
PAM-Blox II: Design and Evaluation of C++ Module Generation for Computing with FPGAs

Oskar Mencer

Computing Sciences Center, Bell Labs, Lucent,
Murray Hill, NJ 07974, USA.

email: mencer@research.bell-labs.com

Abstract

This paper explores the implications of integrating flexible
module generation into a compiler for FPGAs. The objec-
tive is to improve the programmability of FPGAs, or in other
words, the productivity of the FPGA programmer. We de-
scribe (1) the module generation library PAM-Blox II, the
second generation of object-oriented module generators in
C++, targeted at computing with FPGAs, and (2) examples
of design tradeoffs and performance results using redundant
representations for addition and multiplication, and technol-
ogy mapping of comparison and elementary function eval-
uation.

PAM-Blox II is built on top of a set of extensions to the
gate level FPGA design library PamDC to provide a more
efficient, portable, scalable, and maintainable module gen-
erator library. Using PAM-Blox II we demonstrate a simpli-
fied interface to bit-level programability. The simplification
results from the bottom-up approach and a close coupling
of architecture generation, module generation and gate level
CAD.

The tradeoffs for the module generators are based on
trading area for speed and hand-optimizing technology map-
ping to the specific FPGA technology. As an example, we
show that redundant number representations hold one key
to unleashing the full potential of reconfigurability on the
bit-level. The presented module generators are applied to
encryption and compression to show the impact of the bit-
level optimizations on application performance.

1. Introduction

The goal of computing with Field-Programmable Gate Ar-
rays (FPGAs) as first investigated by the PAM[1] project
and Splash[2] project, is to migrate certain computations
that are inefficiently handled on microprocessors to FPGA
accelerators. Field Programmable Gate Arrays (FPGAs)
have a tremendous potential to increase performance[3] and
reduce power consumption[4] for a wide variety of applica-
tions (e.g. [6][7][8][9]).

FPGA Vendor tools

FPGA

Compaq PamDC

Extensions to PamDC

Module Generation

Algorithm Analysis

PAM−Blox II

Programmer

Architecture Generation
A Stream Compiler (ASC)

Figure 1: Partitioning the FPGA compilation problem into
levels of abstraction.

We partition FPGA compilation into four tasks, or levels
of abstraction as shown in Figure 1:

1. Algorithm analysis layer: Common tasks associated
with this layer are: extracting compiler-controlled mem-
ory management[18][19], pointer analysis for hard-
ware synthesis[17], loop transformation[10][11][12],
precision analysis[13][14][15][16], data-structure trans-
formations, and architecture selection. Some of these
tasks could be handled automatically, while automat-
ing others is still beyond the state-of-the-art and has
to be done manually.

2. Architecture generation layer: At this layer the rep-
resentation contains variable-specific precision infor-
mation, loop hints for generating the architecture, ex-
plicit memory allocation mapped to FPGA internal
and external resources, and further hints to the soft-
ware on how to generate the application specific in-

stance of the selected architecture. Usually, a com-
piler at this level focuses on one particular architec-
ture such as a stream architecture[20] based on dataflow
graphs, a parallel multi-processor-like (very coarse
grain parallel) architecture[21], or more conventional
parametrizable microprocessors[22][23]. These ar-
chitectures are domain specific architectures, as there
exists a domain of applications for which the specific
architecture is the “optimal” choice.

3. Module generation layer: Module generator libraries
define the “instruction set” for the architecture gen-
eration layer. The standard solution is to use FPGA
vendor libraries which are very restrictive and can not
easily be changed, adapted or extended due, partly,
to intellectual property reasons. Since FPGAs have
full flexibility at the bit level, module generation is
at the core of achieving orders of magnitude speedup
by mapping algorithms to FPGAs. We believe that
the key requirements for module generation are: open
source, scalability, extensibility, extensive documen-
tation, efficient code sharing, maintainability, and fea-
tures for portability to new generations of FPGAs.
This paper shows the second generation of a solution
to module generation in object oriented C++.

4. Gate Level to Netlist layer: This layer contains com-
mercial CAD synthesis tools such as Synopsys FPGA
Express[25], or mature research tools such as Com-
paq (DIGITAL) PamDC[26] used for the module gen-
erators in this work.

