Engineering a Static Verification Tool for GPU Kernels

Ethel Bardsley!, Adam Betts', Nathan Chong®, Peter Collingbourne?, Pantazis
Deligiannis', Alastair F. Donaldson', Jeroen Ketema®, Daniel Liew!, Shaz Qadeer®

mperial College London, 2Google*, ®Microsoft Research

Abstract. We report on practical experiences over the last 2.5 years related to
the engineering of GPU Verity, a static verification tool for OpenCL and CUDA
GPU kernels. We have published papers on the top-level research ideas under-
pinning GPU Verify, but embedding these ideas in a tool that can be applied to
real-world examples with a reasonable degree of efficiency and automation has
required significant engineering and optimisation effort. We describe this effort
and evaluate our optimisations over a set of 564 GPU kernels, encompassing all
the major publicly available benchmark suites and one commercial benchmark
suite. Our experiments plot the progress of GPU Verify from a prototype to a fully
functional and relatively efficient analysis tool. We also report on our efforts to
encourage uptake of the tool by industry through features to reduce the rate of
false positives and provide clear error messages when verification fails. Finally,
we describe our engagement with industry to promote usage of the tool beyond
academia. Our hope is that this experience report will serve the verification com-
munity by helping to inform future tooling efforts.

1 Introduction

Graphics processing units (GPUs) are now a mainstay technology with which to accel-
erate computationally intensive applications.'The OpenCL [21] and CUDA [29] pro-
gramming models allow general-purpose computations to be offloaded to run on a vari-
ety of GPU platforms. In these programming models, a computation to run on the GPU
is described using a kernel function, a template describing the behaviour of a single
thread. Threads are organised into a set of groups, threads in the same group can syn-
chronize with each other using barriers, and each thread has a unique id which it can
use to access distinct data and follow distinct control paths from other threads.

One of the main challenges in GPU programming is avoiding data races, where
distinct threads access a common memory location, at least one of the threads writes to
the location, and there is no intervening barrier synchronization. Data races tend to arise
due to a combination of intricate data access patterns necessary to achieve high memory
performance, which can be hard to write correctly, and the desire to minimise expen-
sive barrier synchronization operations, also to maximise performance. Data races lead
to nondeterministically occurring bugs that can be hard to diagnose and fix, and since
performance is the sole motivation for GPU offloading, race-prone programming styles
are not likely to go away. Another type of bug related to data races is barrier diver-
gence, where threads reach distinct syntactic barriers (illegal in CUDA and OpenCL) or

* Peter Collingbourne was at Imperial College London when he contributed to this work.

misuse barriers in loops [21]. Barrier divergence is easy to introduce accidentally when
inserting barriers to a kernel in an attempt to eliminate data races.

In response to the GPU programming paradigm and the problem of data races (and
to a lesser extent barrier divergence) a variety of formal methods for finding, or proving
absence, of defects in GPU kernels have been proposed [23,6,22,19,24,10,25]. Over the
last 2.5 years, our contribution to this area has been GPUVerify,' an open source tool
for static verification of race- and divergence-freedom for OpenCL and CUDA kernels.

Our research papers [6,11,8] have presented the top-level ideas that underpin the
GPU Verify approach, and focus on arguing soundness of the approach with respect to
an operational semantics for a deliberately simplified core GPU kernel programming
language. Embedding these ideas in a tool that can be applied directly to the source
code of real-world examples with a reasonable degree of efficiency and automation has
required a significant optimisation effort and a number of important engineering deci-
sions. This effort has been driven and guided by a growing set of GPU kernel bench-
marks which now counts 564 examples. The experience and insights we have gained
through this engineering effort and through evaluation using a large benchmark set are
not reflected in the aforementioned research papers. In this tool paper we aim to com-
municate this experience and insight to the verification community in the hope that it
will be of general interest and may help inform future tooling efforts.

We provide an overview of GPU Verify (Sect. 2) and describe the process by which
we have managed the evolution of the tool’s front-end capabilities so that it can be
applied to a large set of benchmarks (Sect. 3). We then describe the engineering deci-
sions and optimisations we have employed to take GPUVerify from a conceptual idea
to a practical tool, presenting experimental data plotting the trajectory of GPU Verify’s
performance over the benchmark set as optimisations are applied (Sect. 4). Our aim is
for GPU Verify to be useful to industry, motivating steps for reducing the rate of false
positives reported by the tool and for presenting clear error messages when verifica-
tion fails, which we describe (Sect. 5); we also report on the steps we have made to
engage with industry as well as preliminary feedback from industrial partners on the
use of GPUVerify (Sect. 6). We conclude with a summary of lessons learned and the
identification of a key challenge for future work (Sect. 7).

Related work A number of other works on GPU kernel analysis have appeared re-
cently and can be categorized into methods for verification [23,22,19] and bug-finding
via symbolic execution [24,10,25]. Our research papers provide a detailed discussion of
how these works relate to GPU Verify, including some experimental comparisons [6,8].
We do not compare GPU Verify with related tools here: the aim of this work is not to
promote GPU Verify as “the colonel of kernel verification tools,” but rather to communi-
cate the insights into verification tool development that have emerged from the project.

2 Overview of the GPU Verify Technique

The key idea behind GPU Verify is that a massively parallel GPU kernel can be proven
free from data races and barrier divergence by deriving a sequential program from a ker-

! http://multicore.doc.ic.ac.uk/tools/GPU Verify

CUDA/OpenCL kernel Verified Error

| Sequential r

Kernel | program ~ 'Houqmi Efo'ogi('e
Clang/LLVM > transformation . invariant » verification
- Candfdate refutation engine
invariants

Fig. 1. The GPU Verify architecture, which draws on the Clang/LLVM and Boogie frameworks

nel and verifying that this program is free from assertion failures. This avoids reason-
ing about thread interleavings and allows existing verification techniques for sequential
programs to be reused. If verification of the sequential program fails, the proof failure
may shed light on a defect in the original kernel, if one exists. Alternatively, the failure
may be a false positive arising due to the abstractions employed while constructing the
sequential program, or due to limitations of the method used to verify the sequential
program; in practice, the main limitation relates to loop invariant generation.

