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A Self-Aware Tuning and Self-Aware Evaluation Method for
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Finite-difference methods are computationally intensive and required by many applications. Parameters
of a finite-difference algorithm, such as grid size, can be varied to generate design space which contains
algorithm instances with different constant coefficients. An algorithm instance with specific coefficients can
either be mapped into general operators to construct static designs, or be implemented as constant-specific
operators to form dynamic designs, which require runtime reconfiguration to update algorithm coefficients.
This article proposes a tuning method to explore the design space to optimise both the static and the
dynamic designs, and an evaluation method to select the design with maximum overall throughput, based
on algorithm characteristics, design properties, available resources and runtime data size. For benchmark
applications option pricing and Reverse-Time Migration (RTM), over 50% reduction in resource consumption
has been achieved for both static designs and dynamic designs, while meeting precision requirements. For a
single hardware implementation, the RTM design optimised with the proposed approach is expected to run
1.8 times faster than the best published design. The tuned static designs run thousands of times faster than
the dynamic designs for algorithms with small data size, while the tuned dynamic designs achieve up to
5.9 times speedup over the corresponding static designs for large-scale finite-difference algorithms.
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1. INTRODUCTION

Finite-difference algorithms are widely used in diverse areas such as heat diffusion,
electromagnetism and fluid dynamics. By sweeping over a computational grid, a finite-
difference kernel performs nearest neighbouring computation in one or multiple di-
mensions. Due to the sparse data access patterns and the ever-increasing data size,
applications based on finite-difference algorithms are time-consuming and expensive
in terms of required computational resources. As an example, simulating a wave prop-
agation process within a 25km2 area with 5000m depth for a period of 0.4s requires
63.4T floating-point operations, given the wave field sampling resolution and time
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sampling resolution are respectively set to 5m and 0.0004s. The computation process
takes 9.8 hours to finish on a 4-core Intel Xeon CPU with a parallelised 4-thread im-
plementation running at 2.67GHz. With data size and simulation resolution further
increased, solving Partial-Differential Equations (PDEs) with finite-difference algo-
rithms becomes unaffordable for scientific research and industrial development.

Finite-difference computations have been extensively studied across various under-
lying platforms including hardware accelerators such as GPUs [Datta et al. 2008;
Phillips and Fatica 2010] and FPGAs [Araya-Polo et al. 2011; Fu and Clapp 2011; Niu
et al. 2012], and large-scale clusters [Perrone et al. 2012]. In this work, we focus on gen-
erating FPGA designs with maximum throughput, with self-awareness and runtime
reconfiguration introduced into the design process.

Performance of CPU and GPU designs is respectively limited by communication op-
erations between parallel cores and efficiency of memory systems. Scalable CPU-based
clusters [Perrone et al. 2012] and optimised data access patterns were proposed to
improve performance of finite-difference applications [Datta et al. 2008; Phillips and
Fatica 2010]. As customised memory architectures and data paths can be constructed
on FPGAs, performance of FPGA designs is limited by available resources, including
on-chip resources and off-chip bandwidth. A memory architecture with maximum data
reuse ratio was proposed in [Fu and Clapp 2011]. Data-paths for finite-difference algo-
rithms consume most of reconfigurable resources in FPGAs, limiting achievable design
parallelism. In other words, if resource consumption for one data-path can be reduced,
more data-paths can be replicated for given resources, generating higher throughput.
Arithmetic operations with constant input can be mapped into reconfigurable fabrics
as specifically optimised hardware operators. Resource consumption is reduced as re-
dundant logics for general operators are eliminated. As a consequence, the optimised
operators can only be used by one specific finite-difference algorithm, and thus need to
be dynamically reconfigured if algorithm constants are updated. Compared with static
designs with general operators, the dynamic designs consume fewer resources and
possess higher design parallelism, with reconfiguration overhead introduced during
runtime.

In both static and dynamic designs, variations in constant coefficients lead to dif-
ferent hardware implementations, as the length of mantissa bits in static designs
and the constant operators in dynamic designs are determined by the coefficients.
Step size in time and space dimensions can be varied to create various instances of
a finite-difference algorithm, with different coefficient sets. To automatically capture
optimised designs with maximum performance, the design process needs to be aware of
tuning opportunities in finite-difference algorithms, impacts of each tuning operation
on design properties, and relation between tuned computational kernels and achieved
overall runtime performance. Self-awareness in this article refers to that the design
approach is aware of impacts of its own operations during algorithm tuning and run-
time performance evaluation. At compile time, awareness in the design process refers
to proper estimation of resource consumption for possible designs in the design space
of finite-difference algorithms. The compile-time awareness enables exploration of the
algorithm design space without going through time-consuming synthesis tool chains.
At run time, awareness of benefits and overhead of generated designs supports quick
evaluation of runtime performance for various data size. The design with maximum
runtime performance is mapped into target system.

The major contributions of this work include the following.

—We provide a tuning and evaluation approach for finite-difference algorithms that
supports self-awareness of design space for finite-difference algorithms, tuned design
generation and runtime evaluation. See Section 3.
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—We present novel algorithms and hardware design models to capture and exploit op-
timisation opportunities in tuning finite-difference algorithms targeting both static
and dynamic designs. See Section 4.

—We given a runtime evaluator for implementations of finite-difference algorithms
that takes into account available resources, bandwidth, algorithm details, and run-
time data size. See Section 5.

—We present an experimental evaluation of the proposed approach based on option
pricing and RTM, showing that 80% to 90% design model accuracy can be achieved
with resource consumption reduced by 50% for both static and dynamic designs. See
Section 6.

2. RELATED WORK

Driven by high performance requirements of finite-difference algorithms, various ef-
forts have been put to accelerate the computation process. One straightforward solution
is to distribute workload into parallel CPU cores. However, data dependency between
distributed workload, that is, boundary conditions in finite-difference algorithms, lim-
its scalability of the parallelised CPU designs. Optimised communication patterns
between CPU cores of the Blue Gene/P [Perrone et al. 2012] and Blue Gene/Q [Lu
and Magerlein 2013] were proposed to provide scalable performance, achieving 2.99
TFLOPS for Reverse-Time Migration (RTM) with a Blue Gene/P rack with 1024 4-core
CPUs.

