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Abstract

Reconfiguration enables the adaption of Coordinate Rotation DIgital Computer (CORDIC) units to the specific needs of sets of applica-
tions, hence creating application specific CORDIC-style implementations.

Reconfiguration can be implemented at a high level, taking the entire CORDIC unit as a basic cell (CORDIC-cells) implemented in VLSI,
or at a low level such as Field-Programmable Gate Arrays(FPGAs). We suggest a design methodology and analyze area/time results for
coarse(VLSI) and fine-grain(FPGA) reconfigurable CORDIC units. For FPGAs we implement CORDIC units in Verilog HDL and our object-
oriented design environment, PAM-Blox. For CORDIC-cells, multiple reconfigurable CORDIC modules are synthesized with state-of-the-art
CAD tools.

At the algorithm level we present a case study combining multiple CORDICs based on a geometrical interpretation of a normalized ladder
algorithm for adaptive filtering to reduce latency and area of a fully pipelined CORDIC implementation. Ultimately, the goal is to create
automatic tools to map applications directly to reconfigurable high-level arithmetic units such as CORDICs.

I. INTRODUCTION

Reconfigurable computing spans the space between programmable microprocessors and static Application Specific
Integrated Circuits (ASICs). Reconfigurable architectures offer the flexibility of ASIC design and the programmability
of microprocessors. The overhead of reconfigurability depends on the complexity of the reconfigurable cell. Bit-level
cells in Field-Programmable Gate Arrays(FPGAs) offer high flexibility with a high overhead in latency and area. ASICs
with programmable arithmetic units, “chunky architectures”[1], in our case Coordinate Rotation DIgital Computer
(CORDIC)-cells, have a lower overhead with much less flexibility. In this research we are not going to end the debate
about which level of reconfigurability is best. Instead, we show how CORDIC arithmetic units can be implemented on
FPGAs and on ASICs. Given multiple CORDIC arithmetic units, we show a case study on how applications could be
mapped onto a set of CORDIC arithmetic units by using a geometric interpretation of computation.

CORDIC arithmetic units use shift-and-add primitives to compute fixed-point elementary functions on relatively small
silicon area. For a more detailed introduction to CORDIC algorithms see [2]. For advanced CORDIC techniques see
for example [3][4]. CORDIC units are known to be highly pipelineable, very small, with linear convergence towards the
correct result. Linear convergence means that we can guarantee at least one bit of precision per shift-add iteration. The
internal structure of CORDICs, consisting of adders and wired shifts in the case of parallel CORDICs, makes them well
suited for FPGA implementation[5].

CORDIC functional units compute up to two elementary functions at the same time. Given three arguments z,y, z,
basic CORDIC arithmetic units compute function pairs such as shown in Table 1.

The fundamental principles behind the CORDIC algorithms of Volder[6] and Walther[7] can be found in their scalar
form in the work of Chen[8]. Ahmed showed in [4] how scale factor compensation can be avoided by choosing an
appropriate shift-sequence to automatically compensate for the scale factor. A refinement of this idea, in order to
minimize overhead, was presented in [9]. All CORDIC implementations in this paper are therefore correctly scaled with
minimal overhead.

Ahmed also showed in [4] that if Chen’s convergence computation technique is applied to complex numbers instead of
real numbers (as assumed by Chen) one obtains the class of CORDIC algorithms. The method of formally “replacing”
real by complex numbers was extended in [10],[3] to obtain CORDIC algorithms for quaternions and pseudo-quaternions.
When the CORDIC functions, especially the higher order functions, are matched to applications—a system design issue—
the real power of CORDICs and related algorithms can be exploited.

One alternative to CORDICs are multiplication based algorithms. The major drawback of fast multipliers is their large
size and irregularity of wiring for a logarithmic reduction of terms[11]. CORDICs compute two elementary functions on
approximately the area and latency of 1-2 multipliers.

Reconfiguration of CORDICs enables effective hardware support of such complex functions, similar to micro-code
or firmware (library functions). It becomes possible to hide the complexity involved from a typical application-level
programmer. Custom design of CORDIC units for individual applications is a complex task, requiring both specialized
low-level design tools and symbolic computing tools that support a domain expert. Sophisticated tools that can support
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a typical programmer will eventually become available. In the mean-time domain experts will have to use today’s tools
to create winning designs using these ideas in advanced applications.

