Operating Systems Concepts

An introduction to the software that makes computers usable, ensures that systems can be made secure, and provides the environment for software to be a marketable commodity

Olav Beckmann
Huxley 449
http://www.doc.ic.ac.uk/~ob3

Acknowledgements: There are lots. See end of this chapter.

Home Page for the course:

This is only up-to-date after I have issued printed version of the notes, tutorials, solutions etc.
Chapter 1: Introduction

• What is an operating system?
• Why do I care?
• How can I pass this course anyway?
• Why does the lecturer seem to think this is “fun”?
What is an operating system?

- The OS is software - it’s a program
- It “virtualises” your computer
- Your computer needs to be virtualised…
 - Because that’s what makes it possible to buy and sell computer programs
 - And that’s a major economic activity
Why might I want a virtual machine?

- Machines come in all shapes and sizes
- I want to sell software which can run on whatever machine the customer happens to have
Why might I want a virtual machine?

- Machines come in all shapes and sizes
- But they all run the same software
- The operating system makes each of the diverse physical machines behave like an idealised, “virtual” machine
The virtual machine as a standard platform

- The nice thing about standards is that there are so many to choose from...
- Not all operating systems are equally good
- Some are specially suited to particular purposes
Example: Diverse Hardware

- PowerPC G4 Processor
- Multiple device connections
- Portable environment
- Runs Mac OS X

- 1100 Nodes
- Each node has two 2.3 GHz PowerPC 970FX processors
- 14th most powerful computer in the world in June 2005 according to www.top500.org
- Nodes run Mac OS X

What are the benefits of virtualising these machines?
Operating Systems as Virtual Machines

An operating system:

• Manages a system’s **resources** so that they are used efficiently and safely, *e.g.*,
 – CPU(s)
 – memory
 – devices (modems, disks, network interfaces, video interfaces)
 – Q: Example where efficiency matters? Safety?

• Presents a **virtual machine that provides convenient abstractions, *e.g.*,**
 – files rather than disk locations (device independence)
 – inter-process synchronisation and communication.

Hardware + OS = Usable Virtual Machine
There are lots...

Various kinds of Unix

- Designed for handhelds
- Embedded real-time

- There are lots...

- Linux
- BSD (FreeBSD, NetBSD)
- Sun: Solaris
- IBM: AIX
- Compaq: Tru64 Unix, OpenVMS
- Hewlett-Packard: HP-UX
- Apple: MacOS-8, MacOS-X
- Symbian: EPOC
- PalmOS
- QNX
- VXWorks
- LynxOS
- MVS, AS/400
- Many many more, mostly more-or-less Unix/POSIX compatible
- Literally thousands of variants and research prototypes
- Sun (again): the Java Virtual Machine
Opening up the software market

- More than 90% of all software products sold are designed for just one virtual machine

Microsoft Corporation Revenue and Operating Expenditure

Source: http://www.microsoft.com/msft/history.mspx
This course

• What is an OS?
• What terminology is involved in understanding OS issues?
• What are the different kinds of OS?
• How does an OS work?
• What principles underly OS operation?
• What does an OS look like “under the bonnet”?
• How can I find out more?
Recommended textbook

Modern Operating Systems (2nd Ed),
Andrew S Tanenbaum
Vrije Universiteit Amsterdam

((Andrew Tanenbaum is also behind http://www.electoral-vote.com/, for those who are interested in US Politics…))

This course is not a substitute for reading the book.

Other books:
– Operating Systems, 3RD edition, Gary Nutt (Addison Wesley)
Read books

• The point of this course is to help you become familiar with a classic, authoritative textbook
• The exam is designed to test your understanding and ability to apply it to new ideas
• Some exam questions will introduce an idea not covered in the course
• It will ask you to explore the idea using what you have learned
• Of course if you read a good book, you might find you already know all about it!
History of Operating Systems

* Material on History slides from Tanenbaum book website

• First generation 1945 - 1955
 – vacuum tubes, plug boards
• Second generation 1955 - 1965
 – transistors, batch systems
• Third generation 1965 – 1980
 – ICs and multiprogramming
• Fourth generation 1980 – present
 – personal computers
What did the first operating system look like?