GPUs are widely used to accelerate finite-difference algorithms, as the high on-
chip hardware concurrency and memory bandwidth can satisfy the high performance
requirements of finite-difference algorithms. An NVIDIA Tesla C2070 GPU has 448
CUDA cores running at 1.15 GHz, which provides a peak performance of 1.03 TFLOPS.
The challenges for GPU designs are how to efficiently load data from global memory,
and how to share loaded among parallel cores. Blocked data access patterns were
proposed [Micikevicius 2009; Phillips and Fatica 2010] to share accessed data among
threads in the same Streaming Multiprocessor (SM). The blocking technique reduces
data access redundancy to support high parallelism in GPUs. On the NVIDIA Tesla
C2070, optimised GPU designs achieve up to 100.7 GFLOPS for financial pricing and
58.85 GFLOPS for seismic imaging.

The reconfigurability of FPGAs enables designers to develop customised hardware
architectures for finite-difference applications. Arithmetic operations in FPGAs are
implemented as deeply pipelined data-paths, to generate one result per cycle per data-
path. A customised memory architecture which supports two compute units is proposed
in Araya-Polo et al. [2011]. Interconnected soft-processors are mapped into FPGAs to
process application workload in parallel [Sano et al. 2011]. Scalability of the proposed
architecture is limited by processed data size: it only works when the accessed data in
one cycle are small enough to fit into on-chip memory. A scalable memory architecture
was proposed in Fu and Clapp [2011] to support on-chip data access from pipelined
data-paths, and an analytical model was proposed in Niu et al. [2012] to automatically
optimise the hardware design. A scalable finite-difference design in reconfigurable
cluster is developed in Niu et al. [2013b]. Designs are dynamically reconfigured based
on cluster status, to ensure available resources in clusters can be fully utilised. A high-
level synthesis tool to develop FPGA-based finite-difference applications are proposed
in Pell et al. [2013], where design parallelisation and communication issues are handled
automatically. However, none of these FPGA designs exploit constant coefficients in
finite-difference algorithms.

With the scalable memory architecture in Fu and Clapp [2011], design parallelism
of reconfigurable designs for finite-difference algorithms is determined by resource
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consumption of data-paths. In other words, reducing resource consumption of data-
paths increases design parallelism, thus improving design performance. To reduce re-
source consumption of data-paths, arithmetic operations in finite-difference algorithms
are represented with fixed-point format in Becker et al. [2011]. Constant coefficients
in the algorithms are used in [Jin et al. 2012] to generate operators customised for
specific constant. However, lack of awareness of low-level circuit properties, the pro-
posed optimisation approach needs to go through the time-consuming synthesis tool
chains. The design space of a finite-difference algorithm can include thousands of con-
stant coefficient sets, and thus thousands of different designs. For large-scale FPGA
designs, the synthesis process takes minutes to hours to finish, synthesising all pos-
sible designs in the design space to find the optimal design is not practical. In this
work, we introduce awareness of circuit properties into the proposed approach, which
enables finite-difference algorithms to be tuned automatically and promptly at high
level, without going through the synthesis process.

Runtime reconfiguration is an emerging area to improve system performance during
design time and during run time. At design time, efficiency of floorplanning [Singhal
and Bozorgzadeh 2006] and performance of design validation [Iskander et al. 2010] are
improved. During runtime, slowly changing applications are optimised with runtime
reconfiguration. An adaptive 32-tap FIR filter [Bruneel et al. 2009], robotic applica-
tions [Nava et al. 2010] and sorting architectures [Koch and Torresen 2011] are im-
plemented to dynamically elaborate the designs and to temporally share resources. In
this work, runtime reconfiguration is introduced to enhance generality of tuned finite-
difference designs. The operators customised for specific constant coefficients sacrifice
generality of the hardware design. During runtime, the optimised designs needs to be
dynamically reconfigured to support finite-difference algorithms with various coeffi-
cients, while design using general operators can update the coefficients by changing
register values. Previous work on the additional time introduced by runtime reconfigu-
ration, that is, reconfiguration overhead focuses on estimating the overhead. The rela-
tionship between reconfiguration overhead and execution time is analysed in El-Araby
et al. [2009], and a reconfiguration overhead model is built in Duhem et al. [2012]. In
this work, a runtime performance model is built to dynamically estimate benefits and
overhead for customised and general designs, based on properties of finite-difference
algorithms and data size. A runtime evaluator evaluates overall performance of opti-
mised static and dynamic designs, and maps the design with maximum performance
into hardware.

3. APPROACH OVERVIEW

This section briefly introduces finite-difference algorithms and corresponding hardware
implementations, demonstrates the basic idea of this article with a motivating example,
and presents the overall design flow of the proposed method.

3.1. Finite-Difference Algorithms

Finite difference method is a numerical method to approximate solutions to differen-
tial equations. Derivatives are expressed with a finite difference between consecutive
points in target dimensions. There are three main finite-difference methods in com-
mon use: implicit, explicit and Crank-Nicolson, corresponding to three different ways
of expressing derivatives with neighbouring points. The proposed approach aims at
constructing design space to optimise finite-difference algorithms, and is applicable to
all three finite-difference methods.
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Fig. 1. (a) Finite-difference stencil in 1-D, 2-D and 3-D space. (b) 1-D finite-difference computation for
Equation (2) in time (t) and space (s) dimensions. (c) Hardware architecture for Equation (2).