As a first step towards an automatic CORDIC compiler for FPGAs, we introduce the hardware object as an inter-
mediate level of abstraction[12]. We define a set of CORDIC module generators that could be targeted by a compiler
similar to the instruction set of a microprocessor. Most of todays efforts at direct compilation from a high-level language
to FPGAs target very simple arithmetic units such as adders, multipliers, shifters, etc. Generally, by targeting such
simple modules, most of the power of reconfigurable computing is lost. Instead, more complex arithmetic units such as
CORDICs coupled with various alternatives of number representations should be targeted by higher-level compilers to
exploit the full potential of reconfigurable computing. We are at the beginning of the development process of special
purpose compilers for complex arithmetic units such as CORDICs. One objective of this paper is to show a possible
direction for high-level compilation to CORDICs.

Section 2 describes the methodology of this research. Section 3 presents the results at the module level for a “chunky”
CORDIC architecture, and CORDICs on FPGAs. Section 4 presents a case study at the algorithm level: mapping an
adaptive ladder filter to fized-point CORDIC arithmetic units.

II. METHODOLOGY

Ultimately, the goal is to create automatic algorithms to map applications directly to reconfigurable high-level arith-
metic units. As a starting point we split the problem into 2 parts:

« module-generation level (Section III): on this level we create building blocks based on CORDIC arithmetic
units. Module generation implies that we can create application-specific CORDIC units given parameters such as data
bit-width, precision, or number of stages. We consider two options at the module level:

1. fine-grain reconfiguration: CORDICs on FPGAs

2. coarse-grain reconfiguration: VLST CORDIC-cells
o algorithm level (Section IV): we use the CORDIC modules generated at the lower level, and combine them to
compute entire applications.

Module-generation is well understood, based on past research on CORDIC arithmetic units. We implement CORDICs
for FPGAs with our module-generation environment, PAM-Blox, described in the next section, and Synopsys FPGA
Express. Coarse-grain CORDIC cells are synthesized with Synopsys Behavioral Compiler.

The algorithm level poses similar challenges as compilation to a very complex instruction set. The process of combining
complex building blocks to optimally compute a specific algorithm is still not very well understood. We propose a
geometrical interpretation of computation to create a unified approach for combining multiple CORDICs given a specific
algorithm.

ITI. MoDULE LEVEL

At the module level, our task is to map a CORDIC architecture to gates or look-up tables. In this section, we look at
two approaches. The first approach is a fine-grain reconfiguration on FPGAs. The CORDIC modules are implemented
using the PAM-Blox environment or commercial synthesis tools for FPGAs. The second approach is a coarse-grain
reconfiguration in which the CORDIC module itself represents the basic reconfigurable cell implemented on an ASIC.
Synthesis tools map CORDICs efficiently to hardware. By changing the constraints on the latency of the design, different
implementations of the cell can be explored.

We implement fully parallel CORDIC modules. Figure 1 shows the parallel architecture of a generic CORDIC unit.

A. Fine-Grain Reconfiguration: FPGAs
We compare the implementation of CORDICs with PAM-Blox and a state-of-the-art synthesis tool for FPGAs.

A.1 PAM-Blox: Object-Oriented Module Generation

Traditional hardware synthesis is based on a top-down approach; starting from a high-level description, CAD tools
synthesize and optimize the hardware level by level, until the final layout. Initial FPGA synthesis tools have taken the
same approach, adding a last step of technology mapping at the end of the CAD hierarchy.

We propose a bottom-up approach to the design of synthesis tools/compilers for FPGAs. The main reason behind
building FPGA circuits bottom up, is that the architecture and interconnect is limited to the resources on the FPGA,
making the traditional top-down approach less optimal.

By creating a parameterizable repository of module generators, PAM-Blox[12], we add a level of abstraction that pre-
serves optimal area and performance while simplifying the design process (compared to state-of-the-art high-performance
FPGA tools). In terms of reconfigurable computing, these modules constitute the instruction set that could be targeted
by the compiler.