1945 to 1955

- Vacuum tubes and plug boards
- No operating system
- Human operators
Early batch system
- bring cards to 1401
- read cards to tape
- put tape on 7094 which does computing
- put tape on 1401 which prints output
1956 to 1965

- Transistors and batch systems
- Clear distinction between designers, builders, operators, programmers, and maintenance personnel
- I/O channel
- Read ahead / spooling
- Interrupts/ exceptions
- Minimal protection
- Libraries / JCL
History of Operating Systems

- Structure of a typical FMS job – 2nd generation
1965 to 1980

- ICs and Multiprogramming,
- System 360 and S/370 family of computers,
- Spooling (simultaneous peripheral operation on-line),
- Time sharing, On-line storage for System programs,
- User programs and data, Program libraries,
- Virtual memory,
- Multiprocessor configurations e.g. MULTICS
• Multiprogramming system
 – three jobs in memory – 3rd generation
1980-now
- Personal computers and workstations
- MS-DOS and Unix
- Massively parallel systems
- Pipelining
- Array processing / SIMD
- General multiprocessing / MIMD
- Symmetric multiprocessing / SMD
- Any process and any thread can run on any available processor
- Computer networks (communication aspect) -- network operating systems
- Distributed computing -- distributed operating systems
• Dennis Ritchie and Ken Thompson, originators of UNIX
So what’s the next (current?) wave?

Ubiquitous Computing…

• Involves many disciplines.
• Inspired by the social scientists, philosophers, and anthropologists

• paradigm shift?
 – currently we expect the user to find ways to use the computer
 – however we currently do not emphasise how the computer can find its own way to serve the user
 • focus on HCI
 • focus on security, privacy → big brother?
Current Technology

Laptop

Mobile phone / PDA

Personal digital assistant (PDA)

DoCoMo video phone

Best friend

© Department of Computing, Imperial College London. Operating Systems Concepts (MSc Computing / JMC2) 2005/’06 – Chapter 1

Thanks to M. Sloman for this slide
Wearable

Thanks to M. Sloman for this slide

Wearable or luggable?

LCD Jacket

MIThril

Rich DeVaul
Steve Schwartz
Sandy Pentland

borq@lab
MIT Media Lab

Designer Gear

Thanks to M. Sloman for this slide
Intelligent Environment

- Fridge and cupboards tracks consumption and reorder your groceries
- Your car computer reminds you to pick up your order on the way home when you are near the supermarket.

“Well, officer, the coffee pot at home tried to tell my PDA to buy some Colombian beans on the way home, but the car overheard the message and took it as a command to turn for the grocery store right away...”

Thanks to M. Sloman for slides
Intelligent Environment - 2

- Lights, air conditioning, TV automatically switch on and off when you enter or leave rooms
- Sit on your favourite chair and TV switches on to the program you usually watch at this time of the day
- Use communicator/pda for phone, remote control, keys payments, passport, health records, authenticator.
- Route input from ‘virtual’ keyboard to nearest suitable display.
- *Automatic* detection of new items to control and physical layout in a room or office, using computer vision.
The Operating System Zoo

- Mainframe operating systems
- Server operating systems
- Multiprocessor operating systems
- Personal computer operating systems
- Real-time operating systems
- Embedded operating systems
- Smart card operating systems
What is an operating system?

• An OS is a program. Almost all Operating Systems are written in C or C++
• The job of an OS is to load and run other programs
• These “application” programs have to be able to
 – draw on the screen
 – interact via keyboard, mouse etc
 – access the hard disk (access your files)
 – communicate with other application programs
• The OS should provide a consistent way to do this, which works on whatever hardware you have
An OS provides a virtual machine

• Provides a “virtual” machine for applications to run on
 – which provides consistent interface to devices and services
 – so when you sell your software in the supermarket, it should work on all potential customers’ machines