In order to meet the above requirements for module gen-
eration, we apply an object-oriented design methodology.
Object oriented software design is a well established tech-
nology in the software world. The hardware world is slowly
adopting the advances made by object oriented languages
such as C/C++[27][28] and Java[29][30][31]. Object ori-
ented design leads to an efficient solution of the module
generation problem by focusing on the requirements for mod-
ule generation mentioned above, such as scalability and code
sharing. Inheritance and hierarchical class structures match
the requirements of creating a large library of module gener-
ators with the logic expressed as computation (methods) and
module abstraction parameters described as internal state
(local variables) of the generated object.

Why object oriented C++? C++ is one of the richest
object-oriented languages sometimes criticized for the com-
plexity arising from this richness of features. On the other
hand, once an optimal mapping of the problem space to C++
features is established, the software design and maintenance
task is greatly simplified.

Why C++ as opposed to Java[29][30][31]? C++ offers
operator overloading (not available in Java) which is one of
the most convenient features for adding application specific

semantics to a programming language. In our case these
semantics include boolean logic equations, and in fact any
expressions/operations on user-defined classes which spec-
ify hardware variable types. The second reason for using
C++ is the Standard Template Library (STL)[32]. The STL
offers various polymorphic data-structures and algorithms
which are independent of the data type and as a consequence
the user defined types (or module generator classes) can be
used as the nodes of all STL data structures with minimal
effort. The C++ feature that enables the STL are template
classes which are also not available in Java. One of the
main arguments for Java is its integrated garbage collec-
tion. Garbage collectors for C++ are available[33], but us-
ing them in conjunction with PAM-Blox II did not prove to
provide any advantage since the compilation and execution
of a PAM-Blox II program is to short for garbage collection
to make a significant difference.

Why not SystemC[27]? SystemC is optimized for the
hardware design process by mirroring the philosophy of sim-
ulation languages such as VHDL or Verilog. The goal in
this project is not general purpose behavioral synthesis but
domain-specific compilation for FPGAs. The difference is
design versus programming, simulation and hardware ver-
ification versus trial-and-error, and IP generation versus
open software. In other words, there is no free SystemC
compiler for FPGAs that allows precise control over all the
details of the resulting circuit, as required by ASC.

PAM-Blox II is part of A Stream Compiler (ASC), cur-
rently under development at Bell Labs, which uses gate level
PamDC and integrates extensions to PamDC, module gener-
ation (PAM-Blox II), and architecture generation all in a sin-
gle C++ program. This C++ program can be set to simulate
the hardware on the algorithm level or on the gate level. In
addition, the same executable can generate a netlist for ven-
dor specific CAD tools such as the Xilinx place-and-route
tools. Integration of all FPGA compilation layers within the
same execution environment enables a high degree of trans-
parency and cross-level optimization.

Our approach is to build up layers of abstraction with
a bottom-up approach. The current focus is on integrating
module generation and architecture generation. Details on
architecture generation will be presented in a future publi-
cation.

2. Module Generation in PAM-Blox II

A conventional hardware module library stores the imple-
mentations of a large set of hardware modules. A module
generation library distinguishes itself from a conventional
library of hardware modules by storing the algorithm that
generates a set of hardware modules based on input param-
eters such as bitwidth of inputs and outputs, and sign repre-
sentation of inputs and outputs. An example for the impor-
tance of generating different units for the various combina-

tions of bitwidths is the array multiplier which occupies an
area of ����� cells, where � and � are the bitwidths of the
multiplicand and multiplier respectively. In this sense, mod-
ule generation is really a software system which designs
hardware, rather than an extension of a hardware descrip-
tion system.

The PAM-Blox II module generation framework con-
tains extensions to the underlying “Gate level to Netlist”
layer, PamDC, and an updated methodology for utilizing
object-oriented features of C++ to module generation for
the purpose of computing with FPGAs.

Towards the upper layers PAM-Blox II contains features
to interface the module generation environment to the archi-
tecture generation layer of ASC.

Extensions to PamDC:

1. class Net: The generic class Net encapsu-
lates a set of wires of variable size, and thus enables
width inference at the module generator level. This
class simplifies the C++ code required to describe the
generators. In addition, class Net contains a set
of user defined operators that further simplify the de-
scription of operations on entire sets of wires, such as
assignment, indexing and concatenation. A key fea-
ture of class Net is compatibility with the Stan-
dard Template Library of C++, which is not compat-
ible with PamDC objects such as Bools, Wires or
WireVectors.