The method GPU Verify uses to transform a kernel into a sequential program is pre-
sented in detail in [6,11]. In brief, the transformation proceeds in three steps. In the first
step, thread id-sensitive control flow is eliminated by predicating the execution of each
statement [1]. For example, the if-statement i (tid > 0)
shown to the right will be turned into the code then s;; (tid > 0) = s1;
on the far right, where a statement of the form ~ ®!se 52/ HEid > 0) = 2
p = s1is a predicated statement which behaves as a no-op if p is false, and has the same
effect as s if p is true. Predication is semantics preserving and ensures that every thread
follows the same control path through the kernel.

In the second step, each access to a shared memory array is instrumented to allow
data races to be detected. For each thread ¢ and each array A two sets are introduced:
one to track reads from and one to track writes to A by ¢. Upon an access, the offset at
which the access occurs is recorded in the appropriate set, and occurrence of a data race
is checked by considering overlap between relevant sets.

The third and final step applies a two-thread reduction. This is an abstraction that
removes all but two arbitrary threads and then combines the two threads into a single
sequential program by applying a round-robin schedule. The effects of additional un-
modeled threads on the shared state is over-approximated using abstraction. That the
reduction is sound is explained in detail in [6,11], and hinges on the observation that
if barriers are the only mechanism for synchronization then a race-free kernel behaves
deterministically when applied to a given input; thus, as long as data races are detected,
analysis can focus on the single round-robin schedule. The method is incomplete due
to the use of shared state abstraction. The two-thread reduction has been used in other
works on GPU kernel analysis [23], and the idea of reducing verification complex-
ity through pairwise reasoning is well-known and has been employed, for example, in
model checking of cache coherence protocols [9,26,35].

Architecture The architecture of GPU Verify is depicted in Fig. 1, and leverages the
mature and widely used Clang/LLVM? and Boogie [4] tool chains. Clang/LLVM is

2 http://llvm.org/

used to parse CUDA and OpenCL kernels and lower them into LLVM intermediate
representation (IR). This removes all complex syntactic features (including C++ tem-
plates), yielding a simple representation of a kernel. The kernel transformation process
first invokes Bugle, our custom-built LLVM IR-to-Boogie translator, to translate the ob-
tained LLVM 1R into a Boogie program, giving a Boogie representation of the kernel.
Predication, race instrumentation and two-thread reduction are then applied, as outlined
above, to yield the sequential Boogie program to be verified. Kernel transformation also
speculates candidate loop invariants based on a number of custom-designed templates,
which attempt to capture data access idioms we observed in many kernels.

After kernel transformation, GPU Verify uses the Houdini algorithm [16] (imple-
mented as part of the Boogie framework) to compute the largest conjunctive invariant
over the set of speculated loop invariants, discarding any candidate invariants that can-
not be proven.®> The sequential program and synthesised invariant are then passed to
the Boogie verification engine for the actual verification. Boogie in turn invokes an
SMT solver: the Z3 solver is the default [28], and we have added support for the CVC4
solver [5], as discussed further in Sect. 4. The result of this stage is either successful
verification of the sequential program, which implies race- and divergence-freedom of
the original kernel, or an error indicating that the original kernel may exhibit a defect.

3 Applying GPU Verify to a Large Set of Benchmarks

We have applied GPU Verify to 564 kernels gathered from nine sources:

— AMD Accelerated Parallel Processing SDK v2.6 [2] (78 OpenCL kernels)
NVIDIA GPU Computing SDK v5.0 [30] (166 CUDA kernels); we also include 8
CUDA kernels from a previous version of the SDK (v2.0)

— Microsoft C++ AMP Sample Projects [27] (20 kernels, hand translated to CUDA)
— The gpgpu-sim benchmarks [3] (33 CUDA kernels)

— The Parboil benchmarks v2.5 [34] (25 OpenCL kernels)

— The Rodinia benchmark suite v2.4 [7] (36 OpenCL kernels)

— The SHOC benchmark suite [12] (87 OpenCL kernels)

— The PolyBench/GPU benchmark suite [17] (49 OpenCL kernels)

— Rightware Basemark CL v1.1 [33] (62 OpenCL kernels)

Each suite is publicly available except for Basemark CL which was provided to us
under an academic license. This collection covers all the publicly available GPU bench-
mark suites that we are aware of. The kernel counts above do not include 41 kernels that
we manually removed from our study: (i) 16 kernels are trivially race- and divergence-
free as they are run by a single thread, (ii) 8 kernels use features that are currently
unsupported by GPU Verify, such as CUDA surfaces, and (iii) 17 kernels require refine-
ments of the GPU Verify verification method that cannot be applied automatically [8].

Our default assumption is that these benchmarks are free from defects, thus our
aim is verification. However, in the process of applying GPU Verify we have identified,
reported and fixed several data race bugs. At the time of writing, running with full

3 That we obtain the largest conjunction is a property of the Houdini algorithm [16].

optimisations on our experimental platform (described in Sect. 4), and with a timeout
of 10 minutes per benchmark, GPU Verify can verify 422 kernels and reports possible
defects for 115. We know that some of these failures are (and expect most to be) false
positives that demand improved invariant inference, but some may correspond to further
bugs that we have not yet identified. The timeout is reached in 27 cases.

We now explain how we have managed the evolution of GPU Verify’s front-end ca-
pabilities from a simple prototype applied to hand-crafted examples to a tool with wide
applicability to GPU kernel benchmarks. In Sect. 4 we discuss engineering decisions
related to the performance of verification.

