency, with ability to adapt

and cope in a cost effective way with expanding functionality,

changing environmental requirements, and improvements in

system features. For the NIDS the new rules can be hard-

coded into the reconfigurable logic, thus retaining the high

performance, while providing the necessary adaptivity and

extensibility to new threats.

The above operations fall into the scope of the present

project. One of our major concerns is that the FASTER

framework should accept and handle properly the designer’s

input for segmenting effectively the application in software

and hardware tasks. Emphasis is placed in identifying the
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static and dynamic parts of the hardware and harnessing partial

reconfiguration abstractly, so as to hide the low-level details

of the technology from the user. Towards this direction, the

environment should be friendly and easily accessible. This

is what we intend to do within the context of the FASTER

project; elevate the abstraction of application deployment up

to a level in which performance will not be sacrificed for

transparency. The framework accepts as input the high-level

description of the application and the platform architecture.

Then, it should ensure that factors such as performance,

power consumption and area will be balanced effectively and

according to the user needs throughout the entire system

operation, by employing a run-time system.

In order to provide the above features the framework should

be characterized by a high level of flexibility. This can be

realized with intervention from the designer in certain steps

of the design methodology. Thus we envision a framework

that will offer the option of controlling manually specific

operations; although this might increase the complexity level

of the design methodology at the same time it increases the

flexibility. We intend to study the level up to which we will

provide flexibility in application deployment, while keeping

complexity at low level.

The above form the main axes along which the FASTER

framework will be developed. The basic contributions of the

FASTER project can be summarized in the following:

• including reconfiguration as an explicit design concept,

for large changes identified at compile time and for small

changes identified at runtime;

• balancing effectively execution speed, power consump-

tion and available resources;

• integrating seamlessly software and reconfigurable com-

ponents under a unified tool;

• providing flexibility to the user during application deploy-

ment while keeping complexity at low level;

• providing efficient and transparent runtime support

The paper is structured as follows: Section II presents

related efforts with similar objectives and discusses the open

issues that motivate our work. Section III describes the design

methods we employ to achieve our goals. Section IV shows the

integration of the design methods along with their connection

points to form the new tool flow. In Section V we discuss the

runtime system for managing the platform with a focus on

dynamic reconfiguration. Section VI presents the platforms

we are currently using as well as the ones we are planning

to use in order to demonstrate the use of the framework in

all the domains. Finally, Section VII concludes the paper and

presents our next steps.

II. MOTIVATION

In the recent years, several efforts have been funded aim-

ing at forming a methodology to control the deployment of

applications in similar platforms. Below we report some of

them, and we also point out their differences with the FASTER

project.

A. Related Efforts

hArtes [3] was an FP6 EU project targeting automatic

parallelization and generation of heterogeneous systems. They

adopted OpenMP pragmas to specify the parallelism automat-

ically extracted from the initial sequential specification but

they do not address any aspect related to reconfiguration or

dynamic execution. Even verification issues were not taken

into account. On the other side, we adopt the same formalism

to represent the parallel application, even if the partitioning is

provided by the designer since the automatic parallelization is

out of the scope of this project. Similarly, the ALMA project

[4] focuses on parallelization and optimization algorithms

focusing on specific architecture templates provided by the

partners. On the contrary, FASTER project aims at providing a

unified environment where the tool flow can adapt the mapping

of tasks to fully exploit the underlying architecture. Both

heterogeneous embedded systems (e.g., Xilinx FPGA-based

architectures) and high-performance computing (e.g., Maxeler

workstations) will be targeted by the proposed framework.

The 2PARMA project [5] focuses only on the exploration

of multi- and many-core architectures, without hardware ac-

celerations. On the other hand, the REFLECT [6] project

bridges the gap between multi-core processing and FPGA

acceleration. In specific, it focuses more on the systematic

control of all the compilation stages and the relationship with

non-functional requirements, along with the generation of the

hardware specifications, rather than on reconfiguration and

verification aspects as in the FASTER project. Similarly, the

MADNESS project [7] adopts FPGAs for the prototyping

of heterogeneous architectures, by focusing on system-level

design, fault tolerance and dynamic adaptivity.

Finally, the ERA project [8] adopts dynamic reconfiguration

(with low-level OS support) but on a specific platform devel-

oped by the consortium and composed of a VLIW processor, a

reconfigurable NoC and a memory subsystem. On the contrary,

the aim of FASTER is to provide a more general approach

able to take into account the specifics of the target platform.