• Is there a limit? What might make it difficult?
Challenges to the VM approach

• If the machine is too slow to run the application, there is nothing the OS can do to make that customer buy it

• What if the machine has too little memory?
Overcoming challenges to the VM approach

• What if the machine has too little memory?
 – Most OSs can solve this problem
 – Later in this course you will see how “virtual memory” works, by “paging” data to and from the hard disk
 – A program which needs 100MBytes of virtual memory can run on a machine with just 10MBytes of physical memory
 – But it might run rather slowly
Overcoming challenges to the VM approach

• What if the machine has too little memory?
 – Fixed with “virtual memory” and “paging”

• What if the machine is already running lots of other application programs?
Overcoming challenges to the VM approach

• What if the machine has too little memory?
 – Fixed with “virtual memory” and “paging”

• What if the machine is already running lots of other application programs?
 – We need the processor to switch from one “process” to another
 – regularly, using a timer to interrupt the processor
 – dividing its time fairly, according to each application’s needs
 – “time-slicing”, scheduling and priority; see later in course
Overcoming challenges to the VM approach

- What if the machine has too little memory?
 - Fixed with “virtual memory” and “paging”

- What if the machine is already running lots of other application programs?
 - Fixed with “interrupts”, “time-slicing”, scheduling, priority

- What if some of those other programs behave maliciously, e.g. trying to steal your secrets?
 - OS has privileged control over “address translation” hardware
 - Each application allowed access only to own data and data its (authenticated) user is allowed to access
Overcoming challenges to the VM approach

• What if the machine has too little memory?
 – Fixed with “virtual memory” and “paging”

• What if the machine is already running lots of other application programs?
 – Fixed with “interrupts”, “time-slicing”, scheduling priority

• What if some other programs misbehave?
 – Fixed with privileged execution mode, address translation, authentication, access control

• What if two applications try to access the same device, such as a printer?
 – Fixed with “mutual exclusion”, but beware of deadlock!
Key OS terminology

• What if the machine has too little memory?
 – Fixed with **virtual memory** and **paging**

• What if the machine is already running lots of other application programs?
 – Fixed with **interrupts**, **time-slicing**, **scheduling**, **priority**

• What if some of those other programs misbehave
 – Fixed with **privileged execution mode**, **address translation**, **authentication**, **access control**

• What if two applications try to access the same device
 – Fixed with **mutual exclusion**, but beware of **deadlock**!
• This demonstration uses Windows XP
• You can start the Task Manager application either by hitting Ctrl-Alt-Del, or via Start->Run->”taskmgr”
A closer look...

