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Abstract. Interventional procedures in cardiovascular diseases often re-
quire ultrasound (US) image guidance. These US images must be com-
bined with pre-operatively acquired tomographic images to provide a
roadmap for the intervention. Spatial alignment of pre-operative images
with intra-operative US images can provide valuable clinical information.
Existing multi-modal US registration techniques often do not achieve re-
liable registration due to low US image quality. To address this problem,
a novel medical image representation based on a trained decision forest
named probabilistic edge map (PEM) is proposed in this paper. PEMs
are generic and modality-independent. They generate similar anatomical
representations from different imaging modalities and can thus guide a
multi-modal image registration algorithm more robustly and accurately.
The presented image registration framework is evaluated on a clinical
dataset consisting of 10 pairs of 3D US-CT and 7 pairs of 3D US-MR
cardiac images. The experiments show that a registration based on PEMs
is able to estimate more reliable and accurate inter-modality correspon-
dences compared to other state-of-the-art US registration methods.

1 Introduction

In cardiovascular minimally invasive procedures such as mitral valve repair and
aortic valve implantation [12], pre-operative surgical plans and roadmaps may be
complemented by intra-operative image guidance provided by ultrasound (US)
and fluoroscopy. Computed tomography (CT) and magnetic resonance imaging
(MRI) are widely used for planning of cardiovascular interventions since they can
provide detailed images of the anatomy which are not usually visible in intra-
operative cardiac US images. As the shape and pose of the heart changes over
time during the intervention (e.g. due to respiration and patient motion), regis-
tration and fusion of pre- and intra-operative images can be a useful technology
to improve the quality of image guidance during the intervention and subsequent
clinical outcome. However, the difference in appearance of the heart in the dif-
ferent image modalities makes multimodal US image registration a challenging
problem. In particular, the choice of an appropriate multimodal image similarity
metric can be considered as the main challenge.
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Fig. 1: Example of PEMs, obtained from cardiac images of different modalities,
are compared to gradient magnitude (GM) and self-similarity descriptors (SSC).
Since SSC is a vectorial descriptor, only a single component of SSC is visualized.

Related work: Current approaches for multi-modal US registration can be clas-
sified into two categories: (i) those using global and local information theoretic
measures, and (ii) those reducing the multi-modal problem to a mono-modal
problem. Early approaches in the first category suggested the use of normalized
mutual information (NMI) [16] as a multimodal similarity metric. Recently, lo-
cal similarity measures were proposed as an alternative to the global similarity
measures. This reflects the fact that the US image characteristics show local vari-
ations due to wave reflections at tissue boundaries. Measures such as local NMI
(LNMI) [10] and local correlation coefficient (LCC) [6] are designed to deal with
this non-stationary behaviour. The second category of approaches converts the
images from different modalities into a common feature space so that a mono-
modal registration can be performed. In [11], fetal US and MR brain images
are registered by generating pseudo-US images from MRI tissue segmentations.
Other approaches, such as local phase [17], gradient orientations [4], and self-
similarity descriptors (SSC) [9], generate similar structural representations from
images to find correspondences between different imaging modalities.

Contributions: This paper proposes the use of probabilistic edge map (PEM)
image representation for multi-modal US image registration. In contrast to local
phase, SSC and gradient magnitude [6] (GM) representations, PEMs highlight
only the image structures that are relevant for the image registration. This is
because some of the anatomical structures visible in US images may not be
visible in CT/MR images and vice versa, e.g. endocardial trabeculae, clutter,
and shadowing artefacts. Therefore, extracting and registering only the left ven-
tricle (LV) and atrial boundaries is a more robust approach than registering
every voxel in the images. Moreover, PEMs generate a clear and accurate tis-
sue boundary delineations, Fig. 1, in comparison to other image representations.
This improvement produces better spatial alignment and increases the robust-
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Fig. 2: Structured decision tree training procedure, label patches are clustered
at each node split (a). Mid-ventricle (b), mid-septal (d) and mid-lateral (e) wall
landmark localization by using PEMs (in green)(c) and regression nodes.

ness to noise which is important in US image registration. Additionally, PEMs
are invariant under rigid transformations, unlike SSC descriptors. Thus they can
cope with large rotational differences between images. Lastly, the proposed ap-
proach does not require tissue segmentations and can be generalized to other
organs and modalities differing from the simulation based registration methods.

The proposed generic and modality independent representation is gener-
ated by a structured decision forest [5]. PEMs from different modalities are
aligned with a block matching algorithm based on robust statistics followed by
a deformable registration. The proposed registration framework is evaluated on
US/CT and US/MR image pairs acquired from different pathological groups.
The results show that PEM achieves lower registration errors compared to other
image similarity metrics. This observation shows that PEM is a well-suited image
representation for multimodal US image registration.