Figure 2 shows an overview of the PAM-Blox system. We use PAM-Blox as the name for the entire design environ-
ment. PamBlox(see Figure 2) stands for templates of hardware objects while the more complex PaModules are objects



with a fixed size. PAM-Blox simplifies the design of datapaths for FPGAs by implementing an object-oriented hierarchy
described in C++. With PAM-Blox, hardware designers can benefit from some of the advantages of object-oriented sys-
tem design that the software industry has learned to cherish during the last decade. Efficient use of function overloading,
virtual functions, and templates makes PAM-Blox a competitive and yet simple to use design environment.

A major question is which modules are required. This question is actually similar to defining a hardware-software
interface for hardware-software co-design. We believe that by providing higher-level modules such as specialized multi-
pliers (see [13] for IDEA encryption), state-machines (see [14] for boolean satisfiability), arithmetic units for advanced
number representations, etc., we can explore the benefits of reconfigurable arithmetic. In this study, we implement
CORDICs and study how higher-level compilers might target such modules.

Currently, the PAM-Blox CORDICs are implemented as PaModules with a fixed bitwidth. A floorplan for a parallel
CORDIC is shown in Figure 3. The 8-bit parallel CORDIC requires 131 CLBs while a bit-serial CORDIC, with 23
bit-serial adders requires substantially more area, due to the inherent dependency structure of the CORDIC algorithm.
In contrast, a CORDIC iterating with only 3 parallel ADD/SUB modules on the CORDIC equations would have very
low throughput, and an area penalty for the z look-up table which is hardwired in the parallel case.

Although serial arithmetic usually takes less area, the bit-serial CORDIC occupies 30% more area than the parallel
CORDIC. This counter-intuitive result is due to dependencies between the stages. A stage needs to know the sign of z of
the previous stage in order to select the sign for its own computation. The resulting overhead of storing the intermediate
values while waiting for the sign to compute and the increased overhead for control logic, making the bit-serial CORDIC
a less desirable CORDIC solution.

The parallel CORDIC achieves a throughput of 33 million rotations per second at 33 MHz PCI clock speed. The
results are summarized in Table II. With current FPGA technology the throughput would scale up easily to 100 MHz,
hence 100 million rotations per second.

A.2 Synthesis for FPGA

We compare PAM-Blox module-generation to Synopsys FPGA Express synthesis. We try to optimize a CORDIC
architecture for Xilinx XC4000 FPGAs using Synopsys FPGA Express[15]. The results after optimization are comparable
to the PAM-Blox results found in the previous section: after place&route the area of the circuit is 133 CLBs with a
clock cycle latency of 25.4 ns.

As we will see in the next section, synthesis tools can be used to effectively optimize CORDIC modules for ASICs.
However, for FPGAs, the possible optimizations are restricted by the internal architecture of the CLBs — especially the
fast carry-chains. The advantage of FPGA synthesis over PAM-Blox, a structural bottom-up approach, for complex
arithmetic units is therefore limited. As a consequence at the module level it is preferable to use module generation
to create CORDIC units for FPGAs, and a compiler to optimize the application-level structure using reconfigurable
CORDICs as elementary building blocks.

B. Coarse-grain Reconfiguration: ASICs

In this section we analyze how much a CORDIC unit can be optimized by state-of-the-art VLSI synthesis.

For the implementation of a CORDIC arithmetic unit in hardware, many of the operators (adders, subtracters) can
be optimized. In particular, optimization can be performed when one of the operands is a constant (calculation of the z
factors) or when some input bits have the same value (calculation of the z and y factors after shifting). We apply logic
and architectural optimization for a non-pipelined version of the parallel CORDIC and synthesize the design for ASIC.

In general, the behavior of circuits can be represented by abstract models such as boolean functions and finite state
machines which can be derived from higher-level models. In the case of combinational logic (i.e. circuits without
feed-back), the abstract model is a set of boolean functions and relations on the circuit’s inputs and outputs. These
functions can be simplified for a given target architecture by employing logic synthesis and optimization[16]. Very
powerful optimization can be performed under both area and/or time constraints.

For arithmetic operations, further optimization can also be performed at the architectural level by looking at different
architectures of operators (e.g. ripple carry adder, carry save adder, etc.), trying to increase bit-level parallelism. In the
past few years, such techniques have also been integrated within commercial tools[17] and allow quick estimation of the
performance of many candidate architectures.