Incremental front-end support The starting point for GPU Verify was the idea of
using sequential program verification technology to analyse GPU kernels, but it took
several iterations of ideas to arrive at the method described in Sect. 2. To allow us to
experiment with example kernels while our ideas were in flux we first devised a manual
process for translating GPU kernels into Boogie. Starting with Boogie mitigated the
risk of investing in a CUDA or OpenCL front-end and subsequently discovering that
our ideas would not be practical. Using our Boogie-based GPU kernel language we
implemented a prototype of the kernel transformation step from Fig. 1 and manually
encoded a number of kernels into Boogie to evaluate the prototype. After encoding
around 20 examples it became clear that our technique had promise, but that we would
need to invest in a front-end for OpenCL and/or CUDA to study a larger set of examples.

We first designed a translator that mapped OpenCL and CUDA kernels (subject
to various restrictions) into our Boogie kernel language. This translator used Clang to
parse kernels, and performed translation at the level of the Clang abstract syntax tree
(AST). The structured nature of the Clang AST allowed a relatively simple transfor-
mation into structured Boogie. This was essential as we did not know how to apply
predication (a key part of our method, see Sect. 2) to unstructured programs. We were
able to process a fairly large set of benchmarks using this front-end, facilitating our first
publication on GPU Verify [6] which presents an evaluation using 163 kernels. How-
ever, the “structured” limitation eliminated kernels exhibiting unstructured control-flow
(arising e.g. from switch statements and short-circuit evaluation of Boolean operators).
Working at the Clang AST level also meant that we had to directly deal with syn-
tactic features ranging from the difference between while and for loops (easy but
annoying), through details of struct accesses (medium difficulty), to handling of C++
templates arising in CUDA code (fiendishly difficult, and not attempted).

We realised that to apply the tool very widely it would be beneficial to work at the
level of LLVM intermediate representation (IR), by which point complex syntactic fea-
tures have been desugared. Because LLVM IR is unstructured, we focused on solving
the problem of applying predication to unstructured control-flow-graphs [11] and im-
plemented Bugle, our custom LLVM-to-Boogie translator (see Sect. 2), which produces
unstructured Boogie code to which the new predication method can be applied. We con-
sidered leveraging an existing LLVM-to-Boogie translator, SMACK [31], but opted to
build a custom translator that could take direct advantage of the relatively simple nature
of the GPU programming model.

Environment modeling for OpenCL and CUDA Significant further engineering ef-
fort was required to model built-in functions provided by OpenCL and CUDA. For

OpenCL and CUDA, respectively, this included 164 and 231 built-in math functions
and 136 and 30 atomic operations. For OpenCL we benefited from 1ibclc,* an open
source OpenCL library implementation. In addition, we have equipped GPU Verify with
support for OpenCL image types, CUDA textures and an abstraction of a widely used
CUDA random number generation library. Our environment modeling is not complete
(e.g. we do not yet support CUDA surfaces) and it is a moving target as OpenCL and
CUDA continue to evolve. Nevertheless, our modeling effort so far allows GPU Verify
to process many practical examples.

4 Engineering Issues for Efficient Verification

Our first implementation of GPU Verify worked for small examples, but did not perform
well on more complex kernels involving multiple loops and many shared memory ac-
cesses. We now describe the steps we have taken to improve verification performance.
One step is adding support for an additional SMT solver, CVC4, which outperforms
73 on many of our benchmarks. The remaining steps all relate ultimately to either re-
ducing the necessity for complex loop invariants, or optimising GPU Verify to produce
formulas that can be efficiently processed by SMT solvers.

Experimental setup Throughout this section we report experimental results over the
564 kernels in our benchmark collection (see Sect. 3). All experiments were conducted
on a compute cluster using nodes with Intel Xeon EP-2620 cores at 2GHz with 16GB
RAM running RedHat Linux 6.3, using Z3 v4.3.1, CVC4 vl .4-prerelease from 29-01-
2014 and Clang/LLVM v3.4. Times reported are averages over three runs.

We use baseline to refer to GPUVerify equipped with the efficient memory model
and with uniformity analyses, described below, but without any of the additional opti-
misations we go on to discuss. We refer to the 492 kernels for which verification com-
pletes (in 391 with “success”, in 101 with “possible defect”) for baseline and all more
highly optimised configurations as the responsive set, and report speedup results with
respect to this set. We do not further discuss 12 kernels for which GPU Verify reached
the timeout with every optimisation configuration. In 60 cases, GPU Verify reached the
timeout for some optimisation configurations but not others. We do not include these
cases when discussing speedups afforded by optimisations.

Our tool chain, non-commercial benchmarks and experimental data (in the form of
interactive graphs) are available online.

Modeling memory The C language rules for pointer casting apply to CUDA and
OpenCL, meaning that it is legitimate to cast an expression e of type Tx, where T is
some type, to an expression of type charx, after which offsets from e can be addressed
with byte-level granularity. An example of casting in practical GPU code appears in a
histogram kernel shipped with the CUDA SDK. The kernel works on an array of char
data and starts by initialising the array to be uniformly zero. During initialisation the ar-
ray is cast from charx to intx to allow zero-initialisation to be performed word-by-word,
which is more efficient than working byte-by-byte.

* http://libclc.llvm.org/
> http://multicore.doc.ic.ac.uk/tools/GPU Verify/CAV2014

For GPUVerify to work “out-of-the-box” we must handle this kind of pointer usage
even though it is uncommon. We initially let our Bugle front-end model memory at
byte-level granularity. To illustrate this, consider an array A with elements of type short,
and a write instruction A[i] = z. In the Boogie code generated by Bugle with byte-level
memory modeling, A is declared as a map from 32-bit addresses to bytes, and the single
write translated into two byte-level writes:

var A : [bv32]bv8; // Map from addresses to bytes
A[i%2+40] := x[8:0]; // The write to A is modeled by two byte-level writes.
Alix2+1] := x[16:8]; // We use %, + and integer literals for brevity.

This representation is problematic, especially for data types with large widths such
as double: it leads to many loads and stores that need to be instrumented when perform-
ing race analysis and complicates the loop invariants necessary to prove race-freedom.
Both issues place significant demands on the underlying SMT solver. In practice we
found that verification with this simple memory model was unacceptably slow.