2 Methods

Probabilistic Edge Map (PEM) Representation: Cardiac US images mainly
show the anatomy of the cardiac chambers and less detail of soft tissues. There-
fore, further processing of these images, e.g. registration, requires a structural
representation of the cardiac chamber boundaries such as the left ventricle (LV).
In this work, a structural representation, PEM, is generated from a structured
decision forest (SDF). Learning the image representation from training data in-
creases the robustness in US images and allows the registration to focus on the
organs of interest. As can be seen in Fig. 1, the PEMs outline only the LV and
atrium while ignoring irrelevant anatomical boundaries. In addition the gener-
ated boundaries are cleaner and smoother.

PEMs are modality independent; as such the same representation can be
generated from different modalities. More importantly, a single training configu-
ration can be applied to train SDFs for all modalities, including the same image
feature types and patch sizes. While SDFs are very similar to decision forests,
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they possess several unique properties. In particular, in SDFs the output space
Y is defined by structured segmentation labels yi ∈ Y rather than a single label
yi ∈ {0, 1}. SDF decision trees can be trained as long as the high-dimensional
structural labels can be clustered into two or more subgroups at each tree node
split ψj as illustrated in Fig. 2. This is achieved by mapping each patch label to
an intermediate space (Θ : Y→Z) where label clusters can be generated based on
their pairwise Euclidean distances in Z (cf. [5]). Once the training is completed,

each leaf node Lj stores a segmentation patch label yi ∈ Z(Me)
3

of size (Me)
3.

Additionally, the corresponding edge map y′
i ∈ {0, 1}(Me)

3

is stored as well. This
allows predictions to be combined simply by averaging during inference.

Similar to decision forests, the input space X for the SDFs is characterized
by the high dimensional appearance features (xi ∈ X ) extracted from image
patches of fixed size (Ma)3. These features are computed in a multi-scale fashion
and correspond to intensity values, gradient magnitudes, six HoG-like channels,
and local phase features. The weak learner parameters (θj), e.g. stump thresh-
old value and selected feature channel id, are optimized to maximize Shannon

entropy H1 based information gain I(Sj) = H1(Sj) −
∑

k∈{L,R}
|Sk

j |
|Sj |H1(Sk

j ) at

each node split. Here Sj = {Ti = (xi,yi)} is a set of patch labels and features
reaching node j. During the PEM generation (testing time), each input voxel
accumulates Nt × (Me)

3 overlapping binary edge votes y′
i from Nt number of

trained decision trees. These predictions are later averaged to yield a probabilis-
tic edge response. Spatial aggregation of a large number of edge votes results in
a smoother and accurate delineation of the structures of interest.

Structured Regression Forest Based Initialization: The presented SDF
can be modified to allow additionally for simultaneous voting for predefined
landmark locations such as the apex, mid-lateral and mid-septal walls, as shown
in Fig. 2. Each landmark point is detected independently in both target and
source images. This can be used to obtain an initial rigid alignment as a starting
point for the registration. Similar to Hough forests [7], classification nodes ψj

are combined with regression nodes Λj in the tree structure. In this way, in addi-
tion to the patch labels yi, each leaf node contains an average location offset dni
and confidence weight σn

i for each landmark n ∈ {1, . . . , N} (cf. [3]). Inclusion
of these nodes does not introduce any significant computational cost at testing
time but adds additional information about the location of the landmarks.

The set of offsets Di = (d1i , . . . ,d
N
i ) in the training samples Ti = (xi,yi,Di),

is defined only for the voxels close to the boundaries of the ventricle. At each
regression node Λj , the offset distributions are modelled with a multivariate
Gaussian. The differential entropy of these distributions [3] is used as the uncer-
tainty measure H2 in the training of Λj . In training, classification and regression
nodes are selected randomly [7]. During testing, landmark location votes are
weighted by the confidence weights and edge probabilities of the voxels.

Global Alignment of PEMs: Similar to [11], a block matching approach is
used to establish spatial correspondences between the PEMs (Fig. 3), where
the normalized cross correlation (NCC) is used as a measure of similarity. As
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Fig. 3: A block diagram of the proposed multi-modal image registration method.

suggested in [13], the set of displacement vectors computed between the cor-
responding PEM blocks are regularized with least-trimmed squared regression
before estimating the global rigid transformation R. In this way, the influence
of image blocks with no correspondences is removed, reducing the potential reg-
istration error introduced by shadowing or limited field-of-view in US images.

Non-rigid Alignment of PEMs: To correct for the residual misalignment,
due to cardiac and respiratory motion, between target (PT ) and source (PS)
PEMs, B-spline FFD [14] based non-rigid alignment follows the global rigid reg-
istration. The total energy function, minimized with conjugate-gradient descent
optimization, is defined as: E(T ) = −LCC(PT , PS ◦ T ◦R) + λBE(T ), where
λ is the trade-off between the local correlation coefficient [2] (LCC) similarity
metric and bending energy regularization (BE). As the SDF classifier makes
use of intensity values, local intensity variations in US images influence the edge
probabilities in PEMs. For this reason, a local similarity measure is more suitable
for PEMs than a global measure such as sum of squared differences. For similar
reasons, LCC was used in [6] to align US-MR gradient magnitude images.