For ASIC synthesis we use the Synopsys Design Compiler to synthesize the circuit and the Synopsys Behavioral
Compiler for the arithmetic optimization[17]. The target technology is the ’tsms 0.35 micron’ logic process. We study
the area/latency trade-off by changing the constraints on the optimizations. Figure 4 presents the area-time curves with
and without architectural and logic optimizations. We observe that after optimization the circuit is at least 20% smaller
for a given latency and at least 17% faster for a given area. The smallest design (with optimization) has a total area
of 57K library units and a latency of 41ns, compared to an area of 75K library units and a latency of 43ns without
optimization. Minimal latency with optimization is 17.94ns for an area of 153K library units. Without optimization the
latency is 23.45ns for the same area as the optimized design.



To increase the throughput for a given latency, we pipeline the implementation by inserting registers into the datapath.
This can be done automatically by the synthesis tool. For any given clock frequency, an area/latency trade-off similar
to Figure 4 can also be identified with pipelined modules.

IV. ALGORITHM LEVEL: COMBINING MULTIPLE CORDICs

Combining multiple CORDICs to an entire application is currently more an art than a science. In order to illustrate
some of the reasoning and manipulations involved when deriving CORDIC-style implementations for specific applications,
we revisit an algorithm of Lee and Morf, summed up in [10] and detailed in Section 7 of the survey [18].

A. Adaptive ladder filter

The are many ways of developing adaptive ladder filters. A very typical case is represented by the recursive exact
least-squares filters, such as discussed in [19], [20]. One of the most efficient implementations is based on adaptive ladder
or lattice filters. The adaptive ladder filter is an FIR filter used for the prediction of stochastic processes, e.g. for channel
equalization or speech encoding. The following development is the scalar version corresponding to a single channel filter.
The corresponding multi-channel version could be derived from [21]. The filter is composed of n cascaded feed-forward
stages, n being the order of the filter. Each stage has two outputs, the so-called forward and backward innovation,
which are sent on to the next stage (the backward innovation being delayed by one sample period before being used).
Each stage is parameterized by a “gain”, the partial correlation between the forward and backward innovation. This
gain varies with time and is updated whenever new values of the innovations are computed, i.e. each time there is a new
sample; this is the “adaptive” part of the filter. Within each stage a time update consists of 3 equations (the stage and
time indices are not shown here)

py = pui+un
ve = (v—pn)/(p+7) (1)
e = (n—psv)/(p47)

where p denotes the normalized partial correlations, v and 7 denote the normalized forward and backward innovations
respectively, py, v and 7y are the updated variables, and Z = v/1 — 22, the complement of .

Usually adaptive filter implementations with Given’s rotations require floating point arithmetic. The selected filter
algorithm (equations above) has a built-in variance and magnitude-normalization property that allows us to use fixed-
point arithmetic, which is more suitable for FPGAs. For more details on VLSI implementations and associated block
diagrams of these equations see [19],[20].

B. Geometrical interpretation of the ladder filter

The relations (1) are normalized versions of “Schur complement” identities relating the covariances of random variables.
Since the Schur complement identities essentially capture the theorem of Pythagoras in Euclidean space, normalization,
which amounts to projecting the objects from Euclidean space onto the unit sphere, yields identities of spherical geometry.

As a result the relations (1) have an elegant interpretation in terms of spherical trigonometry. Considering the triangle
FRB in Figure 5, and measuring both the angles R, F'; B and the sides r, f, b in radians, we can write three identities
from spherical trigonometry:

cosr = cosR-sinf-sinb + cosf-cosb
cosFF = (cosf — cosr-cosb)/(sinr - sinb) (2)
cosB = (cosb — cosr-cos f)/(sinr -sin f)

These identities enable the determination of information to the left of the dashed line (L) in Figure 5 in terms of
information to the right of (L).
With the correspondence
p=cosR, wv=cosf, n =-cosb , 3)
p4 =cosr, vy=cosF , n=cosB,

relations (1) are seen as relations providing the solution of a spherical triangle given two sides and the included angle.
Such equations are found in navigation on the Earth’s surface. Volder [6] developed the CORDIC procedure precisely to
solve such problems digitally and showed how to link CORDIC rotations for that purpose. Following a similar vein, Lee
et al. [10] proposed a way for linking the three types of CORDIC operations of Walther [7] to evaluate the expressions (1)
(this way is also presented in [18], with a slight modification). Is this way optimal? Can our geometrical insight enable



us to improve on it? Since the work [3] on quaternion CORDIC algorithms we know how to perform 3-D rotations in a
CORDIC-like fashion by working simultaneously on all 3 components. Can this be exploited?

