
Olav Beckmann
Huxley 449
http://www.doc.ic.ac.uk/~ob3

Acknowledgements: There are lots. See end of Chapter 1.

• Home Page for the course:

• This is only up-to-date after I have issued printed versions of the notes, tutorials, solutions etc.
Chapter 9: Some Security Issues

- Protecting data against unauthorised use is a major concern for operating systems designers and administrators.
 - Data confidentiality – prevent unauthorised access
 - Data integrity – prevent unauthorised tampering
 - System availability – prevent denial of service

- Issues to consider (at design stage)
 - Casual users browsing information that’s not for them
 - Snooping by skilled insiders
 - Organised and determined attempts to make money
 - Espionage etc.

- System “bloat” is definitely bad for security
- Accidental data loss probably more common than determined security evasion
Very Basic Cryptography

- Secret (symmetric) key cryptography
 - Plain: ABCDEFGHIJ
 - Cipher: KLMNOPQRST
 - Example: Hello dear
 - Rollo nokr
 - Q: What is (are) the problem(s) here?

- Public key cryptography
 - What is \(314159265358979 \times 314159265358979 \)?
 - What is \(\sqrt{39125571506419387090594828508241} \)?
 - Exploits the fact that there are functions that, although invertible, are much more complex in one direction than the other.

- One –way functions
Digital Signatures

• How can you prove that an email claiming to come from ob3@doc is from me?
 – Public-key cryptography is quite computationally expensive
 – Apply a hard-to-invert hash function to the document to generate a small (e.g. MD5 – Message Digest: 16 bytes) result
 – Sender applies private key: D(hash)
 – Receiver
 • Recalculates hash from document
 • Applies sender’s public key to signature: E(D(hash))
 • If hash == E(D(hash)) success
User Authentication (Passwords)

• Some simple problems
 – Should you be able to see the number of letters in a password?
 – When will authentication fail (id/password)?
 – Easy to guess passwords (e.g. “baby names books”)
 – But people won’t try my computer…

• War dialers / IP scanning
 – Start off by collecting machines that accept logins
 • Dialing, systematic scanning of ip addresses in ic.ac.* etc
 – Then systematically try logins and passwords
 – Boring? That’s what computers are good at…
UNIX Passwords

• One-way-function f is applied to password at login
• “Encrypted”, i.e. $f(p)$, passwords stored on disk, in older systems usually in publically readable file
• No-one can tell a user what their password is

Problem(s):
 – What if 2 people choose the same password?
 – What if someone chooses “hello” or “password”?

• To guard against pre-computed password dictionaries:
 – Add salt…
 – Password entry goes from $f(\text{“doggie”}) \rightarrow f(\text{“doggie1234”})$
 – Need to store the random number unencrypted
 – $f(\text{“doggie1234”})$ and $f(\text{“doggie5678”})$ no obvious relation

• Still possible to copy actual password file and search
 – Make password file unreadable
One-Time Passwords

• Sequence of passwords, each used only once
 – What is the idea behind this?
 – Do not lose the book where the sequence is written down 😊

• Better plan (Lamport 1981):
 – One-way function \(f \)
 – Suppose we need 4 passwords: start with \(f(f(f(f(p)))) \), then \(f(f(f(p))) \) etc
 – The point is that although the previous password is very easy to calculate from the current one, the next one is impossible / very hard to compute
Authentication using Physical Objects

• An example we all know: ATM card plus PIN to show that it is us who are using the card
 – Magnetic strip: stores about 140 bytes, cost $0.10 - $0.50
 – Real problems if this stores the PIN

• Smart cards
 – Small CPU (maybe 4MHz, 8-bit, some RAM and ROM), small EEPROM (memory that doesn’t need power to keep its value)
 – Cost more like $5…
 – Challenge-response authentication
 • Server sends random string
 • Smart card adds user’s password, encrypts, sends back part
 • Server does the same and compares
 – Even better to run a small Java VM on the card – allows substituting the encryption algorithm on the fly
Biometric Authentication

• Authentication via palm- / finger-print reader
 – Some concerns regarding use in criminal cases
• Alternative: Iris recognition tools

• Need to make sure there is a live person there!
Attacks from Inside a System

- "Trojan Horse"
 - Path searched for executable programs (see echo $PATH)
 - If the current directory is in the path, what can happen?
 - As a user, if you must have the current directory in the path, where should it be?
 - As root?

- Login Spoofing
 - Write a program that prints
 - Login:
 - Password:
 - Start this, walk away…
 - This can be guarded against by having a key sequence in the login process that user programs cannot catch, e.g. Ctrl-Alt-Del.
Covert Channels

• Beautiful, right?
• Demo…
• Other ways of sending covert information
 – Files
 – Response time
 – Busy/idle
 – Power