2. Support for various sign representation modes on the
wire level: In order to support multiple sign repre-
sentations such as twos-complement, sign magnitude,
and unsigned numbers, extensions to PamDC han-
dle variable bitwidth assignments of all the supported
sign representation modes.

3. Xilinx Virtex support includes wrappers for generat-
ing large block RAMs available in the Xilinx Virtex
FPGA family as dedicated, parametrizable blocks of
memory. The gate level designer has the option to se-
lect the width of the constant-size block RAM within
the limits of the particular underlying FPGA technol-
ogy.

4. In order to make the ASC project and PAM-Blox II
in particular more accessible, PamDC is ported from
Compaq ALPHA cxx to GNU gcc version 2.95.2 or
higher. Even though C++ is standardized, porting
software between platforms is still a major challenge
because most of the C++ compilers do not imple-
ment all mandatory features of standard C++. An-
other cause of difficulties lies within the differences
in text (source code) line termination conventions on
the various systems.

PAM-Blox II is implemented on top of the extensions to
PamDC. Object oriented features of C++ correspond to

the tasks involved in describing hardware module genera-
tors as follows:

1. Encapsulation of a module generator in a C++ class:
Object state represents the internal wires and parame-
ters of the module. These parameters can be accessed
by various other components of the architecture gen-
eration environment such as the scheduler or possi-
bly, a high level area and timing estimator. This ob-
jects functions (methods) describe the logic paramet-
rically, generating the hardware module based on the
input parameters. These parameters can be partially
inferred from the input variables (Net objects) and
their state.

2. Code-reuse is implemented by a C++ class hierar-
chy with explicit inheritance controlled by defining
virtual functions and function overloading. Child ob-
jects inherit all public methods (functions) and vari-
ables (state). For example, all objects with a carry-
chain, such as adders, counters, and shifters, inherit
the carry-chain definition functions from their com-
mon parent. This particular example of code-reuse
is paramount to porting the module generators from
one FPGA family to another. Details on porting Xil-
inx XC4000 carry chain generators to Xilinx Virtex
devices using inheritance and code-reuse are summa-
rized at the end of this section.

The major changes over the initial PAM-Blox[24] im-
plementation, in addition to the object-oriented design deci-
sion mentioned above, are:

1. Use of template classes: A template class is a de-
scription of a class that can be instantiated with dif-
ferent variable types as inputs. The most common use
of template classes is in the Standard Template Li-
brary(STL). An STL class such as a vector can be
instantiated as a vector of integers (vector � int �),
a vector of floats(vector � float �) or a vector of
any other user-defined class such as vector � Net � .
The initial PAM-Blox implementation uses template
classes to distinguish hardware integers with different
bitwidths as different types, as suggested by PamDC.
PAM-Blox II uses class Net. As a consequence
PAM-Blox II treats variables with different bitwidths
as variables of the same type with a different attribute
(or object state). The architecture generation layer
contains more extensive use of template classes.

2. An object-specific “enable” for control: Sequen-
tial modules iterating in parallel for a specific num-
ber of clock cycles require a control input to coordi-
nate the number of iterations. For example, a one-
cycle adder followed by an � cycle sequential mul-
tiplication requires separate control lines for the two

units to be pipelined correctly. A priori options were:
(1) provide separate clocks, (2) add an enable signal
to the logic equations (LUT) of the module, or (3)
use the enable input of the flip flop. Providing sep-
arate clocks was ruled out early on due to the limi-
tation to very few clock buffers on FPGAs. Enable
inputs as part of the object logic (2) are used in the
initial PAM-Blox implementation. PAM-Blox II pro-
vides a more efficient, separate enable line for flip-
flops (3) of each hardware object. Enable lines can
now be transparently connected to all flip flops gener-
ated within a particular hardware object. A schedul-
ing phase (within the architecture generation layer)
connects the enable lines of each object to the control
state machine according to the results of the schedul-
ing phase. In C++ these control lines are handled in
a hierarchical fashion which greatly simplifies the de-
sign of the architecture generation layer. The advan-
tages gained from this feature within PAM-Blox II are
a direct result of the tight integration and joint de-
velopment of the module generation and architecture
generation layers.

3. Adapting the design of PAM-Blox II to the limitations
posed by gcc: Since gcc is changing rapidly, the de-
tails of the limitations of the current gcc implemen-
tation are important but not directly relevant to this
paper.