System processes

<table>
<thead>
<tr>
<th>Image Name</th>
<th>User Name</th>
<th>CPU</th>
<th>Mem Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>svchost.exe</td>
<td>SYSTEM</td>
<td>00</td>
<td>2,952 K</td>
</tr>
<tr>
<td>lsass.exe</td>
<td>SYSTEM</td>
<td>00</td>
<td>1,264 K</td>
</tr>
<tr>
<td>services.exe</td>
<td>SYSTEM</td>
<td>00</td>
<td>2,940 K</td>
</tr>
<tr>
<td>winlogon.exe</td>
<td>SYSTEM</td>
<td>00</td>
<td>760 K</td>
</tr>
<tr>
<td>csrss.exe</td>
<td>SYSTEM</td>
<td>01</td>
<td>1,992 K</td>
</tr>
<tr>
<td>smss.exe</td>
<td>SYSTEM</td>
<td>00</td>
<td>212 K</td>
</tr>
<tr>
<td>System</td>
<td>SYSTEM</td>
<td>02</td>
<td>80 K</td>
</tr>
<tr>
<td>System Idle Process</td>
<td>SYSTEM</td>
<td>59</td>
<td>16 K</td>
</tr>
<tr>
<td>xterm.exe</td>
<td>Olav Beckmann</td>
<td>00</td>
<td>1,732 K</td>
</tr>
<tr>
<td>firefox.exe</td>
<td>Olav Beckmann</td>
<td>00</td>
<td>21,420 K</td>
</tr>
<tr>
<td>bash.exe</td>
<td>Olav Beckmann</td>
<td>00</td>
<td>516 K</td>
</tr>
<tr>
<td>xinit.exe</td>
<td>Olav Beckmann</td>
<td>00</td>
<td>104 K</td>
</tr>
<tr>
<td>openbox.exe</td>
<td>Olav Beckmann</td>
<td>00</td>
<td>1,280 K</td>
</tr>
<tr>
<td>VPTray.exe</td>
<td>Olav Beckmann</td>
<td>00</td>
<td>3,052 K</td>
</tr>
<tr>
<td>tsch.exe</td>
<td>Olav Beckmann</td>
<td>00</td>
<td>1,244 K</td>
</tr>
<tr>
<td>taskmgr.exe</td>
<td>Olav Beckmann</td>
<td>03</td>
<td>2,756 K</td>
</tr>
<tr>
<td>POWERPNT.EXE</td>
<td>Olav Beckmann</td>
<td>00</td>
<td>2,980 K</td>
</tr>
<tr>
<td>cmd.exe</td>
<td>Olav Beckmann</td>
<td>00</td>
<td>440 K</td>
</tr>
<tr>
<td>tsch.exe</td>
<td>Olav Beckmann</td>
<td>00</td>
<td>556 K</td>
</tr>
<tr>
<td>ccApp.exe</td>
<td>Olav Beckmann</td>
<td>00</td>
<td>533 K</td>
</tr>
<tr>
<td>XWin.exe</td>
<td>Olav Beckmann</td>
<td>00</td>
<td>1,676 K</td>
</tr>
<tr>
<td>wisptis.exe</td>
<td>Olav Beckmann</td>
<td>00</td>
<td>3,036 K</td>
</tr>
</tbody>
</table>

Application processes

<table>
<thead>
<tr>
<th>Image Name</th>
<th>User Name</th>
<th>CPU</th>
<th>Mem Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWERPNT.EXE</td>
<td>Olav Beckmann</td>
<td>00</td>
<td>2,980 K</td>
</tr>
<tr>
<td>cmd.exe</td>
<td>Olav Beckmann</td>
<td>00</td>
<td>440 K</td>
</tr>
<tr>
<td>tsch.exe</td>
<td>Olav Beckmann</td>
<td>00</td>
<td>556 K</td>
</tr>
<tr>
<td>ccApp.exe</td>
<td>Olav Beckmann</td>
<td>00</td>
<td>533 K</td>
</tr>
<tr>
<td>XWin.exe</td>
<td>Olav Beckmann</td>
<td>00</td>
<td>1,676 K</td>
</tr>
<tr>
<td>wisptis.exe</td>
<td>Olav Beckmann</td>
<td>00</td>
<td>3,036 K</td>
</tr>
</tbody>
</table>
Let's start an application…
I have started the calculator application

It is listed as an active process, together with its owner (user name), CPU usage, memory usage and base priority (I added that column, not shown by default)
A second calculator...

- I have started a second instance of the calculator application
- The two calculators are separate processes
- Each has its own state
Course web pages

• URL:

• What’s there (or rather, what will be there):
 – on-line access to lecture notes to browse and print
 – on-line access to tutorial exercises and some solutions
 – links to other useful background OS material
 – past exam papers (though the course is being revised somewhat)
Concluding...why are OSs fun?

- Essential in making application software a commodity which can be marketed to a wide range of customers with diverse equipment
- Provide really useful abstractions which make programming easier
- Challenging: responsible for security, performance, reliability
- Mediates between application and hardware, so opportunities to manipulate running programs in interesting ways
Credits

• Julie McCann
• Paul Kelly
• William Knottenbelt
• Jeff Magee
• Jeff Kramer
• Kevin Twidle
• Steve Vickers
• Ariel Burton
• David Howarth
• Ken Thompson
• Marshall Kirk McKusick
• C A R Hoare
• E W Dijkstra
• Per Brinch Hansen
• William Stallings
• Richard Stevens
• Andrew Tanenbaum
• Philip Zimmerman
• Robert Zimmerman