Similarly, the FlexTiles project [9] aims at developing auto-

mated methodologies for developing an energy-efficient yet

programmable heterogeneous manycore platform with self-

adaptive capabilities.

B. Aim of the FASTER Project

The FASTER project aims at introducing a complete

methodology to allow designers to easily implement and verify

a system specification on a platform that includes one or more

general purpose processor(s) combined with multiple acceler-

ation modules implemented on one or multiple reconfigurable

devices. This will try to bridge the gap, but also to connect,

the two worlds under within a single framework that hides

the details from the user. An imporant contribution will be

the micro-reconfiguration. Finally, although there are several

runtime systems around targetting it, we are trying to make a

flexible one able to be customized according to the application

needs. Runtime will control the operation of the system by

following certain directions by a baseline scheduler built at

design time. Another novelty of the FASTER project is the
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adoption of an XML file to exchange information between the

different phases. This also allows to develop the methodologies

in parallel, but also to easily integrate them into a unique tool

flow, compare them in terms of the results and determine the

advantages/disadvantages for each of them with respect to the

application under analysis.

As a result, we expect that the envisioned tool flow will

be able to reduce the design and verification time of complex

reconfigurable systems by at least 20% for selected application

domains, by providing additional novel verification features

that are not available in existing tool flows. In terms of per-

formance, for these application domains the tool flow could be

used to achieve the same performance with up to 50% smaller

cost compared to programmable SoC based approaches, or

exceed the performance by up to a factor of 2 for a fixed

power consumption envelope.

III. DESIGN METHODS

In order to serve the goals of the FASTER project we are

employing different design methods.

A. High-Level Analysis

The FASTER tool flow begins with a high-level analysis of

the design. The goal of this approach is to automatically iden-

tify and exploit run-time reconfiguration opportunities while

optimising resource utilisation of the design. To avoid time-

consuming iterations in the design implementation process, the

optimisations are performed on a high level. The high level

analysis is based on a hierarchical Data Flow Graph (DFG),

additional application parameters such as input data size, and

physical design constraints such as available area and memory

bandwidth. The analysis produces estimates of implementation

attributes such as area, computation time and reconfiguration

time. The analysis also automatically explores opportunities

for reconfiguration, i.e. a partitioning of the application into

several reconfigurable components that increases throughput

while using the same amount of area or reduces area while

providing the same throughput.

The DFG represents applications with interconnected arith-

metic nodes at arithmetic level, and with interconnected func-

tion nodes at function level. At arithmetic level, arithmetic

operations and data access patterns within functions are iden-

tified and the resource usage for a single implementation is es-

timated. At function level, application functions are separated

into various partitions. Each partition is a group of functions

that are bundled to become a reconfigurable component. The

partitions are mapped into hardware as scheduled to ensure

functions are only implemented when they are active. Idle

functions are eliminated and reconfiguration opportunities are

identified. Data dependency between separated partitions are

analysed, and memory architectures are generated based on

extracted data access patterns and interactions between par-

titions. The partitions are then optimised as reconfigurable

components. Optimisation variables include arithmetic oper-

ations presentation, computational precision and implementa-

tion concurrency. Meanwhile, implementation attributes such

as area, throughput, memory usage, and memory bandwidth

are estimated for optimised partitions. Given application data

size, the high-level analysis can produce a fully partitioned and

scheduled implementation of the application. Alternatively,

the design estimates can also be provided to other parts of

the FASTER tool flow to support the design analysis and

reconfigurable core identification.

B. Partitioning Methodology

In this phase, we aim at providing efficient methods to

partition the tasks between hardware and software, and to

determine the proper level of reconfiguration for the hardware

ones. In particular, after the selection, each hardware task will

be tagged for:

• no reconfiguration: the task will be implemented as a

static core;

• region-based reconfiguration: the task will be imple-

mented in a reconfigurable region;

• micro-reconfiguration: this technique will specialize the

resulting hardware implementation with respect to some

slow-changing input parameters.

These selection methods incorporate static and dynamic anal-

ysis of the application and they also take into account revelant

characteristics about the target architecture (e.g., communica-

tion costs). They also need information about other constraints,

such as the logic area dedicated to such cores.

Task graph transformations will be also performed to im-

prove the application after the mapping and the scheduling

such as clustering consecutive tasks assigned to the same

processing element to avoid unnecessary communications.