To overcome this problem we have developed a unification algorithm that conser-
vatively determines whether an array A with element type T may ever be accessed at a
granularity that is not a multiple of sizeof (T). If such an access may be possible, A is
modeled with byte-level granularity as described above. Otherwise A is modeled with
“type-level” granularity as a map from addresses to bitvectors of size 8 x sizeof (T):
accessing an element of A leads to a single read or write in the generated Boogie code.

With this analysis, byte-level modeling is avoided in all but 40 of our 564 kernels
and in 39 of these cases at least one array was still modeled with type-level granularity.
We evaluated the impact of byte- vs. type-level modeling using the 365 kernels in our
collection for which baseline GPU Verify responds within 60 seconds. Turning off the
memory analysis described above, forcing byte-level memory modeling everywhere,
we find that 31 kernels reach the 10 minute timeout and 12 kernels flip from verifying
to failing (due to more complex invariants that can be necessary when reasoning at the
byte level). Overall, analysis took 6.6x longer, but this is not a fully fair comparison
because (a) the 31 kernels that timeout might in practice take much longer to verify,
and (b) comparing times for a kernel where the verification result differs has limited
meaning. Nevertheless, the slow-down associated with byte-level modeling indicates
that our memory analysis is necessary in making GPUVerify practically useful. We
plan to re-run this evaluation for the full responsive set using a larger timeout, but this
will require a lot of machine time.

Our experience supports existing evidence that, in the context of verification, mod-
eling memory at the lowest common denominator level of bytes does not scale [32].

Uniformity analysis The kernel transformation performed by GPU Verify involves
predicating a kernel and applying the two-thread reduction (see Sect. 2). Predication
is essential for handling fragments of a kernel where threads might take different con-
trol flow paths, and because distinct threads may operate on distinct data the two-thread
reduction must in general introduce a pair of variables for each private variable appear-
ing in a kernel, one copy for each thread being modeled.

We have observed that in practical kernels, some or all control flow is often uniform
across threads: the guards of conditional and loop statements do not depend (directly
or indirectly) on thread ids. In fact, to achieve high performance when writing code for

mainstream GPUs it is important to minimise thread divergence, and have threads follow
the same control flow path whenever possible [18]. Relatedly, many private variables
are used in an id-insensitive manner; for example, the counter for a loop whose trip
count is not id-sensitive will usually range over values independent of the id of the
executing thread. In such cases it is often necessary to write loop invariants to recover
uniformity between the two threads under consideration, by asserting equality between
predicates guarding execution and between id-insensitive private variables.

To avoid the overhead associated with generating such invariants, and unnecessary
duplication of private variables guaranteed to be uniform, we have designed and imple-
mented a uniformity analysis. This is a taint analysis working at the control-flow graph
level that uses the program dependence graph [14] to determine which variables and
basic blocks are possibly non-uniform because they are (transitively) control- or data-
dependent on the thread ids. Predication need only be applied to possibly non-uniform
blocks, and only possibly non-uniform private variables need to be duplicated when the
two-thread reduction is applied. This reduces the burden of loop invariant generation
and leading to smaller SMT formulas due to the reduction in private variables.

As in the byte-level modeling experiment described above, we evaluated the im-
pact of uniformity analysis using the 365 kernels in the responsive set for which base-
line GPU Verify responds within 60 seconds. Turning off uniformity analysis, 6 kernels
reach the 10 minute timeout and 33 flip from verifying to failing; the latter is due to
the lack of loop invariants required to recover uniformity when the analysis is disabled.
Overall, analysis took 1.9 longer using uniformity analysis, but this is not a fully fair
comparison for the same reasons as in the byte-level modeling experiment.

A similar analysis has been proposed for optimising OpenCL kernels for CPU
(rather than GPU) performance [20]. The analyses were developed independently.

Support for CVC4 Boogie uses the Z3 solver [28] by default. We added support to
Boogie for CVC4 [5], which also provides the theories used by GPU Verify (bitvectors,
arrays, and uninterpreted functions). Our main motivation here was CVC4’s permissive
license: shipping GPU Verify with CVC4 in place of Z3 would make it easier for indus-
trial users to try the tool (see Sect. 6). Two by-products of this effort are that we found
and reported several bugs in CVC4 which were promptly fixed, and that our CVC4 sup-
port has been committed to Boogie, making CVC4 available to other Boogie users. It is
also useful for us to have two solvers available for evaluation, to help determine when
poor performance on a kernel is due to a solver quirk vs. a fundamental issue.

Fig. 2 presents scatter plots comparing the performance of GPU Verify using CVC4
vs. Z3 with (a) baseline (no optimisations) and (b) with all optimisations described be-
low enabled over the responsive benchmarks. A point (x, y) corresponds to a kernel for
which end-to-end verification took x and y seconds, using Z3 and CVC4 respectively
as the back-end solver. Points lying above/below the diagonal correspond to kernels
where Z3 performed better/worse than CVC4. We further distinguish between kernels
for which verification succeeds (+) and fails (o). The axes use a log scale.

The figure suggests that CVC4 tends to outperform Z3 on our benchmarks, but
that there are plenty of cases where Z3 has an edge over CVC4. The total time for
analysis using Z3 and CVC4 with all optimisations was 5774 seconds and 3448 seconds
respectively, indicating that CVC4 was 1.7 X faster than Z3 over the responsive set.

TO - TO

< +0 <t °
&) o @)
> 4 _
© : © + 3
2 100 2 100
]] ° 4
= = 0 00 °
% 3 Dot
<) bS] +0+ +i o go-ﬁ't#_
3 2 ot
< Z +. 0 ° & o‘c‘,’g o
gn g o Hegito °° " o
= = T
2 2
5 3 o fﬁ*ﬁﬁ +
& g Ty +
5]) 5] :
. o
SR > 18
1 10 100 TO 1 10 100 TO
Verification time (seconds) using Z3 Verification time (seconds) using Z3
(a) Baseline (b) All optimisations

Fig. 2. Scatter plots comparing the performance of Z3 and CVC4 over the responsive benchmarks.
A symbol +, respectively o, represents a kernel for which verification succeeds, respectively fails.