To capture dynamic properties within target systems, a PDE can be formulated as
follows,

A
∂2 f
∂t2 = B

∂2 f
∂s2 + C

∂ f
∂s

, (1)

where A , B and C are PDE parameters. Two finite-difference applications, option
pricing and RTM are used as benchmark applications in this article. A financial option
is a contract which allows its owner to sell assets at specific price in the future. Pricing
options usually involves solving Black Scholes PDEs [Hull 2005], where ft,s denotes
the option price for asset with price s at time t. A, B and C are determined by risk-
free interest rate and volatility of the underlying assets. RTM is a seismic imaging
technique that generates terrain images based on Earth’s response to injected waves.
Wave propagation is modelled with isotropic acoustic wave equation [Araya-Polo et al.
2011], where ft,s is the injected wave at position s at time t. A, B and C are calculated
with the sound speed and pressure in target terrains. Algorithm and application details
for benchmark applications are presented in Section 6. While PDE variable t is in one
dimension for all PDEs, variable s, known as stencil in finite-difference algorithms, can
span multiple dimensions, as shown in Figure 1(a). For option pricing, the number of
dimensions in s is determined by how many assets are involved in the pricing process.
For RTM, as the detected terrains are usually in 3-D, three dimension are usually
included in s. Replacing the derivatives with finite difference expressions, the finite-
difference algorithm Equation (2) can be mapped into discrete computational grids to
solve the corresponding PDE. Equation (1) is expanded with one-dimension stencil in
space. For applications with higher dimensions, dimension variable s is replaced with
(x, y, z . . .).

ft+1,s = α · ft,s+1 + β · ft,s + γ · ft,s−1 + λ · ft−1,s (2)

α = 2 − 2B�t2

A�s2 − 2C�t2

A�s
β = B�t2

A�s2 − C�t2

2A�s
γ = B�t2

A�s2 − 3C�t2

2A�s
λ = −1. (3)

ft+1,s indicates system status at the t+1 point in time dimension and the s point in space
dimension, as shown in Figure 1(b). The corresponding hardware implementation is
shown in Figure 1(c). If required input data ft,s+1, ft,s, ft,s−1 and ft−1,s are available,
the hardware module generates one result for each clock cycle. The system status is
propagated forward in the time dimension, with the step size �t.

3.2. Motivating Example

Arithmetic operations in finite-difference algorithms can be mapped into reconfigurable
hardware as a data-path. For a arithmetic operation with constant inputs, such as α,
β, γ and λ in Equation (2), its functionality can be accomplished by various hardware
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Fig. 2. Hardware implementations for a constant operator.

designs. As shown in Figure 2, a constant multiplier can be mapped as an original
design, an optimised static design and an optimised dynamic design. An original design
refer to a design using fixed-point arithmetic operators, with input width specified with
precision requirement. In Figure 2, the precision requirement specifies the original
design input width to 32 bits. However, in certain scenarios, representing the constant
coefficients takes less than the specified width. As shown in Figure 2, α = 0.75 is
represented with 2 bits in fixed-point format. The following 30 ’0’ bits are redundant as
any input data multiplied with them will generate the same result. Redundant logics
connected to the 30 bits can be removed to generate a more efficient design, named
as an optimised static design. Moreover, for fixed-point input data f , 0.75 · f can be
implemented as 0.5 · f + 0.25 · f , where 0.5 · f and 0.25 · f are implemented as a 2-bit
right shifter and a 1-bit right shifter, respectively. An optimised dynamic design refers
to a design using shifters and adders / subtracters to implement constant multipliers.
In this article, input data for all designs are represented with fixed-point format.

When a finite-difference algorithm is developed, its PDE parameters and step size
are changing from time to time. PDE parameters such as interest rate and sound speed
are adapted to variations in financial market and targeted terrains. Space step size
and time step size are updated to change coverage and resolution of the dynamic sim-
ulation. Constant coefficients, as shown in Equation (3), are updated based on PDE
parameters as well as step size in space �s and time �t. For original designs with
standard operators, coefficients can be easily updated by changing input registers. For
optimised static designs, although constant coefficients can also be updated without
runtime reconfiguration, it must be ensured the truncated input registers can accom-
modate the updated coefficients. As shown in Figure 2, when α is changed from 0.75
to 0.76, input width of α is expanded from 2 bits to 9 bits. Upper bound of the con-
stant input width is used for optimised static designs to eliminate errors introduced
by truncating constant coefficients. Variations in constant coefficients lead to different
dynamic designs, and thus the optimised dynamic designs need to be reconfigured to
adapt to new coefficients. Compared with optimised static designs, the optimised dy-
namic designs consume fewer resources, but reconfiguration overhead is introduced
to adapt the finite-difference algorithms. Whether the reduction in resource consump-
tion outweighs the reconfiguration overhead depends on size of the reconfigured area,
available on-chip resources, memory bandwidth and runtime data size.
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Fig. 3. Design flow of the (a) tuning process and (b) design generation.

For a given finite-difference algorithm, the challenges include how to tune the al-
gorithm to generate optimised static and dynamic design with minimal resource con-
sumption, and how to dynamically evaluate the generated designs to map the design
with maximum overall performance into hardware.

3.3. Tuning and Evaluation Design Flow

The proposed approach includes the following self-aware properties: (1) awareness of
design space in finite-difference algorithms, and the impact of each point in design
space on hardware designs, (2) awareness of platform resources, design details and
runtime overhead of generated designs. The design flow, as shown in Figure 3, is di-
vided into a design tuning process and a design generation process. The tuning process
creates design space for finite-difference algorithms by constructing computational
grids with appropriate design parameters. For example, for the computational grid in
Figure 1, parameters �t and �s can be varied to control the mapping of finite-difference
algorithms into the grid as given by Equation (2). A hardware design model is built
to evaluate the tuned algorithms, in terms of resource consumption. The design with
minimum resource consumption is selected and generated. The design generation pro-
cess first builds high-level design descriptions for original finite-difference algorithms.
In our current implementation, C++ is used to capture the high-level design descrip-
tions. Tuned design details, such as data width and constant values, are fed into the
descriptions. We use FloPoco libraries for fixed point arithmetic [de Dinechin and Pasca
2011] to generate VHDL code, based on the description. An evaluator is introduced to
estimate the hardware runtime performance based on design details and runtime pa-
rameters. For a PDE with various parameters, the designs are generated and executed
in the following steps.