C. Region-based Reconfiguration

Region-based reconfiguration deals with the instantiation of

a new function that is encapsulated in a region of the FPGA.

Traditionally, configuration generation takes place at design

time [10]. The designer marks a certain functionality as being

reconfigurable and confines its logic to a dedicated region of

the FPGA by means of floorplanning; such a region can be

reconfigured while the rest of the chip is operational. Typically,

a number of reconfigurable functions are allocated to the

same region, resulting in partial bitstreams that can be loaded

and swapped at run-time to change the desired functionality.

The research challenge is the proper identification of the

regions and the support of relocatable modules at run-time,

which could involve additional constraints for floorplanning

and placement. Bitstream relocation allows for loading a

configuration bitstream into a different region than it was

originally created for.

D. Micro-reconfiguration

This method is used for dynamic circuit specialization. It

optimizes a circuit that is implemented on the FPGA. This

original circuit is optimized for the specific values of slowly

changing inputs. The new specialized circuit is smaller and

faster than the original one, but is only correct for one specific

value. If one of the slowly changing signals actually changes,

then a new circuit is generated and the FPGA is reconfigured
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with this new circuit. A method has been developed to

implement this efficiently [11].

Opportunities for micro-reconfiguration can be hard to

identify, thus a profiler [12] has been developed to assist the

designer in finding them. The reason these opportunities can be

hard to find is because they depend on the dynamic behaviour

of the design. The profiler analyses the dynamic behaviour

of the design and uses this information to determine whether

micro-reconfiguration would improve the design. Since there

are many ways to make a micro-reconfigurable implementa-

tion, it also suggests the most beneficial one. In the FASTER

framework, this profiler will be used to analyse all designs

that are flagged as potentiality micro-reconfigurable. This

designation is added by the designer. The profiler will update

this flag, based on its analysis. The designs with gains will

be permanently flagged as micro-reconfigurable, the others

will lose it. Alternatively, the designer can choose to bypass

the profiler, and directly flag designs as micro-reconfigurable

himself.

E. Baseline Scheduling and Mapping onto Reconfigurable
Regions

After the actual generation of the hardware cores and

their interfaces, the FASTER framework also requires to

characterize such modules in terms of required resources

(i.e., LUTs, BRAMs and DSP blocks). This information is

necessary to evaluate the compatiblity of the implementation

with a reconfiguration region candidate for the mapping. The

resulting data will then be annotated into the corresponding

implementations associated with each task. On this basis,

the framework will determine the actual number of regions

which the reconfigurable area can be partitioned in, along with

their characteristics (e.g., size, position, constraints). Then,

it will provide an initial assignment of the tasks tagged for

region-based reconfiguration onto these regions, verifying its

feasibility. If the assignment results are feasible, this phase

also produces the scheduling of both these tasks and the

corresponding reconfigurations, intended as a partial ordering

of these activities. Such an information can be taken into

account later on by the runtime scheduler to determine which

task has to be executed at each time based on the ready ones

and this ordering.

It is worth noting that this phase can also compute al-

ternative mapping that can be adopted in case of external

events (e.g., interrupts). In this case, the runtime manager

will need to check the current status of the resources with

respect to the newer configuration in order to determine which

reconfigurations have to be actually performed.

F. Verification

The role of verification is to check that a simple, unop-

timized design (the source) implements the same behaviour

as an optimized, possibly reconfiguring design (the target).

Traditionally, hardware designers have used extensive logic

simulation to verify that their designs implement the desired

behaviour. The downside of this approach is that the number

of test inputs required to exhaustively test even a simple

design can be impractically large. We thus adopt an approach

combining symbolic simulation with equivalence checking.

The source and target designs are first compiled to suitable

input for a symbolic simulator. Symbolic simulation stimulates

the design with symbolic inputs, rather than the numerical or

Boolean inputs used in traditional approaches, for example

simulating an adder with symbolic inputs a and b might result

in a symbolic output a + b. Equivalence checking is used to

check symbolic outputs from source and target designs that

may differ but still be equivalent (for example b+a instead of

a+ b). If symbolic outputs from source and target designs are

equivalent for all inputs, the designs are equivalent, otherwise,

the first input with different outputs can be used to debug the

target design.