Geometrically, we are interested in the result of the composition of the “backward” rotation from F to R along b and
the “forward” rotation from R to B along f; the cosine of the angle R between the sides b and f corresponds naturally
to the normalized partial correlation. That result corresponds to the rotation from F' to B along r, whose parameters
are what we seek. Appendix A details this composition of 3-D rotations and actually obtains as a result a decomposition
of the rotations in terms of 2-D CORDICs.

C. Implementation

Putting some flesh on the skeleton obtained in Appendix A, the computations are cast in terms of pairs of 2-D CORDIC
operators (represented below by ® and ® ), where the operators do not require the “Z-factor” part that computes the
angles explicitly. We obtain the architecture shown in figure 6:

@ rotate [ g ] to force the 2nd component to 0 and thus obtain the encoding (sign sequence) of the angle R,

simultaneously apply the rotation R(R) = [ g ;’_’ ] , determined by the sign sequence for the angle R, to the

vector [ g ] to obtain [ P } .
i

@® apply the rotation R(f)= [ ] , determined by the encoding of f (obtained in Step 5 of previous update) to

[ P ] to obtain [ VP ] :[ vt ] )
0 bpin n-pv

apply the rotation R(f) to the vector [ —Zﬁ ] to obtain f] + ]
Step 3

@ apply R(R) to [ Z; ] to get [ _n'f }, where nf =1 - po,

v —U
v

R

employ the hyperbolic CORDIC mode and force to 0 the 2nd component of the vector [ p1+ ] to obtain p; as 1st

component.

@rotate [ ﬁ?TﬁD ] to force the 2nd component to 0 and thus obtain as 1st component pi = p474 (and, as a byproduct,

a not very accurate—when g is small—encoding of b, that we shall not use),
compute, in the linear mode, the encoding of 1/p; (non-restoring division) and, simultaneously, apply this sign

sequence to pn to get 74.
Step 5

@ rotate [ ﬁ+ul*7+ ] to force the 2nd component to 0 and thus obtain the encoding (sign sequence) of the angle F' to

be used as encoding of the “angle” f in Step 2 for the next update,
apply in the linear mode the sign sequence encoding 1/p4 both to v*, to get v, and to n*, to get 4.

The second CORDIC at Step 4 is a modified version of the standard CORDIC architecture. It computes the sign
sequence encoding of 1/p, and, simultaneously, applies this sign sequence to p to get 7. With zo = 1 and yo = 0, the
recurrence is of the form (assuming 1/p; does not exceed 8, i.e., |p4| does not exceed 0.992):

Tiy1 =z — sign(z;) - 2277 - py
: 2 4)
Yit1 = yi + sign(x;) - 2°7" - pv

From the recurrence relation, one can see that equation (4) fits on the shift-and-add resources of a CORDIC archi-
tecture.

The accuracy d needed for the computations will typically be about 16 to 20 bits. However, scaling plus additional
iterations for convergence (in the hyperbolic case) impose slightly more than d pipeline stages within a CORDIC unit

[4], [9]-



Using the pipelined, parallel CORDIC presented before, we distinguish 4 basic architectures based on the number of

CORDICs used:

1. minimal: 1 — 2 CORDICs

2. based on the 5 steps of computing 1 stage of the filter: 2 -5 CORDICs
3. based on the number of stages in the filter: 2 -n CORDICs

4. fully pipelineable, maximal performance: 2-5-n CORDICs

All cases require some amount, of memory, or shift-registers (FIFOs), to store intermediate values of the computation.
Xilinx CLBs can be configured to 16-bit FIFOs enabling a very efficient implementation of the intermediate shift registers.
Note that we do not require all three CORDIC equations, using only the z and y pipes, we save 33% of area. Also each
case has different requirements on reconfigurability on the CORDICs.