—For each PDE parameter set, the design space of its corresponding finite-difference
algorithm is created. Each point in the design space corresponds to a possible
hardware implementation.

—The tuning process explores the design space, with design models evaluating possible
hardware implementations in terms of resource consumption. Optimised designs
with minimal resource consumption are fed into code generation and synthesis tool
to generate hardware configuration files.

—Generated implementations for the target PDE are dynamically evaluated during
runtime, based on resource consumption, available resources, reconfiguration
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overhead and data size. The implementation with maximum overall throughput is
loaded into target FPGA.

4. SELF-AWARE TUNING OF FINITE-DIFFERENCE ALGORITHMS

The tuning process aims at adapting the finite-difference algorithms to minimise the
hardware resource consumption. Both static designs and dynamic designs are tuned.
The proposed method includes two steps: (1) deriving valid design space based on accu-
racy and convergence requirements, (2) evaluating generated constants with hardware
design models. Previous work [Jin et al. 2012] used synthesised results to evaluate the
tuned designs, which is time-consuming and not sustainable for large-scale designs.
Self-awareness in this process mainly covers awareness of algorithm design space and
variations in corresponding hardware designs, which enables fast evaluation without
going through the vendor synthesis tool chain.

4.1. Constructing Algorithm Design Space

Valid design space indicates the range of step size that ensures both computation accu-
racy and PDE stability. Computation accuracy is specified by users, and is expressed as
the number of bits B involved in computation. Increasing B results in a larger design
space, since more designs can be generated depending on the optimisations used. The
specified accuracy is ensured during algorithm tuning. The stability condition of PDEs
requires the local error in finite-difference algorithms to be reduced in subsequent com-
putations. The local error is defined as the difference between the actual value a(t,s) in
a PED and the discretised value f(t,s) in the corresponding finite-difference algorithm.
Based on Von Neumann stability analysis [Charney et al. 1950], the stability condition
for a finite-difference equation can be expressed as follows. The |g| is bounded to be
less than 0.5 instead of 1 to ensure fast convergence.

ε(t,s) = a(t,s) − f(t,s) (4)
ε(t+1,s) = g · ε(t,s) |g| ≤ 0.5 (5)

ε(t+1,s+1) = ec(t+�t)eikm(s+�s) km = πm
L

m ∈
(

1, 2, . . .
L

�s

)
. (6)

Among the stable finite-difference algorithms, user specifies one step size set (�t,�s),
based on available computational resources and stability requirements. A small pertur-
bation ζ is added into the specified step size, to provide a tunable design space which
satisfies both stability conditions and user requirements, as shown in Equation (7).
Within the derived valid design space, finite-difference algorithms can be tuned with
design models for static designs and dynamic designs. Design space of option pricing
and RTM for the derived ζ is shown in Figure 4, where step size �t and �s vary from
(0.975�t, 0.975�s) to (1.025�t, 1.025�s). For the same finite-difference algorithm, the
resource consumption is almost doubled from the minimal point to the maximum point.
In other words, if a given finite-difference algorithm can be properly tuned, resource
consumption of its hardware implementations can be halved. In this article, differ-
ent implementations for a finite-difference algorithm in the design space is named as
algorithm instances.

�t = (1 + ζ )�t �s = (1 + ζ )�s |ζ | ≤ 0.025. (7)

4.2. Optimising Static Design

For static implementations with general arithmetic operators, constant input provides
optimisation opportunities to compress data width for constant input. Useful infor-
mation in constant coefficients (i.e., the “1” bits) can be compressed to construct an
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Fig. 4. Design space of (a) option pricing and (b) RTM, for different computational grids (dt, ds).

Fig. 5. Constant tuning with guaranteed precision.

accurate and stable finite-difference algorithm instance with reduced data width. As
shown in Figure 5, the required number of bits to fulfil the precision requirements is
labelled. As an example, while constant α with value 1.749511, 1.75097, and 1.75195
can all be mapped into proper computation grids, the constant 1.750976 outperforms
other neighbouring constants, as it can be represented with fewer bits without preci-
sion reduction. Either for arithmetic operators based on DSP blocks [de Dinechin and
Pasca 2009; Banescu et al. 2010] or for arithmetic operators mapped into LUTs [Turner
and Woods 2004], reducing input data width directly reduces resource consumption.

For each point in the valid design space, the generated constant coefficients are
represented with two’s complement T wos. The design model traverses from the least
significant bit to the most significant bit of T wos, until the first “1” bit is found. The
number of data bits between the most significant bit and the first “1” bit is updated as
the data width of explored constant Wci , where ci indicates the constant. Data width of
initial input data is specified as B, to fulfil precision requirements. The data width is
propagated through the finite-difference data-path, under the following rules:

∀c = a ± b Wc = max(Wa, Wb) ∀c = a · b Wc = Wa + Wb, (8)

where the output data width is the same as maximum input data width, for adders and
subtracters, and output data width of multipliers is the sum of input data width. With
data width of each involved arithmetic operator calculated, the resource consumption
of the hardware design can be estimated. Adders and subtracters are directly mapped
into LUTs, with each LUT accommodating a 1-bit adder/subtracter. The carrier bits are
fed forward along with output bits. Therefore, the resource consumption is the same as
the output data width of mapped adders/subtracters. For multipliers, an adder matrix
is used to accumulate the multiplication results. The resource consumption R for a
multiplier can be estimated with:

∀c = a · b Rc =
Wb∑

i=Wa

i Wa ≤ Wb. (9)

The static design for each point in the valid design space can be evaluated in terms of
resource consumption, and the design with minimal resource consumption is picked.
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Fig. 6. Constant multiplier implementation with CSD coding.