For reconfigurable designs, we distinguish static and dy-

namic aspects of their behaviour. Static aspects, which are

fixed at compile-time, can be verified at compile-time. For

dynamic aspects, we further distinguish (i) those that can be

verified at compile-time and (ii) those that must be verified

at run-time, since there is not enough information to do so at

compile-time. For those that can be checked at compile-time

we adopt the concept of virtual multiplexers, which models

mutually exclusive reconfigurable regions of a designs as being

connected by virtual multiplexer-demultiplexer pairs, sharing

a control input which selects between the reconfigurable

regions. This allows for verifying reconfigurable designs at

compile-time using our existing approach. Work is ongoing

into verifying dynamic aspects at run-time.

We aim at incorporating the above methods in the FASTER

tool flow as distinct stages. Some stages will be completely

hidden to the user, while other stages can be carried manually,

either fully or partially, depending on the user and application

needs.

IV. TOOL FLOW

The aforementioned design methods are used in order to

shape the FASTER tool flow illustrated in Figure 1. Starting

from the left side of the Figure, it begins with the description

of the application (in HLL, HDL or other formats such as

task graph) plus the application requirements and an abstract

description of the reconfiguration capabilities of the target

platform. In particular, to exchange the information among

the different parts, an XML file format has been defined and

it includes the following parts:

• architecture: the description of the target platform in

terms of processing elements, along with information

about the interconnections and the memories;

• application: the information about the initial application

(e.g., source files, profiling information, call graph);

• library: the list of available implementations for each of

the tasks which the application has been partitioned into,

decorated with high-level information and estimations;

• partitions: the different solutions in terms of partitioning,

mapping and scheduling.

When starting from HLL such as C with OpenMP annotations,

analysis in the front-end part determines which portions of

the application can be accelerated in hardware and which will
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Fig. 1. FASTER design flow broken down into different parts

be executed in software. The FASTER framework focuses on

the portions to be executed in hardware, and the analysis on

the corresponding HDL determines which parts will be re-

configured dynamically and which parts will be static. Further

analysis in the front-end will estimate the performance to offer

feedback to the user, and will also determine the most proper

granularity for reconfiguration. The partitioned application

description is annotated with dependency information to drive

the dynamic aspects of the reconfiguration. At this point the

verification described in the previous Section is performed to

check that the partitioned dynamically reconfigurable version

of the application is equivalent to the original source. The

back-end part of the tool flow performs synthesis, floorplan-

ning, placement and routing for reconfigurable portions that

have been selected for region-based reconfiguration or micro-

reconfiguration. In particular, in the FASTER framework three

different tools are mixed to provide all options to the designer,

i.e. static, region-based and micro-reconfiguration. The final

bit files will be produced by vendor-specific tools. Finally a

run-time manager will be employed to control the operation

of the complete reconfigurable system.

It should be noted that during the deployment of the appli-

cation in the target platform, some stages of the tool flow can

be carried out either automatically or manually. For instance,

for micro-reconfiguration the designer can rely completely

on the profiler available for suggesting the reconfiguration

opportunities or by finding them manually.

One of our main concerns is the quality of the outcome of

the FASTER tool flow. In order to asses it we have defined

certain evaluation criteria. A main criterion is the amount

of FPGA resources needed to implement a set of operations

that can be reduced by utilizing partial reconfiguration, as

for the static counterpart these operations should coexist in

the chip. Another important criterion is the clock frequency;

an increase in the frequency could be achieved due to the

specialization of compute kernels, which allows to remove

unnecessary logic and reduce propagation delay. Other criteria

are the reconfiguration time which is added as overhead in the

total execution time of the application, and whether power and

energy consumption can be reduced as compared to the static

design.

V. RUN-TIME SYSTEM MANAGER

The Run-Time System Manager (RTSM) supports the exe-

cution of application workloads in systems usually controlled

by an Operating System. It undertakes low-level operations

so as to offload the programmer from manually handling

delicate operations such as scheduling, resource management,

memory savings, power and energy consumption. RTSM can

reside always in memory and is usually implemented as a

standard library. It includes subroutines that realize functions

by accessing the Operating System (system calls).

In a partially reconfigurable system, in order to manage

dynamically HW tasks, the RTSM needs to be extended

with certain operations. The basic components of the RTSM

model we adopted in the FASTER project were presented

in [13]. The RTSM would incorporate operating-system style

services that will allow high level operations on the hardware

circuits. In its simplest form the RTSM is a software simply

selecting a precompiled circuit, transmitting the corresponding

configuration bitstream to the FPGA, initiating the execution

and controlling the delivery of the results back to the user;

this process is carried out transparently to the user. Such a

system targeting the desktop domain was presented in [14].