Going beyond this set and with optimisations enabled, verification for 15 kernels timed
out using Z3 but completed using CVC4, and the converse was true for 8 kernels.

Optimising for verification performance We now describe four methods for optimis-
ing the Boogie programs generated by GPU Verify so that they lead to SMT formulas
that are easier to decide. The optimisations preserve the result of verification (precisely
the same assertions can fail).> Each optimisation was motivated by one or more chal-
lenging examples, for which the optimisation led to an encouraging speedup. We eval-
uate the optimisations experimentally across our benchmark suite using Z3 and CVC4,
and comment on the performance that could be gained through portfolio verification.

Eliminating redundant read instrumentation The first optimisation is extremely simple:
when we can deduce statically that an array is never written to, we do not perform race
analysis for the array. This is a common situation, as GPU kernels often read data from
one or more input arrays, and write results to separate output arrays. The optimisation
may seem trivial, but we mention it because we only considered it after two years’ work
on GPU Verify. Our efforts and attention were focused on more sophisticated challenges,
and this “low hanging fruit” escaped our attention. Our results below show that the
optimisation is effective overall, serving as a reminder that, when optimising a program
analysis method, it is worth exploring easy optimisation avenues first.

Optimising within barrier intervals The idea of redundant read instrumentation led us
to devise a refinement of this optimisation. Define a barrier interval to be a call-free,
single-entry single-exit region of a control flow graph which starts and ends with a
barrier [24]. If shared array A is never written to in a barrier interval Z then there is no
need to check for races on A during Z: in the absence of writes, there is no possibility

® An exception to this is that in some cases the “redundant reads” optimisation actually aids in
verification, because shared state abstraction is unnecessary for read-only arrays.

for races between instructions in Z, and the barriers guarding entry to and exit from 7
eliminate the possibility of races between reads inside and writes outside Z.’

Private array removal Vector data types and operations are widely used in GPU code.
In LLVM IR, thread-private vector data is represented as residing in memory, rather
than in virtual registers. Our Bugle front-end translates each private memory region in
LLVM IR into a separate Boogie map, and vector element access are represented on
the Boogie level via indexing operations into these maps. Because a vector has a fixed
number of elements (e.g. x, y, z and w for a 4D vector), the map indexing expressions
are always taken from a small set of literal values. We implemented a pass in GPU Verify
which identifies when a map is indexed invariantly using a set of & distinct literals, and
replaces the map, and associated indexing expressions, with & distinct scalar variables,
each representing an element of the original map. This transformation reduces the extent
to which reasoning in the theory of arrays is required; our hypothesis was that this would
improve solver performance.

Watchdog race checking Recall from Sect. 2 that data race detection is performed by
introducing sets containing the offsets of arrays accesses. In practice, such sets can be
modeled via their characteristic functions using maps. However, this requires quantifiers
to express invariants relating to the contents of sets, such as emptiness.

To avoid quantifiers and the associated theorem proving burden, we originally de-
vised a non-deterministic representation of sets [6], based on [13]. Let s and ¢ denote the
arbitrary threads considered by the two-thread reduction. For an array A, we introduce
variables allowing at most one read from and at most one write to A to be tracked. We
then instrument each read operation issued by thread s with a nondeterministic choice
between updating the instrumentation variables to record the offset that was read from,
or leaving the instrumentation variables untouched. Write operations are instrumented
similarly. On kernel entry, and at each barrier, the instrumentation variables are set to
indicate that no accesses are tracked. Races between s and ¢ are detected by checking
whether offsets accessed by thread ¢ conflict with the offsets tracked by the instrumenta-
tion variables. The nondeterministic encoding is sound for race detection because prov-
ing correctness of the sequential program generated by GPU Verify involves showing
that a conflict between threads on an array is impossible for all resolutions of nondeter-
minism [6]. Treating the two threads under consideration asymmetrically is also sound
because verification involves considering all possible pairs of distinct threads, so for
any pair of distinct threads s and ¢, analysis will be performed with respect to the pair
(s,t) as well as the pair (¢, s).

The above encoding avoids the need for reasoning about quantifiers, but because
each array access leads to a nondeterministic choice, the number of paths through the
instrumented program grows exponentially with the number of accesses. In our experi-
ence this exponential blow-up is not a major problem in practice: the SMT solvers we
have experimented with cope well with reasonably large kernels. However, for kernels
that exhibit hundreds of syntactically distinct reads and writes, verification becomes
prohibitively slow. This led us to devise an alternative race detection method.

7 For brevity, this description of the optimisation focusses on the situation where all threads
executing a kernel are in a single work group; GPU Verify is sensitive to the multi-group case.

10

Solver Configuration Total Time (secs) Total Speedup Per-Kernel Speedup

All Pass Fail All Pass Fail Min Max Med Avg

z3 baseline 11882 9070 2812
Ir 10464 8074 2389 1.1 1.1 12 05157 1.0 12
rr+bi 10016 7629 2387 12 12 12 0.6 185 1.0 1.3
rr+bi+pa 8206 5973 2232 14 15 13 0.6 77.1 1.1 1.8
rr+bi+pa+wd 5774 3966 1807 21 23 1.6 05869 1.1 25

cvcd baseline 6080 3616 2464
Ir 5000 3116 1884 12 12 13 0.1 44 12 13
rr+bi 5002 3094 1907 12 1.2 13 0.1 43 1.1 13
rr+bi+pa 4450 2611 1838 14 14 13 0.1166 1.1 14
rr+bi+pa+wd 3448 1921 1526 1.8 1.9 1.6 03165 1.2 1.5

Table 1. Summary of optimisation results for different solvers. Each speedup is reported with
respect to the baseline results for the relevant solver

The alternative, which we call watchdog race checking, uses a single, unconstrained
constant representing an offset with respect to which races should be checked: the
“watched offset”. Verification involves proving for every array that a data race at the
watched offset is impossible. Because the watched offset is arbitrary, this implies that
every offset of each array is race-free. For each array, two Booleans are introduced to
record whether a read from or write to the watched offset has occurred. Initially these
Booleans are false, and they are reset at each barrier. Thread s sets the “read” Boolean to
true whenever it reads from the watched offset, and similarly for the “write” Boolean.
A race between s and t is reported if thread ¢ reads from the watched offset and the
“write” Boolean is true, or if thread ¢ writes to the watched offset and either the “read”
or “write” Boolean is true. The non-deterministic choice per array access is eliminated.