When multiple finite-difference algorithms are mapped into static designs, the re-
source saving is severely reduced as a local minimum is captured for each algorithm
instance. Assuming constant α is compressed to Wα = 4 in one algorithm instance and
Wα = 20 in another algorithm instance to achieve the minimal resource consumption
for both algorithm instances, the tuning process has to set Wα to 20 to accommodate the
two algorithm instances. An adaptive design model is introduced to bring awareness
of current tuning situation. For each arithmetic operator, the maximum data width
Wmax among all involved algorithm instances is compared with current tuned width.
The input data width is set to be Wmax if it is less than the maximum width, and Wmax
is updated if input data width is larger than it. Thus the tuning process would not try
to tune the data width to be less than Wmax, and the global minimum is captured.

4.3. Optimising Dynamic Design

Constant multipliers can be implemented based on the Canonical-Signed-Digit (CSD)
coding [Reitwiesner 1960]. As shown in Figure 6, constants in finite-difference algo-
rithm instances can be converted into CSD, to construct a multiplier with addition,
subtraction and shifting operations. Conversion to CSD involves several steps. First,
floating point data are represented with fixed-point format. Significant bits of floating
point representations are combined with the hidden 1 in floating point operations and
with the sign bit. In Figure 6, the fixed-point representation is labelled as α0. Second,
α0 is left shifted by 1 bit to form α1. Carrier bits c are calculated based on the original
data and shifted data, as shown in Equation (10). Third, sign s and magnitude m of
CSD data are calculated, based on original data, shifted data and carrier bits. Finally,
the CSD bits csd are calculated with the sign s and magnitude m as follows.

ci+1 = α0i · α1i + ci · α0i + ci · α1i c0 = 0 (10)
si = α1i (11)

mi = α0i · ci + α0i · ci = α0i ⊕ ci (12)

csdi =
⎧⎨
⎩

+ : mi = 1 si = 1
− : mi = 1 si = 0
0 : mi = 0

(13)

Resource consumption of the constant multipliers depends on the constant value. A
design model is developed to estimate the resource consumption by simulating the
constant multiplier building process. As shown in Algorithm 1, the number of non-
zero bits Ncsd indicates the number of partial results that need to be summed. The
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ALGORITHM 1: Design model for multipliers optimised for specific constant.
Input: Constant coefficients expressed with CSD coding csd.
Output: Resource consumption res
1: for i = 0 → B do
2: if csdi == “+” or csdi == “−” then
3: Ncsd+ = 1
4: end if
5: end for
6: while Ncsd/2 do
7: op = Ncsd / 2
8: mod= Ncsd % 2
9: B++
10: res + = B · op
11: Ncsd = op + mod
12: end while

combination of partial results are divided into several stages. As one adder/subtracter
can process two partial results, Ncsd/2 adders/subtracters are required for the first
stage, generating Ncsd/2 partial results for the second stage. If Ncsd is not an even num-
ber, the remainders of the first stage Ncsd%2 are added into the following stage. The Ncsd
is updated for the second stage, as Ncsd/2 + Ncsd%2. Additional stages are introduced
until the final result is generated, that is, Ncsd/2 = 0. Correspondingly, the resource
consumption for a stage can be estimated with the number of addition/subtraction
operations in that stage. For example, the resource consumption for the first stage
is (Ncsd/2) · (B + 1), where B + 1 covers the width of the adders/subtracters, and the
additional 1 bit is used to prevent overflow.

5. RUNTIME EVALUATION

A runtime evaluator is required to dynamically schedule the tuned static and dynamic
designs, to achieve high performance during runtime. Awareness of available resources,
benefits and overhead of generated designs is introduced, to estimate execution time
T with runtime data size ds.

T = ds · Od

fknl · P
+ Or, (14)

where fknl indicates the operating frequency, P is the design parallelism, and Od and
Or are overhead due to design duplication and runtime reconfiguration, respectively.
Design parallelism P is the product of parallel duplication pd and serial duplication
sd. Ideally, if Od and Or can be neglected, hardware designs consuming the mini-
mal resources achieve the maximum throughput. In practice, Od and Or increase as
more finite-difference data-paths are duplicated. In this section, relationships between
bandwidth Bw, resource consumption of one finite-difference kernel Rknl, duplication
overhead Od and reconfiguration overhead Or are analysed, to enable proper evaluation
during runtime.

Bandwidth Bw indicates the accessible data size at each clock cycle. Given sufficient
hardware resources, throughput of hardware implementations increases linearly with
parallel duplication pd, before Bw is reached. pd refers to the number of parallel data
paths attached to I/O interfaces. As for a data-path with dw input data width, 2dw bits
data are accessed for read and write operations, pd can be calculated as:

pd = Bw

fknl · dw · 2
. (15)
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Fig. 7. Processing two time steps in one memory pass. (a) data before blocking, (b) output data of the first
time step, (c) output data of the second time step.

When pd saturates the I/O channels, serial duplication sd can be introduced to
increase throughput without consuming more bandwidth. For example, for the imple-
mentation in Figure 1, the output data of the current time step ft+1,s can be buffered
and redirected into a following data-path, eliminating the read and write operations
of data in time step t + 1. Multiple time steps can be propagated in one memory
pass. As a consequence, on-chip memory architectures are required to buffer the in-
termediate results. The loop-blocking (domain decomposition) technique is used to
ensure the buffered data can be accommodated in available on-chip memory resources.
Figure 7(a) shows the memory requirement for a 3-D finite-difference algorithm access-
ing 1 neighbouring data at x, y and z dimensions. Blocking x and y in half, as shown
in Figure 7(b), reduces the memory requirement. Memory resource consumption after
blocking is calculated as

Rmem =
(∏

(ni + (sd − 1) · 2 · S)
)

· (2 · S + 1) · sd · Am, (16)

where ni is the size of bocked dimensions, S is the order of approximation in finite-
difference expressions, that is, halo data width, 2 · S +1 is the accessed data size at the
highest dimension, and Am is the memory requirement to store one data. In Figure 7,
halo data width S is 1.