We are interested in deploying more complex systems in

different domains. Thus a sophisticated RTSM is needed able

to control different operations and react accordingly even in

case a certain scenario was not predicted at compile time. The

bottom line is that we should ensure the high availability of

target platform and minimize system downtime, e.g. cases in

which a task cannot be scheduled and thus the system enters a

starvation phase. In addition, we consider whether the RTSM

will be generic so as to assist a wide range of systems, or, it

will be generated every time a new system is implemented with

the FASTER tool flow. Such an automatic run-time system is

presented in [15].

The remaining section provides more details on the pro-

gramming model we are planning to follow in order to create

the RTSM. Also, we identify the input requirements of the

RTSM determined at compile time in order to drive decisions

at runtime.
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A. Configuration Content Agnostic ISA Interface

The ISA (Instruction Set Architecture) interface we will

use is based on the Molen programming paradigm [16]. It

represents a sequential consistency paradigm for programming

Custom Computing Machines (CCUs), consisting of a General

Purpose Processor (GPP) and a number of Reconfigurable

Units (RUs), which can be implemented using FPGAs. The

FPGA is viewed as a co-processor which extends the GPP ar-

chitecture. An arbiter module lying between the main memory

and the GPP, decodes partially the instructions and forwards

them either to the GPP or to the RUs. Software instructions

are executed by the GPP and hardware operations by the RUs.

In order to pass parameters between the GPP and the RUs, an

additional Register File is used, called XREGs. A multiplexor

facilitates the sharing of the main memory between the GPP

and the RUs.

In the minimal case the ISA supports the following in-

structions: SET, EXECUTE, MOVTX and MOVFX. A CCU

description file needs to be provided which contains the

input/output, SET/EXECUTE parameters and information re-

garding the memory regions accessed by the CCU. This con-

figuration file, together with the configuration and execution

microcode, is used by the compiler to generate the Molen

binaries.

The SET instruction has a single parameter - the address

at which the configuration microcode is defined. When en-

countering a SET instruction, the arbiter will continue loading

sequential memory addresses until a terminating condition in

satisfied, such as an end op microinstruction. The SET phase

prepares the CCUs for execution. Like SET, the EXECUTE

instruction also has a single parameter, the address pointing

to the execution microcode, which will perform the CCU

operations such as hardware initialization, reading the input

parameters, the computation itself and the results writeback.

The end op microinstruction marks the end of the execution

microcode. For a given CCU, the SET phase should be

completed before the EXECUTE stage.

In the case of micro-reconfiguration, the configuration mem-

ory is expressed as a function of a set of parameters. This

function takes the parameter values as input, and outputs an

FPGA configuration that is specialized for these parameter

values. The function is called a parameterized configuration.

When a SET instruction is executed, the corresponding param-

eterized configuration is evaluated after the bitstream is loaded

from the memory. The reconfiguration controller generates the

final reconfiguration data before it reaches the reconfiguration

port.

The MOVE instructions are used for passing values between

the GPP register file and the XREGs. In particular, MOVTX

copies the content of a GPP register to an XREG, and MOVFX

copies an XREG to a GPP register. If the number of XREGs is

insufficient, pointers can be used to pass large data structures

between the GPP and the CCUs.

Finally, the extended ISA offers instructions used to fetch

the SET or EXECUTE microcode into an on-chip cache in

order to minimize the reconfiguration time.

B. Actions at Design Time

The configuration data, i.e. bitstreams, is produced with the

vendor specific synthesis tools at design time. Each bitstream

corresponds to a HW task. Each HW task requires a reconfig-

urable area with rectangular shape. The FPGA is managed as

2D area in order to place the HW tasks.

Fig. 2. System at design time

Figure 2 illustrates the detailed operation of task creation

at design time. The configuration data and task specific infor-

mation are merged together in a so-called Task Configuration

Microcode (TCM) block [17], shown in the middle of Figure

2. TCM is pre-stored in the memory at the Bitstream (BS)

Address. The first field, Bitsream (BS) length, corresponds to

the size of the configuration data field. This value is used

by the component that fetches the configuration data from

memory in order to load them to the configuration port.