In practice we have adapted the watchdog method so that at each barrier we nonde-
terministically choose whether to check for data races until the next barrier. The reason
for this is technical: it allows the Boolean variables to be set to false at barriers by sim-
ply assuming that they are false. This removes these variables from the modifies sets of
loops, simplifying invariant generation. We thus reduce blow-up from being exponen-
tial in the number of array accesses to exponential in the number of barriers, which is
typically a much smaller number.

Effect of optimisations on the benchmarks Table 1 shows the effects of our optimi-
sations over the responsive set of kernels. We show results with Z3 and CVC4 being
used for SMT solving. Recall that baseline refers to GPU Verify with type-level mem-
ory modeling and uniformity analysis but with no further optimisations. We use rr, bi,
pa and wd to refer to the redundant read, barrier interval, private array and watchdog
race checking optimisations, respectively. We consider applying these optimisations on
top of baseline in this order; this was the order in which we added the optimisations to
GPU Verify, so it illustrates the evolution of the tool. We have not yet investigated other

11

Portfolio Configuration Total Time (secs)
All Pass Fail

73 and CVC4, baseline 4875 3031 1843
73 and CV (4, all optimisations 2900 1696 1203
All solver and optimisation configurations 2825 1659 1166

Table 2. Summary of theoretical optimisation results using portfolio solving

optimisation configurations due to the machine time required for evaluation using our
set of 492 responsive kernels.

The Total Time columns show the total time for analysis, summed over all bench-
marks (All), and also restricted to benchmarks for which verification passes (Pass) and
fails (Fail). For each configuration except baseline, the Speedup columns show the
speedup of an optimisation configuration over baseline, for each solver. The Per-Kernel
Speedup columns show the minimum (Min), maximum (Max), median (Med) and mean
(Avg) speedups over baseline on a per-benchmark basis, across the responsive set.

The key message from Table 1 is that our optimisations are increasingly effective,
and effective overall, but that the overall speedups afforded by our efforts are not that
large: 2.1x with Z3 and a 1.8 x with CVC4. The maximum and minimum speedups per
benchmark show that the effects of an “optimisation” can be dramatic, both positively
and negatively: an 86.9 x speedup is observed when all optimisations are applied for one
benchmark (from 543 seconds to 6 seconds), using Z3; with CVC the worst speedup is
0.3x (a 3.3x slowdown) when all optimisations are applied, and only watchdog race
checking saves the slowdown from being as bad as 10x. The median and mean results
suggest that our optimisations have little impact on a significant number of the bench-
marks. With the exception of watchdog race checking (a change in race instrumentation
is relevant to all benchmarks) this is not surprising: many kernels do not exhibit read-
only arrays (thus rr cannot help), many do not use vectors (thus pa cannot help) and
we have already argued that the bi optimisation is rather specialised. We find it counter-
intuitive that the rr optimisation, which simplifies the Boogie program generated by
GPU Verity, has such a negative impact in the worst case when CVC4 is used as the
SMT solver. The associated kernel has a single read-only array and went from 4 sec-
onds using baseline to 49 seconds using rr. This illustrates the unpredictability of SMT
solvers, and motivates the use of multiple solvers during analysis.

The potential for portfolio verification Our combination of solvers and optimisations
opens the door for “portfolio verification”: running multiple instances of GPU Verify
completely independently using different solver and optimisation configurations, re-
porting the first analysis result reported by a configuration.

Table 2 shows the lowest total time for analysis over the responsive benchmarks
that could be expected using portfolio verification with multiple solver and optimisation
configurations. Comparing the best total time in Table 1 (3448 seconds for CVC4) with
the total time for full portfolio verification in Table 2 (2825 seconds) the best further
speedup portfolio verification could give is a modest 1.2 x overall. We see the main
potential of portfolio verification to be minimising the response time of GPU Verify.

12

S False Positives and Error Reporting

Although GPUVerify performs sound verification, we envisage the tool being use-
ful in practice for bug-finding, where failed proof attempts shed light on genuine de-
fects. Feedback from GPU programmers elicited through talks and tutorials at industry-
focused events appear to support this usage mode. With this mode in mind, we have
taken several pragmatic steps to avoid false positive bug reports and improve the qual-
ity of error messages reported by the tool.

Aliasing assumptions on kernel entry A GPU kernel operates on a number of shared
arrays, provided as pointer arguments. According to the OpenCL and CUDA documen-
tation, there is nothing to stop these pointers from aliasing one another. In practice we
have not encountered a single case of such aliasing across our set of 564 benchmarks.
To be truly sound, GPUVerify should assume that pointers could overlap arbitrarily.
This would lead to false positive race reports for practically all array accesses, render-
ing the tool unusable. To avoid this, we took the pragmatic decision to have GPU Verify
silently assume that distinct pointer parameters to a kernel refer to disjoint arrays.

While validating GPU Verify, an engineer at our industrial partner Rightware identi-
fied this source of unsoundness: “I have probably . .1 voia
uncovered a minor bug in GPUVerify ...if we have ~ aliasing(_global intx a,
a kernel like [the slightly simplified example on the blgee_aTomaetore Y
right] GPUVerify happily says it’s all right. However = al[get_global_id(0)];
the user can ... set the same memory object as an '
argument for both a and b ... [W]hich has a clear race condition”. When asked whether
this scenario is likely in practice, the engineer confirmed: “We don’t have any kernels
where it would be wise to pass the same pointer value in multiple arguments”, but
suggested that GPU Verify could emit a warning about its aliasing assumptions if the
developer has not used the C99 restrict qualifier to indicate explicitly that pointer
arguments refer to disjoint data: “I’d recommend a warning when not using restrict,
because in probably all the practical cases the kernel arguments are separate” .