In all cases the delay for 1 result is 5 - n - d clock cycles. However, throughput differs with pipeline depth. In case 4,
with 10-n CORDICs, throughput is 1 clock cycle between results. Case 3 with 2-n CORDICs results in 5 clock cycles
between results. Case 2 with 10 CORDICs results in n clock cycles between results. Finally, case 1 requires (1—2)-5-n
clock cycles between results.

D. Discussion

In order to understand the advantages of the geometrical interpretation we compare the above implementation to
an earlier implementation with CORDICs (see [10], [18]). Both implementations require 10 CORDICs. The earlier
implementation employs all 3 pipelines (z,y, and z) as opposed to only (z,y) CORDICs in the proposed implementation.
Thus, the geometrical interpretation gives us 17% reduction of latency with a 45% reduction of area for the fully pipelined
case 4 (see above). However the earlier implementation could be modified to also use sign encodings of the z-quantities
thus giving about the same latency and area. The geometrical approach has the advantage of being more systematic, less
empirical, and therefore more apt to be used to create compilers for reconfigurable computing that can target CORDIC
arithmetic units. While being a good starting point, our geometric viewpoint has probably not been fully exploited here
and we still have hope for a more parallel computational scheme, operating on 3-D vectors.

An alternative way of using the geometrical insight could be derived from the general update equation(32 in [21])
which is not only valid in the scalar case but also in the multi-channel case. The idea in [21] is based on a block
diagonalization of the singular-value decomposition type. This could be done for instance using an extension of the
CORDIC idea to quaternion representation as in [3].

V. CONCLUSIONS

We have implemented high-throughput CORDICs for reconfigurable computing in our object-oriented hardware design
environment — PAM-Blox — and optimized generic parallel CORDICs with state-of-the-art synthesis tools.

While commercial synthesis tools are very efficient in optimizing CORDICs for ASICs, FPGAs do not seem to lend
themselves to these types of optimizations. At a higher level, in order to give an idea of what is involved in the automatic
generation of CORDIC-like units for specific applications, we have decomposed the computations of an adaptive filter
in terms of CORDIC operations, using geometric insights that could lead to high-level compilation to CORDICs.

For PAM-Blox, the natural extension is to integrate behavioral synthesis into module generation e.g. using synthesis
from C [22], [23]. A behavioral method within the hardware object could be automatically transformed into multiple
structural C++ methods.

CORDICs map well onto FPGAs. Due to their small area requirement, CORDICs — especially parallel forms — are
most useful for certain highly parallelizeable and pipelineable applications which can take advantage of a large number
of CORDIC units on a chip.

APPENDIX A

Compositions of rotations in 3-D space are best represented in terms of quaternions. Simply, and to facilitate the
relation with [3], rotation by an angle u around an axis u = [uz, uy, u;]" with u2 4+ u? + u2 = 1 is evaluated by means
of a multiplication by the matrix

w —r -y —=2 where w = cosu
oz ow -z oy z Ug
@= y 2z w - and |y [=| uy |-sinw. (A1)
z -y T w z Uy

The product of the rotation by b around b (matrix Q) followed by the rotation by f around f (matrix Q) is given
by the first column of ()¢ - Qs, hence, in order to determine the resulting rotation angle r and direction r, it is sufficient
to multiply the first column of @)y by Q. Exploiting the structure of )y and denoting by x the cross-product of two
vectors, the evaluation of the first column of the product yields

cosr _ cos fcosb — (fsinf)- (bsinbd)
[ r-sinr ] - [(fsinf)cosb + cos f(bsinb) + (fsin f) x (bsinb)]



_ cos fcosb — (f-b)sin fsinb
- [fsinfcosb+bcosfsinb+(f>< b)sinfsinb] : (A2)
Specifically (see equations (3) and Figure 5)
cosf=v, sinf=v, f=[1,0,0]7, f-b=—-cosR=—p,
cosb=n, sinb=7, b=[—-cosR, 0, sinR]T=[—-p, 0, p]T, (A3)
cosr=py, sinr=py, f-r=cosB=n;, b-r=cosF=vy.