Blocking data effectively reduces memory resource consumption, and increases se-
rial duplication sd of finite-difference algorithms. On the other hand, blocking data
introduces additional data to ensure correctness of halo data. As shown in Figure 1(a)
and Figure 7(a), for a finite-difference algorithm, computational operations at one point
require its neighbouring data at each dimension. When data are divided into multiple
blocks, boundary data of the data blocks require data from other blocks. This is known
as boundary conditions of finite-difference algorithms, and data required by bound-
ary data are named as halo data, as shown in Figure 7(b). To protect the boundary
conditions, halo data are divided into involved blocks. While inside computing data
are properly updated, halo data are not updated during the computation. As shown in
Figure 7(c), when serial duplication sd is increased to more than 1, the computing data
of one data-path are used as input data of its following data-path. In the design model,
maximum design parallelism pd · sd is bounded by available on-chip computational
resource Ac. For different sd, blocked dimension size ni is modified to fit memory ar-
chitectures into available on-chip memory blocks Am. If one more layer of halo data are
loaded, the inside halo data are updated in the first time step t, and thus can be used in
the second time step t + dt. To ensure the same amount of computing data are updated
and written back into off-chip memory, one more layer of halo data is processed if sd is
increased by 1. Duplication overhead Od is the ratio between actually loaded data size
and the original data size. The serial duplication sd and duplication overhead Od are
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expressed as:

sd = P
pd

sd ∈ (1, 2, 3 . . .) P = Ac − RI

Rknl
(17)

Od =
∏ ni + (sd − 1) · 2 · S

ni
ni ∈ (nx, ny, nz . . .). (18)

An overhead model for cellular automata was proposed in Kobori et al. [2001], where
reduction in effective parallelism takes account incorrect results due to boundary
conditions. The overhead model proposed in this work combines impacts from multi-
dimension data blocking, memory resource usage, data-path resource usage and avail-
able resources. Therefore more complex finite-difference algorithms and design issues
can be covered. As an example, given reduction in data-path resource consumption,
design parallelism P is increased. If memory channels are already saturated with par-
allel duplication pd, sd is increased to replicate more serial data-paths, increasing the
memory usage and thus reducing blocked dimension size ni. Finally, increase in sd and
reduction in ni lead to increase in overhead Od. Variations in optimised designs are dy-
namically linked to design parallelism and overhead, which enables proper estimation
of runtime performance. For a finite-difference algorithm with D dimensions, the lowest
D − 1 dimensions are blocked to reduce memory requirements to buffer neighbouring
data at the D dimension. The duplication overhead at the lowest D − 1 dimensions
is multiplied with each other, as shown in Equation (18). P is the overall parallelism
of the finite-difference design, determined by data-path resource consumption Rknl,
available resources Ac and resource consumed on communication infrastructures RI .

Reconfiguration overhead can be estimated based on configuration bitstream size
and reconfiguration interface throughput θ .

Or = Nr · φ

θ
Nr = RI + Rknl · P

RU
∈ (1, 2, 3 . . .), (19)

where RU indicates the resource consumption for one reconfiguration unit, and Nr is
the number of reconfiguration units used. For different reconfigurable platforms, the
reconfiguration unit can be one reconfigurable slice, one clock region, or the entire chip.
φ accounts for the bitstream file for each consumed resource unit.

Finally, the parameter Ert for runtime evaluation can be characterised as follows.
During runtime, static designs are configured if Ert < 1, while Ert > 1 means dynamic
designs provide better performance. As both general and constant designs share the
same communication infrastructures and reconfigurable platform, Ac, Am, RI , RU ,
Bw, θ and φ are considered as constant parameters during evaluation. The difference
between general designs and constant designs is the resource consumption for a single
data-path Rknl, therefore different P, sd and thus Od are introduced for each design.

Ert = Ts

Tr
Tr = ds · O(d,r)

fknl · Pr
+ O(r,r) Ts = ds · O(d,s)

fknl · Ps
. (20)

6. RESULTS

Two finite-difference applications, option pricing and Reverse Time Migration (RTM),
are developed with the proposed approach. Effectiveness of the proposed approach is
evaluated in three aspects: model accuracy, resource consumption of tuned designs and
runtime performance. Measured resource consumption is post-synthesis result from
Xilinx ISE 13.3. Optimised designs can be mapped into either Look-Up Tables (LUTs) as
customised logics or DSP blocks to accommodate the involved arithmetic operators. As
minimal input width for the Xilinx DSP blocks is 18 bits, benefits gained for DSP blocks
is limited by the resource granularity. As an example, multipliers/adders/subtracters
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with 8-bit input width consumes fewer hardware resources than operators with
18-bit input width. Mapped into DSP blocks, these operators all consume 1 DSP block.
Moreover, due to the inconsistency in DSP resource consumption, previous work for
algorithm tuning [Becker et al. 2011; Jin et al. 2012] used LUTs to evaluate the ap-
proach efficiency. To provide fair comparison, all optimised designs are mapped into
LUTs. Precision requirement in the experiments is set to be 24 bits. Current design
targets at a Xilinx Virtex-6 SX475T FPGA hosted by a MAX3424A card from Maxeler
Technologies, with memory bandwidth of 38.4 GB/s. As generated VHDL codes are in-
compatible with MaxCompiler for available system, which targets at Java descriptions,
runtime performance is simulated with synthesised results from ISE and measured
results from target system. Results from previous work for optimising constant oper-
ators in finite-difference algorithms and accelerating finite-difference algorithms are
compared with results for the proposed approach.