In response to this advice we added a pass to GPU Verify which emits a warning if
a kernel has multiple __global pointer arguments that are not restrict-annotated.

Auto-inlining Although GPU Verify supports a modular analysis mode, automatic gen-
eration of procedure specifications is challenging, and imprecise specifications lead to
false positives. Typical GPU kernels are free from recursion and function pointers (both
are forbidden in OpenCL and only recently allowed in CUDA as part of CUDA 3.1) and
are presented in whole-program form. To avoid false positives we automatically apply
aggressive inlining to kernels that do not use recursion or function pointers, repeatedly
inlining calls until no calls remain. All non-kernel functions are then discarded, and
verification is attempted on the now monolithic kernel functions. One downside to this
pragmatic approach is that if a source file contains a function that is never invoked, but
which would exhibit a data race if it were to be invoked, GPU Verify will not analyse
the function and thus will not report a possible defect.

Verifying dynamically collected kernel instances A GPU kernel is typically designed
to work correctly only for certain thread counts and input values, and GPU Verify re-
quires preconditions specifying constraints on these parameters to avoid false positive

13

error reports. Providing these preconditions can be a barrier to using the tool: prelimi-
nary experience with engineers at Rightware and ARM suggest that even the developer
of a kernel may not be able to immediately identify suitable constraints on kernel pa-
rameters. To help overcome this we have designed a utility to accompany GPU Verify
for analysis of OpenCL kernels: a shim which intercepts calls to the OpenCL host API
used to specify thread counts and input parameters, gathering this data for all kernel
instances launched during the running of an application. GPU Verify can then be auto-
matically invoked using preconditions corresponding to each kernel instance that was
observed, eliminating false positives arising due to unrealistic parameter values.

Error reporting Our initial GPUVerify prototype reported verification failures by
printing a trace for the Boogie program generated by the tool; this information was
of limited use even to us as the tool’s developers. To allow clear error reports referring
to the original source code of a kernel we have extended Bugle so that source infor-
mation, available from LLVM IR if Clang is invoked appropriately, is embedded in the
generated Boogie code via Boogie attributes.

Meaningfully reporting data races proved more difficult than we anticipated, be-
cause a data race involves two access operations: a first access is logged, and subse-
quently a race is detected due to a conflicting second access. At the Boogie level, an
assertion corresponding to the second access fails. Source information for this access
is available from attributes attached to the assertion, but source information for the first
access is not directly available. Furthermore, the race report may stem from an abstract
trace that jumps over a loop by replacing the loop with its summary. In this case it may
be that no specific first access is responsible for the race report; instead, it may be that
GPU Verify could not find a strong enough invariant to prove race-freedom between the
loop and the second access. To overcome this reporting problem we use Boogie’s state
capture facility to ask the SMT solver to provide a valuation of all program variables
after each logging operation and at the head of each loop. This allows us to walk an
abstract counterexample trace and determine whether the possible race is due to a spe-
cific first access or instead stems from the abstraction of a loop. In the former case we
can provide a specific race report, otherwise we report all relevant array accesses in the
loop as possibly racing with the second access.

6 Engagement With Industry

We briefly summarise our efforts to make it easy for industrial users to access and learn
about GPU Verify, and discuss preliminary feedback from two industrial partners.

Industry-friendly licenses The licenses associated with the Clang/LLVM and Boogie
frameworks mean that they can be used freely in a commercial context. This is not true
of the Z3 solver. Providing support for CVC4, with a license attractive to industry, has
been vital in allowing industrial partners to try out GPU Verify.

Easy access to GPUVerify We have made GPU Verify available as a web service
through Microsoft’s rise4fun site,® allowing interested users to try the tool with
no installation overhead.

8 http://rise4fun.com/GPU Verify-OpenCL and http:/rise4fun.com/GPU Verify-CUDA

14

Tutorial videos To give potential users in industry a practical overview of GPU Verify
we have recorded a series of tutorial videos, available on YouTube. We have also given
in-person tutorials at industry-focussed conferences and OpenCL vendor sites.

Preliminary industrial feedback Feedback from our industrial contacts at Rightware
and ARM on GPUVerify has been encouraging. Rightware have used GPU Verify to
verify race-freedom across their Basemark CL suite, discovering one defect in the pro-
cess. We are collaborating with engineers at ARM on adapting GPU Verify to provide
tailored analysis support for OpenCL kernels targeting ARM’s Mali GPU series.

7 Lessons Learned and Future Problems

We summarise the main take-aways from our experience building GPU Verify, and pose
what in our view is the main challenge associated with future work in this area.

Lessons learned We hope the following may be informative for future projects.

Target a tractable problem GPU Verify’s goals are modest: attempt to verify race- and
divergence-freedom (not full functional correctness) for GPU kernels (not arbitrary C
programs). With this tight scope we have been able to exploit the relative simplicity of
GPU kernels to achieve a relatively high degree of automation and efficiency.

Re-use infrastructure We cannot overstate how much we have gained by exploiting
Clang/LLVM, Boogie, Z3 and CVC4. When considering infrastructure re-use, it is
worth paying attention to licensing issues if the ultimate goal is industrial uptake.

Evolve front-end capabilities All software verification tools have to face the “front-end”
problem. Restricting to a toy language simplifies front-end development but dooms a
tool to only academic use; working with a full-fledged compiler infrastructure can blur
implementation difficulty with the essence of a new idea. We advocate a staged ap-
proach to this problem as outlined in Sect. 3, which is aided by intermediate verification
languages such as Boogie and Why3 [15].