In summary, a PAM-Blox II hardware object state consists
of: latency, number of sequential cycles, a list of nested
sequential objects, a maximal sequential cycle within the
object (for nested objects), size (bitwidth), a hierarchical
name for debugging, an enable signal, a clock signal, and
an “inputs valid” signal.

The module generation environment currently consists
of around 170 module generators in about 10K lines of C++
code resulting in an average of less than 60 lines of code per
module generator (including white spaces and comments).
For comparison, the initial PAM-Blox implementation con-
sists of about 2K lines of code containing 34 module gener-
ators.

2.1. Porting XC4000 carry chains to Virtex Devices

Carry chains form the basis of almost all arithmetic cir-
cuits from adders, subtracters, multipliers, and dividers, to
more specialized units such as counters, comparators, and
leading-one-detect circuits.

A conventional binary full adder with inputs
�

and �
has the following well known logic equations:

��� ����� � ��	�
� � ��	�
��������������� (1)

������� � ��� � � � ���
��� � � �������� ��� ���
�!� � � �������� ��� ��� (2)

For all FPGAs with a dedicated carry chain, the above
equations have to be mapped to a four input lookup table
(the lookup table available for logic in the cell) plus some
dedicated custom carry logic. The various FPGA families
vary in the precise way that this partition is accomplished.

In order to simplify porting PAM-Blox to new carry
chain organizations, the two equations above are described
by two separate virtual functions that can be overloaded and
inherited. The next step lies within the details of the parti-
tion of the carry chain equations for the two technologies at
hand, Xilinx XC4000 and Xilinx Virtex devices.

The starting point for porting netlists to new FPGA fam-
ilies is the Xilinx library guide which describes the Xilinx
library modules. In addition, the data sheet for the particular
device provides the complementary pieces of information.
From these documents we learn that for Xilinx XC4000 FP-
GAs the equations for addition in C++ become:

sum[i] = A[i] ˆ B[i] ˆ carry[i-1]; (3)

carry[i] � (A[i]&B[i])|(A[i]&carry[i-1])|

(B[i]&carry[i-1])= (4)
� mux(A[i]ˆB[i],carry[i-1],ZERO);

For Xilinx XC4000 devices, the dedicated carry chain is
inferred by the Xilinx place and route tools based on rela-
tive placement constraints that lock the particular wires to
positions relative to each other.

For Virtex devices the equations for addition are:

"�#�$&%('*) �,+.-�/1032 ��4�5.6 %7'�)98 0�:;/�/<2 %('>=,?�) �A@ (5)

0�:;/</�2 %('�) � $B# +1032 ��4�5.6 %7'�)98DC;E<F.GB8 0H:;/</�2 %('I=,?�) ��@ (6)

Function calls muxcy(select,input1,input0)
and xorcy() instantiate dedicated carry chain logic prim-
itives available inside the Virtex logic blocks. The LUT[]
array describes the logic that goes into the Virtex adders
lookup table. In the case above the lookup table holds the
exclusive-or of the two inputs, or LUT[i]=A[i]ˆB[i].
Since carry chains use dedicated blocks explicitly, there is
no need for relative placement constraints to infer a carry
chain such as is necessary for XC4000 FPGAs.

Since the only difference between the two technologies
is in the above two equation, declaring each one of these
equations in a separate virtual function enables porting PAM-
Blox II by overloading the carry chain functions of the the
top ancestor class. Thus, partitioning the logic into appro-
priate virtual functions is the key to portability of an object-
oriented module generation environment and also provides
one the key advantages for using object oriented technology.

In addition to Xilinx FPGAs, we also consider porting
PAM-Blox II to Altera devices. However, any such effort is

x

x
x

10

7 x x x

x3.5

o
constant add

bitwidth

latency
Add

x

o

o carry chain

x fast carry chain

x

8 16 24 32

[ns]

Figure 2: The figure shows latency of addition given three
implementation choices: carry chain, (dedicated) fast carry
chain, and constant time addition.

complicated by the complete incompatibility of Xilinx and
Altera netlists on the and/or gate level, even though both
netlists are in standard EDIF format. As a consequence this
effort is left for future work.

3. Examples of PAM-Blox II Module Generators

In order to show the utility of custom designed module gen-
erators for computing with FPGAs, we explain the design
of a few sample module generators, and the impact of hav-
ing such custom modules available in the module generator
library. The tradeoffs for the module generators are based
on trading area for speed, hand-optimizing technology map-
ping to the specific FPGA microarchitecture, and utilizing a
redundant number representation.