The Task Parameter Address (TPA) defines where the task

input/output parameters are located; this is done using pointers

to these locations. In specific, the input data address represents

the location of the data which will be processed, and the

location where the output data should be stored is defined by

the output data address. Task Width and Task Height hold the

size of the task expressed in terms of atomic reconfigurable

units (e.g. CLBs), while Execution Time Per Unit of Data

(ETPUD) has the task execution time per a specific amount

of data. Using the ETPUD in conjunction with the size of

the input and output parameters, the execution time (in clock

cycles) can be estimated. A flag called Reconfiguration Type

(RT) specifies whether the bitstream concerns region-based

or micro-reconfiguration. In the case of micro-reconfiguration

additional parameters are included. The first is the number of

parameters of the parameterized configuration (N), followed

by N pairs of parameter width/index of the XREG containing

the parameter value. Finally, a binary representation of the

parameterized configuration data is included.

By decoupling the area model from the fine-grain details of

the FPGA fabric, we defined an FPGA technology independent

environment where different vendors can provide their con-

sumers with full access to partially reconfigurable resources

without exposing the low level details of the bitstream format.

396



C. Input Requirements

In order to provide the proper inputs to the run-time

scheduler, we first explore which parameters should be de-

termined at compile time. The HW tasks are predesigned, i.e.

synthesized at compile time, and stored as partial bitstreams

in a repository, according to the restrictions of the particular

FPGA technology used (e.g., Xilinx). Each HW task is char-

acterized by three parameters: task area (width and height),

reconfiguration time, and execution time [17].

In the example of Figure 2, the HW task shown in the

left side of the Figure is a simple Finite Impulse Response

(FIR) filter. The task consumes input data from array A[i] and

produces output data stored in B[i]. The latter is a weighted

sum of the current and a finite number of previous values of the

input. The filter coefficients (tap weights) are task parameters

accessed through the TPA. Other task parameters are the input

and output data locations and the number of data elements

to be processed. The task implemented in HDL (FIR.vhd) is

synthesized by commercial CAD tools to produce the partial

bitstream file (FIR.bit) along with the additional synthesis

results for that task. The bitstream contains the configuration

data that should be loaded into the configuration memory to

instantiate the task at a certain location on the FPGA fabric.

Synthesis results, or even better results from the stage in which

the creation of reconfigurable areas is performed, are used to

determine the rectangular area consumed by the task, in terms

of configurable logic blocks (CLBs), specified by the width

and the height of the task; in the example, task width is 33

and task height is 32 CLBs for Xilinx Virtex technology.

The task should be tested by the designer to determine

how fast the input data can be processed. For the example

of Figure 2, the FIR task needs 1415 cycles to process 100,

32-bit input data elements at 11 ns clock period making its

ETPUD 1415*11 = 15565 ns per 100 32-bit unit data. Based

on this ETPUD number, we can compute the expected task

execution time for any input data size.

In a realistic scenario, one additional design space ex-

ploration step can be added to steer task shapes towards

an optimal point, a concept that will be studied within the

context of FASTER project. In particular, in a stage of the

FASTER tool flow, both task sizes and reconfiguration times

are predicted using high-level models; these values will be

available in the XML file and will feed the RTSM. A set of

parameters should be taken into account in order to predict the

reconfiguration time of a certain reconfigurable area: bitstream

size, throughput of reconfiguration port, the characteristics

of the memory the bitstream is fetched from and of the

reconfiguration controller. Other information that should be

available in the XML file in order to feed the RTSM is the

ETPUD, the Reconfiguration Type (RT) and the parameters

for micro-reconfiguration.

The above constitute the input requirements of the RTSM

determined at compile time that are not changed at runtime.

The following steps of our work will specify the parameters

changed at runtime.

VI. TARGET PLATFORMS AND EXPERIMENTS

Currently, one of the supported platforms is an FPGA-

based embedded system on a Xilinx XUPV5 FPGA device.

For targeting such platform, we are implementing a C++

framework by merging and extending the ones proposed in

[18] and [19]. In particular, with respect to [18], we are

introducing the support for reconfiguration and the integration

of cores generated by commercial tools or provided by hand.