Beware of outliers We optimised GPU Verify in response to kernels for which perfor-
mance was particularly bad. We achieved massive speedups for some outliers, but were
brought down to earth by the modest overall speedups and new negative outliers re-
sulting from our optimisations (see Table 1). Evaluating the general effectiveness of
verification optimisations requires a large set of benchmarks.

Challenge: flexible invariant generation The main weakness of GPU Verify is its in-
variant generation capabilities. We use Houdini for invariant generation in GPU Verify
because, though somewhat brute force, it is flexible and applicable to arbitrary pro-
grams. At present we are unable to exploit advanced invariant generation techniques
because they restrict the form of programs to which they can be applied. We offer our
large set of publicly available benchmarks as a challenge for invariant generation re-
searchers interested in lifting restrictions on program form.

15

References

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.
22.

23.

24.

25.

. Allen, J., Kennedy, K., Porterfield, C., Warren, J.: Conversion of control dependence to data

dependence. In: POPL. pp. 177-189 (1983)

. AMD: AMD Accelerated Parallel Processing (APP) SDK, http://developer.amd.com/sdks/

amdappsdk

. Bakhoda, A., Yuan, G.L., Fung, W.W., Wong, H., Aamodt, T.M.: Analyzing CUDA work-

loads using a detailed gpu simulator. In: ISPASS. pp. 163-174 (2009)

. Barnett, M., et al.: Boogie: A modular reusable verifier for object-oriented programs. In:

FMCO. pp. 364-387 (2005)

. Barrett, C., et al.: CVC4. In: CAV. pp. 171-177 (2011)
. Betts, A., Chong, N., Donaldson, A.F., Qadeer, S., Thomson, P.: GPU Verify: a verifier for

GPU kernels. In: OOPSLA. pp. 113-132 (2012)

. Che, S., etal.: Rodinia: A benchmark suite for heterogeneous computing. In: Workload Char-

acterization. pp. 44-54 (2009)

. Chong, N., Donaldson, A.F,, Kelly, P., Ketema, J., Qadeer, S.: Barrier invariants: a shared

state abstraction for the analysis of data-dependent GPU kernels. In: OOPSLA (2013)

. Chou, C.T., Mannava, P.K., Park, S.: A simple method for parameterized verification of cache

coherence protocols. In: FMCAD. pp. 382-398 (2004)

Collingbourne, P., Cadar, C., Kelly, P.H.J.: Symbolic crosschecking of data-parallel floating-
point code. IEEE Trans. Software Eng. (2014), to appear

Collingbourne, P., Donaldson, A.F., Ketema, J., Qadeer, S.: Interleaving and lock-step se-
mantics for analysis and verification of GPU kernels. In: ESOP. pp. 270-289 (2013)
Danalis, A., et al.: The scalable heterogeneous computing (SHOC) benchmark suite. In:
GPGPU 2010. pp. 63-74 (2010)

Donaldson, A.F., Kroening, D., Riimmer, P.: Automatic analysis of DMA races using model
checking and k-induction. Formal Methods in System Design 39(1), 83—-113 (2011)
Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and its use in
optimization. ACM Trans. Program. Lang. Syst. 9(3), 319-349 (1987)

Filliatre, J.C., Paskevich, A.: Why3 — where programs meet provers. In: ESOP. pp. 125-128
(2013)

Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In: FME. pp.
500-517 (2001)

Grauer-Gray, S., Xu, L., Searles, R., Ayalasomayajula, S., Cavazos, J.: Auto-tuning a high-
level language targeted to GPU codes. In: InPar (2012)

Harris, M., Buck, I.: GPU flow-control idioms. In: GPU Gems 2. Addison-Wesley (2005)
Huisman, M., Mihel¢i¢, M.: Specification and verification of GPGPU programs using
permission-based separation logic. In: BYTECODE (2013)

Karrenberg, R., Hack, S.: Improving performance of OpenCL on CPUs. In: CC. pp. 1-20
(2012)

Khronos OpenCL Working Group: The OpenCL specification, version 1.2 (2012)

Leung, A., Gupta, M., Agarwal, Y., et al.: Verifying GPU kernels by test amplification. In:
PLDLI. pp. 383-394 (2012)

Li, G., Gopalakrishnan, G.: Scalable SMT-based verification of GPU kernel functions. In:
FSE. pp. 187-196 (2010)

Li, G., Li, P, Sawaya, G., Gopalakrishnan, G., Ghosh, L., Rajan, S.P.: GKLEE: Concolic
verification and test generation for GPUs. In: PPoPP. pp. 215-224 (2012)

Li, P, Li, G., Gopalakrishnan, G.: Parametric flows: Automated behavior equivalencing for
symbolic analysis of races in CUDA programs. In: SC. pp. 29:1-29:10 (2012)

16

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

McMillan, K.: Verification of infinite state systems by compositional model checking. In:
CHARME. pp. 219-234 (1999)

Microsoft Corporation: C++ AMP sample projects for download (MSDN blog),
http://blogs.msdn.com/b/nativeconcurrency/archive/2012/01/30/c-amp-sample-projects-
for-download.aspx

de Moura, L.M., Bjgrner, N.: Z3: An efficient SMT solver. In: TACAS. pp. 337-340 (2008)
NVIDIA: CUDA C programming guide, version 5.0 (2012)

NVIDIA: GPU Computing SDK (accessed 2013), https://developer.nvidia.com/gpu-
computing-sdk

Rakamaric, Z., Hu, A.J.: Automatic inference of frame axioms using static analysis. In: ASE.
pp- 89-98 (2008)

Rakamaric, Z., Hu, A.J.: A scalable memory model for low-level code. In: VMCAL pp.
290-304 (2009)

Rightware Oy: Basemark CL, http://www.rightware.com/benchmarking-software/
basemark-cl/

Stratton, J., et al.: Parboil: A revised benchmark suite for scientific and commercial through-
put computing. Tech. Rep. IMPACT-12-01, UIUC (2012)

Talupur, M., Tuttle, M.R.: Going with the flow: Parameterized verification using message
flows. In: FMCAD. pp. 1-8 (2008)

17