Thus, expressing the vectors f, b and r in terms of their components, to compose the rotations we compute the
product

v —uv 0 0 n nv + pnv

v v 0 0 —p7 _ | nv — pnjv

0 0 v -w 0 - —pijp : (A4)
0O 0 v v on piv

This equation provides the skeleton of the decomposition of the adaptive filter computations into CORDIC operations.
Since @ is the composition of two independent plane rotations, this decoupling should be exploited: it is preferable
here to employ 2-D CORDICs rather than a quaternion CORDIC (We outline an alternative approach that leads to the
use of quaternion CORDIC at the end of Section 4.D), and apply two 2-D CORDICs in parallel for speed.

The equation implies that p; = cosr may be obtained as the first component of
)]
vov —p |

The second component of that vector is equal to the first component of rsinr, i.e., f- (rsinr) = (f -r)sinr = py.
We denote n* this second component.

Similarly v, can be obtained according to v4py = (b-r)sinr = b (rsinr) = —pn* + pvt, where vt is the second

component of the vector
v —v 0
v v pn |-

Thus, denoting v* = v p;, —v* may be obtained as the first component of
p —p n*
pop A

Hence, first we compute

—p t 517 57
=0 L] e Lo =10 9] 4
n v v —pi] vpn v v 0
then we evaluate
vl _[ v _[p b n*
L =l 1= L] (49
and finally we obtain
vy =v*/py and ny =n"/py (AT)

This way of decomposing the equations (1), guided by our geometric interpretation, leads to a computational structure
different from that of [10], [18].

Proceeding with our geometrical approach we shall also use the relation between the sines of the angles and sides of
a spherical triangle (“the law of sines”),

RN P
P+ v n
to update the sines 7 and 7:
vy =v-(p/p+) and ny =n-(p/ps) (A8)
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Parallel CORDIC

Fig. 1. The figure shows a block diagram of a parallel CORDIC architecture. The table for the z-pipe is coded implicitly in the constant
adders. All adders include a wired shift of the operands. The shift amount is chosen to eliminate the scaling factor. For a bit-serial
CORDIC simply replace parallel adders with bit-serial adders, add delay elements and a table for z-values.
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PAM-Blox
Applications
PaModul es:
Mults, CORDICs, etc.
PamBIl ox : \'
Count er, Adder, etc.
PanDC :
Regi sters, Logi ¢ Equati ons, Rom Ram etc.
Y Y Y

Xilinx Netlist Format - XNF ‘

Fig. 2. Layers of the PAM-Bloz design environment: DIGITAL PamDC compiles the design to the Xilinz Netlist Format XNF; PamBloz
are interacting with PamDC objects, PaModules interact with PamBlox and PamDC, and the application can access features from all
three layers below.
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Fig. 3. Layout of the PP-CORDIC, placed with PAM-Bloz.
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Fig. 5. Geometric interpretation of the normalized ladder algorithm in terms of spherical trigonometry. From the information bRf, to the
right of (L), we deduce the information FrB to the left of (L). This amounts to computing a rotation, from F to B, as the composition
of two rotations, from F to R and from R to B.
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Fig. 6. General dataflow of the proposed filter stage implementation.
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x - cos(z) — y - sin(z)

y - cos(z) + x - sin(2)

T

Yy+x-z

z - cosh(z) + y - sinh(z2)

y - cosh(z) + x - sinh(2)

Va? +y?

z +tan~!(y/x)

T

z+ (y/=)

\/wz _ yz

z + tanh™ ' (y/x)

TABLE 1
FuncrioNs coMpUTED BY CORDIC
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CORDIC on FPGAs

[ PP-CORDIC [| CYCLE TIME | AREA |
FE-II 25.4 ns 133 CLBs
PAM-Blox 23.7 ns 131 CLBs
TABLE II
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THE TABLE SHOWS AREA AND CYCLE TIME FOR PAM-BLOX AND SYNOPSYS FPGA ExpPREss II (FE-IT) FOR XILINX XC4000 FPGAS AT 0.5

TECHNOLOGY (SPEEDGRADE -3), AFTER XILINX PLACE-AND-ROUTE. THE AREA OF THE PARALLEL CORDIC (PP-CORDIC) Is GIVEN IN

CONFIGURABLE LoGIC BLOCKS, CLBS(CELLS).