3 Experiments and Results

The proposed PEM registration framework is evaluated on 3D US-CT (10 pairs)
and 3D US-MR (7 pairs) cardiac images. The CT images were acquired pre-
operatively from adults after a contrast injection. The corresponding trans-
esophageal US images were acquired during the cardiac procedure. In the second
dataset, lower quality trans-thoracic US acquisitions are registered with multi-
slice, cine-MR images (slice thickness 8 mm). Five of these pairs were acquired
from children diagnosed with hypoplastic left heart syndrome and the rest from
healthy adults. As a preprocessing step, all the images are denoised using non-
local means [1] and resampled to isotropic voxel size of 0.80 mm per dimension.

In both experiments, PEM-LCC registration performance is compared with
LNMI [10] and SSC [9] similarity based registration methods. Implementations of
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Fig. 4: US/CT registration errors after rigid (R) and deformable (D) alignment.
The mean and median values are shown in dashed and solid lines respectively.

these methods were obtained from their corresponding authors. Particularly, in
the SSC method, linear registration of the descriptors is performed by using least-
trimmed squares of point-to-point correspondences for improved robustness. In
the local alignment of SSC, a discrete optimization scheme (deeds [8]) is used
to optimize SSC energy function. In LNMI, histograms with 64 bins are built
locally and the registration is optimized using stochastic gradient descent. The
number of bins is optimized for best performance.

In all three modalities, PEMs are generated and evaluated with the same
training, testing and registration parameters. A PEM-SDF classifier was trained
for each modality with set of cardiac images (50-80 images/modality) that is
disjoint from the test set (17 pairs). It is important to highlight that the images
from different modalities are not required to be spatially registered or come from
the same subjects because the classifiers are trained separately for each modality.
This significantly increases the availability of training data. The training data
contains labels for myocardium, LV endocardium and atrium. The registration
results are evaluated based on mean and Hausdorff distances of seven landmark
points in the US images to closest points on the manually annotated LV endo-
cardial surface in CT and MR images. The landmark points correspond to: apex,
apical (2), basal (2), and mid-ventricle (2). For each method, the distances are
computed after rigid and deformable alignment, and they are reported together
with their values before the registration. For each image pair, 10 different regis-
trations were performed with random global transformations for initialization.

US/CT Evaluation Results: The registration errors, provided in Fig. 4, show
that local intensity statistics based similarity measures do not perform consis-
tently and in some cases the registration fails to converge to the correct solution.
This suggests that structural representation methods, such as PEMs and SSC,
are more reliable measures in US/CT image registration. On the other hand,
after local alignment, PEMs achieve lower registration errors compared to SSC,
which can be linked to the accurate and smooth boundary representation pro-
vided by PEMs. As shown in Fig. 1, PEMs are less sensitive to noise and follow
the anatomical boundaries more accurately.



Structured Decision Forests for Multi-modal Ultrasound Image Registration 7

Fig. 5: Global alignment of US/MR images (top). The boxplot shows the US/MR
landmark distance errors after rigid (R) and deformable (D) alignment.

US/MRI Evaluation Results: It is observed that the SSC descriptors do not
provide enough guidance in alignment of MR images acquired from children. As
shown in Fig. 5, the images contain more texture due to smaller size of the heart
and trabeculae in transthoracic acquisitions. In contrast to this, PEM relies on
annotations of the boundaries used in the training. It is able to generate a more
accurate structural representation that is better matching with the myocardial
boundary in MR images. The performance difference, shown in Fig. 5, is ex-
plained with this observation.

Experimental Details: All experiments were carried out on a 3.00 GHz quad-
core CPU. The average computation time per registration was 73s for non-rigid
registration, 21s for rigid alignment and 20s to compute each PEM. The training
of the SDFs (70 min/tree) was performed offline prior to the registrations.

Discussion: In the experiments, after spatially aligning US/CT and US/MR
images, we observed that the endocardial annotations in US images underes-
timate the LV volume compared to the annotated CT and MR images. In a
clinical study [15], US volume measurement errors and underestimation were
linked to the visible endocardial trabeculae. Therefore, to obtain matching PEM
correspondences between the modalities, the US annotations are morphologi-
cally dilated before the training of the SDF. In contrast, the other structural
representation techniques are expected to fail to achieve optimal local alignment
accuracy as these tissues are not visible in CT and MR images (Fig. 5).

4 Conclusion

In this paper, a novel PEM image representation technique and its application
on US multi-modality image registration has been presented. The experimental
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results show that PEM provides a more accurate and consistent registration per-
formance between different modalities compared to the state-of-the-art methods.
Therefore, we can conclude that PEM is more suitable for image-guided cardiac
interventions where alignment of pre-operative images to inter-operative im-
ages is required. Moreover, PEM is a generic and modular image representation
method; it can be applied to any other US, CT and MR image analysis problem.
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