6.1. Benchmarks

An option is a financial instrument which provides its owner the right to buy or to
sell an asset at a fixed price in the future. A call option allows owners to buy asset,
while a put option allows owners to sell asset. Options are popular in the financial
industry and pricing options usually involves solving partial differential equations
(PDEs), especially the Black Scholes PDE [Hull 2005]. The Black Scholes PDE with
one variable (asset) following geometric Brownian motion is described as Equation (21),
where ft,s denotes the price of the option, s denotes the value of the underlying asset,
t denotes a particular time, τ is the risk-free interest rate, σ is the volatility of the
underlying asset. Using explicit finite-difference expressions to replace the derivatives,
the asset value ft,s can be calculated as in Equation (22), where α, β and γ are the
constants determined by σ , τ and computational grid step size.

∂ f
∂t

+ τs
∂ f
∂s

+ 1
2

σ 2 ∂2 f
∂s2 = τ f (21)

ft,s = α ft−1,s+1 + β ft−1,s + γ ft−1,s−1. (22)

Reverse Time Migration (RTM) is an advanced seismic imaging technique to detect
terrain images of geological structures, based on the Earth’s response to injected acous-
tic waves. The wave propagation within the tested media is simulated forward, and
calculated backward, forming a closed loop to correct the terrain image. The propaga-
tion of injected waves is modelled with the isotropic acoustic wave equation:

d2 p(t, s)
dt2 + dvv(s)2 �2 p(t, s) = f (t, s), (23)

where dvv(s) is the sound speed at terrain point s, p(t, s) is the pressure value, and f (t, s)
is the input wave. Three dimensions are covered in the finite-difference space, that is,
s = (x, y, z). The propagation in space is replaced with fifth-order finite-difference ex-
pressions, and first-order approximation is used for propagation in time. With deriva-
tives replaced with finite-difference expressions, the dynamic model can be mapped
into computational grids as follows.

p(t,s) = dvvx,y,z

⎛
⎝ z∑

i=x

5∑
j=1

cij · (pt,si− j, + pt,si+ j) + c · pt,s

⎞
⎠ + pt,s − 2 · pt−1,s, (24)

where pt,si− j refers to pt,x− j,y,z when i = x. cij , and cij and c are constant coefficients
tuned in the proposed approach.
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Fig. 8. Model accuracy of tuned static and dynamic designs for (a) option pricing and (b) RTM.

6.2. Model Accuracy

Model accuracy refers to the ratio between estimated resource consumption and mea-
sured post-synthesis resource consumption. Models for static and dynamic designs
support design space exploration at algorithm level, and thus the model accuracy de-
termines whether the proposed tuning process can accurately captures optimal designs
without synthesising each possible design.

For a PDE with specific parameters and step size, an algorithm instance with con-
stant coefficients can be constructed, labelled as the starting point for the tuning
process. To test generality of the tuning process, for both option pricing and RTM, one
hundred starting points are randomly generated, bounded by the stability requirement
in Equation (5). The initial points are fed into the self-aware tuning process. Design
space for each point is constructed, and explored by design models for static and dy-
namic designs. Design space for one of the starting point is shown in Figure 4. The
tuning process evaluates resource consumption of finite-difference algorithm instances
in the design space, and picks the design with minimal resource consumption to feed
into following code generation and synthesis tools. Estimated and synthesised results
are shown in Figure 8. In the worst case, the model accuracy for dynamic designs of the
option pricing application is around 80%, as there are only three constant operators
involved in the designs (as shown in Equation (22)). The small resource consump-
tion amplifies the error ratios. In the other three cases, the model accuracy is around
90%. More importantly, despite of the difference between estimated values and actual
resource consumption, the design models capture general trend and variations of im-
plemented designs, as shown in Figure 8. With the high-level design models, design
space in finite-difference algorithms can be explored promptly and properly.

6.3. Resource Consumption

Synthesised results are shown in Figure 9, the resource consumption of tuned designs
is expressed with the number of LUTs consumed. The improvement ratio indicates the
ratio between reduction in resource consumption and original resource consumption.
The original static designs refer to the fixed-point designs with full input bit-width.
3042 LUTs are consumed for the option pricing application, and 15964 LUTs are con-
sumed for the RTM. The original dynamic designs refer to the designs before tunings,
that is, constant coefficients calculated with the random step size. Therefore, for the 100
test cases, every original dynamic design has different resource consumption. As shown
in Figure 9, for both static and dynamic designs, the improvement ratio is around 50%.
By introducing self-awareness into finite-difference algorithms, the resource consump-
tion of both static and dynamic designs is halved.
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Fig. 9. Resource reduction of tuned static and dynamic designs for (a) option pricing and (b) RTM.

In previous work to optimise finite-difference applications, [Becker et al. 2011]
applied fixed-point representation for constant operators, and reduced the resource
consumption for option pricing from 13759 LUTs for implementations using double-
precision operators to 2977 LUTs. The constant coefficients were tuned in Jin et al.
[2012], guided by moment-matching algorithms and synthesised results, the resource
consumption was further reduced to 710 LUTs. In our work, by introducing self-
awareness into the algorithm tuning process, the resource consumption for option
pricing is reduced to 501 LUTs. More importantly, the proposed method enables evalu-
ation of design space without going throughput the synthesis process, which makes it
applicable to large-scale designs such as RTM.