Indeed we defined a common interface (memory-mapped

registers to exchange the parameters and memory interface

to access the DDR2 SRAM) that has to be respected by all

the cores to deal with the runtime manager. In such a way,

newer scheduling policies only deal with specific APIs to issue

the execution of the tasks, while the implementations details

for transferring the data and issuing the command signals are

managed at a different layer. With respect to [19], we are

introducing automatic and efficient algorithms for performing

the scheduling and mapping onto reconfigurable regions, along

with a better support for recent FPGA devices and for software

cores to be taken into account during the exploration. We

also integrated a minimal Graphical User Interface (GUI) to

guide the designer during the different phases and minimize

the errors while manipulating the XML file.

We applied the proposed framework to design a reconfig-

urable system for a point-wise filtering algorithm to compute

the edge detection. The test application is composed of four

main steps: a gray scale conversion (GS), a Gaussian blur filter

(GB), an edge detection filter (ED) and finally a threshold

phase (TH). Each of these steps can be partitioned to compute

on different image blocks in parallel. VHDL code for the

cores and their interfaces have been implemented by hand

since this is out of the scope for this project. The initial

template architecture contains two processing elements (i.e.,

MicroBlaze soft cores) and a reconfigurable area splitted into

two different regions to implement hardware cores. The first

processor is used as a scheduler to run the runtime scheduler

and manage the dynamic execution of the application, while

the second one is in charge of executing software tasks (i.e.,

reading/writing the image) and perfoming the reconfiguration

procedures.

The designer is thus guided by the GUI through the dif-

ferent phases, such as adding the implementations, mapping

the tasks, selecting the parameters for the architecture (e.g.,

memory addresses). In our first prototype implementation,

each stage is composed of only one block. GS and ED phases

were then mapped onto the first region, while GB and TH ones

were mapped onto the second one. This allows to alternate

computation and reconfiguration between the two regions. The

framework automatically generates the hardware and software

specifications fully compatible with the Xilinx ISE Design

Suite for the subsequent synthesis. In details, the hardware

specification contains the description of the hardware cores,

along with the interfaces, and the platform specification file to

describe the architecture elements and the interconnections. On

the other side, the software specification contains the code that

have to be executed by each of the software processors. Note

that, minor modifications still need to be applied to this code.

397



In fact, original functions for reading and writing the image

from file need to be updated to use directives for accessing

the memory card where we store input/output files.

In addition we have developed a desktop system running

CentOS linux which houses a XUPV5-LX110T platform

plugged onto a PCIe 1x [14]. This is used to demonstrate the

basic operations of a run-time system manager. For demonstra-

tion purposes we have designed three simple kernels and one

complex 3D Stereo Vision kernel as IP cores for execution in

the FPGA; the corresponding bitstreams are stored in the HDD

of the host PC. Software running above the host OS awaits

input from the user in order to make a selection through a

command line interface. Once the user enters a choice, the

user level program triggers reconfiguration of the FPGA by

loading the corresponding bitstream; if the choice matches

the kernel already loaded into the FPGA, reconfiguration is

not triggered. Software components of the host PC include the

user application and a kernel driver. The user application issues

an IOCTL call to send/receive data to/from kernel driver. The

driver is responsible for low-level data transfer. Practically, the

software is a runtime system that selects a precompiled circuit,

loads it to configure the FPGA, initiates the execution and then

delivers the results back to the user. The user has no control

either on FPGA reconfiguration, communication or execution

on the FPGA. In the present system data transactions are

performed through DMA achieving a throughput of 1.5 Gbps,

which is close to the theoretical bandwidth of PCIe (2Gbps

for PCIe lane x1), while reconfiguration is conducted through

the JTAG interface using vendor’s USB programmer. This is

slow and we will move to faster reconfiguration interfaces, e.g.

SelectMAP.

In our future activities, we are planning to use more complex

platforms targeting the high-performance computing domain,

deploy a Global Illumination and Image Analysis application

in a desktop system and a Network Intrusion Detection appli-

cation in an embedded system using the FASTER tool flow.

VII. CONCLUSIONS

The FASTER project attempts to enhance several aspects in

designing modern computing systems. The main challenge is

the inclusion of reconfiguration as an explicit design concept.

In order to do so we are proposing new design methods and a

tool flow for efficient and transparent use of reconfiguration.

We intend to provide seamless integration of parallelism and

reconfigurability in the system specification. The tool flow will

interface with a run-time system which will be responsible for

handling partial and dynamic reconfiguration in an effective

manner so as to exhibit better performance over static imple-

mentations.
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