6.4. Runtime Performance

Runtime performance of the optimised designs is evaluated in two scenarios: through-
put for a single implementation and runtime evaluation when finite-difference algo-
rithms are adapted. For a single implementation, runtime performance of original de-
signs is measured from target MAX3424A card. In current implementations, 1000 time
steps are propagated for each application, and dimension size is set to be 1024. runtime
performance of optimised static designs and dynamic designs is simulated based on
results measured from the target card, as generated VHDL codes are not computable
with the compiler of available system. Both execution time and reconfiguration over-
head, that is, the time to reconfigure dynamic designs, are included in the runtime
performance. Compilation time of static and dynamic designs, on the other hand, does
not contribute to the runtime performance, since the tuning and compilation processes
are finished before execution. Meanwhile, the increased compilation time for dynamic
designs can be reduced by synthesising various algorithm instances in parallel. As an
example, the synthesis process for a single RTM kernel takes 21 s to finish, and synthe-
sising 100 dynamic instances in parallel on a 12-core Dell PowerEdge R610 machine
takes less than 5 minutes. Moreover, if configured as partially reconfigurable modules,
new algorithm instances will be placed and routed in context with existing static in-
frastructures, which further reduces the overall compilation time. Since I/O interfaces
of data-paths for original, static and dynamic designs are identical to each other, re-
sources consumed by communication infrastructures RI (PCI-E drivers and memory
controllers) are assumed to be the same. RI for option pricing is 29926 LUTs, and RI
for RTM is 34665 LUTs. For the option pricing application, one piece of data is read
from and written into off-chip memory per cycle per data-path (dw = 1). For the RTM,
the number increases to 4. Off-chip DDR2 memory banks are operating at 400 MHz
with 48 bytes memory bus width, which accommodates 48 data-paths for option pricing
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Table I. FPGA Implementation Results

Option Pricing Reverse-Time

original static dynamic original static dynamic
fknl (MHz) 100 100 100 100 100 100
RI (LUTs) 29926 29926 29926 34665 34655 34655
RA (LUTs) 238080 238080 238080 238080 238080 238080
Rknl (LUTs) 2225 2098 501 14255 10926 2702
pd 48 48 48 12 12 12
sd 1 2 8 1 1 6
output data per second (109) 4.8 9.6 38.4 1.13 1.13 2.97

Table II. FPGA Implementation Results

resource Static OP Adaptive OP Dynamic OP Static RTM Adaptive RTM Dynamic RTM

LUT (averaged) 1701 2098 501 10063 10926 2702
LUT (upper) 3042 2335 618 13964 11515 3375
Tr (ms) 0 0 821 0 0 835

and 12 data-paths for RTM. The serial parallelism sd is determined by available re-
sources and data-path resource consumption. sd of optimised dynamic option pricing is
increased to 8, and sd of optimised dynamic RTM is increased to 6. Boundary conditions
of finite-difference algorithms bring overhead when multiple time steps are finished
in one memory pass, as indicated in Equation 18. As the option pricing only involves
one dimension, no duplication overhead is introduced. The optimised dynamic option
pricing is expected to generate 38.4 G results per second, outperforming the original
and static designs by 8 and 4 times, respectively. The number of results per second for
RTM, on the other hand, is reduced by Od to 2.97 G, which is 2.62 times faster than the
original design and the static design. The number of results per second for RTM is lower
than that of option pricing as RTM has 10 times more arithmetic operations than option
pricing. The performance for original option pricing and RTM is respectively 4.6 G and
1.12 G, which indicates the performance model accuracy is more than 95% accurate.

In previous work to accelerate RTM, one Blue Gene/Q processes 54 M results per
second, [Lu and Magerlein 2013], an optimised CUDA design running on an NVIDIA
Tesla C2070 GPU achieves 1.07 G [Phillips and Fatica 2010; Niu et al. 2013a], and
the highest performance number for RTM is 1.62 G results per second on a Virtex-6
SX475T FPGA [Niu et al. 2013a]. Without sacrificing any computational precision, the
RTM design tuned with the proposed approach is expected to achieve 2.97 G, which is
1.828 times faster than the best published results. It is worth mentioning that Rknl of
implemented original designs are placed and routed results, while the Rknl of optimised
static and dynamic designs is measured from post-synthesis results, which means the
actual resource consumption of optimised designs can be further reduced.

When multiple algorithm instances are mapped into hardware, optimised dynamic
designs need to be reconfigured to support algorithm variations. The one hundred test
cases are used to test the performance of tuned designs in such scenario. To accommo-
date all mapped algorithm instances, maximum resource consumption for each arith-
metic operator is used for static designs, and the upper resource consumption is used
for dynamic designs. As shown in Table II, maximum resource consumption for static
option pricing and static RTM respectively reaches 3042 LUTs and 13964 LUTs. This
is because the tuned algorithm instances only focuses on resource consumption of each
test case, thus trapped in local minimum, as discussed at the end of Section 4.2. The
adaptive design model is introduced for static designs to bring awareness of global min-
imum. As presented in Table II, compared with static designs without the adaptivity,
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Fig. 10. (a) Execution time of static and dynamic designs, (b) runtime evaluation results.

while averaged resource consumption of adaptive static designs is slightly increased,
its maximum resource consumption in the multi-implementation scenario is decreased
by up to 30%. The reconfiguration unit in current platform is 1 clock region, the mea-
sured partial reconfiguration time for each clock region is 46 ms. When 80% resources
are used, the reconfiguration time increases to around 800 ms, as shown in Table II.

When data size increases, as shown in Figure 10(a), execution time of static designs
increases linearly. As sd is limited to 1 for static designs, and reconfiguration overhead
is 0. For dynamic designs, when data size is small, the execution time is dominated by
the reconfiguration overhead. When data size is large enough, 227 for one-dimension
option pricing and 512 for three-dimension RTM, dynamic designs outperform their
counterparts as the further reduced resource consumption increases ds in the designs.
The runtime evaluator Ert is shown in Figure 10(b). Based on the Ert, large speedup can
be achieved for using static designs for finite-difference applications with small data
size. Meanwhile, dynamic designs improves performance of large-scale applications by
5.9 and 2.58 times, for option pricing and RTM, respectively. The fluctuation in Ert is
due to duplication overhead Od.

7. CONCLUSION

In this article, we introduce self-awareness into tuning and evaluation of finite-
difference algorithms. It is shown that 50% reduction in resource consumption can
be achieved for both static and dynamic designs. The runtime evaluator enables dy-
namic scheduling between tuned static designs and tuned dynamic designs. Current
and future work includes extending our approach to cover other algorithms, and to
support optimisation of other properties such as power and energy consumption.
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