One way of looking at these tradeoffs is by contrasting
bit-level flexibility versus a coarse grain programmable ar-
chitecture. From a different viewpoint, the advantages of
optimized module generators present a case for bottom up
design of a compiler for FPGAs as opposed to a brute force
top down compiler that maps to conventional ALU func-
tionality.

The results for latency and area are based on Xilinx Vir-
texE devices (speedgrade = �), and standard Xilinx Founda-
tion series v3.2 place and route tools.

3.1. Addition and Subtraction

Addition and Subtraction are the most important module
generators for computing with FPGAs. The results in this
section quantify the advantages of the FPGAs fast carry
chain versus redundant representations.

3.1.1. Using Redundant Representations

Redundant representations are one of the key methods to
speed up arithmetic circuits in VLSI[34]. Redundant encod-
ings are defined by Omondi[36] page 456, as: “A radix- �
redundant signed-digit number system is one that is based
on a digit set:

������ = � 8*= � � =�� � 8
	�	
	�8*=���8�.8
�;8
	�	
	A8�� =���8�����8 (7)

where ��� � � � =�� , ����� � � =�� and � � � ��� .
The last condition allows each digit to assume more than �
values and gives rise to redundancy.”

Such redundant digits enable us to trade off area (more
bits) for time by eliminating the carry chain and obtaining
“constant time addition”, where addition time does not de-
pend on the bitwidth of the operands.

Figure 2 compares carry chain adders with and without
the dedicated fast carry chain, and a constant time adder us-
ing the redundant digit set � ����� .8���8���� with � � � . Such
a digit set requires two bits to represent each digit and, thus,
results in a doubling of the required bits to represent a value.
The graph in figure 2 shows the order of magnitude speedup
of carry chain addition provided by the Xilinx fast carry
chain. A single redundant addition is comparable to a 32
bit carry chain add. Despite that fact, a collection of adders
such as present in an array multiplier (results in figure 3)
shows significant time savings for redundant adders even
for bitwidths smaller than 32 bits. Interestingly, not only
does the redundant implementation outperform the multi-
plier with fast carry chains, but even scaling turns out to
work in favour of redundant digits resulting a smaller slope
of the redundant multiplication line in figure 3. This sur-
prising result is due to the structure of redundant represen-
tations. Most of the delay is in the interconnect to and from
the unit. By placing multiple units together, Xilinx place
and Route tools can minimize this interconnect delay and
thus optimize the performance of the combined circuit.

As for area, redundant multipliers are about �! smaller
than carry chain based implementations. The area advan-
tage results from a slightly higher utilization of FPGA re-
sources due to technology mapping of conventional �#" 8�� �
counters[35] which are the basic building blocks for com-
puting with a redundant representation. A more detailed
description of redundant arithmetic is beyond the scope of
this paper.

A further optimization of multipliers for computing with
FPGAs can be applied to constant multiplication, as shown
in a previous paper[24].

3.1.2. A Sign-Magnitude Add/Sub Unit

PAM-Blox II currently supports three sign modes which are
also supported by the architecture generation level of ASC:

x

25

50

75

x

bitwidth

latency
Mult

x100

xx

x

x

[ns]

x

x

Mult with const adds

Mult with fast carry chains

x

8 16 24 32

Figure 3: The figure shows a latency comparison of two
multiplier implementations: with (dedicated) fast carry
chains, and with internal redundant representation.

Add/Sub
carry_in

inc_sel

|Result|

Increment

XOR

carry_out

|A| |B|

Figure 4: The figure shows the implementation of a Sign-
Magnitude adder.

UNSIGNED,TWOSCOMPLEMENT, and SIGN MAGNITUDE.
Since the implementation of sign magnitude addition and
subtraction proved more challenging than expected, we show
some details of the module generator for such sign magni-
tude addition as an example for PAM-Blox II units.

Figure 4 shows the detailed microarchitecture of a unit
that adds or subtracts two numbers

� 8 � that are represented
by sign bits signa, signb, and magnitudes � � � 8 � � � . The
source code in figure 5 shows the implementation of the
module generator.

3.2. Comparison operator==

A common computational element is to check if two val-
ues are equal. Looking at the problem in a top down ap-
proach one might consider using a subtracter and checking
if the result is zero. Given the flexibility at the bit-level there

AddSubSM::out() {

signa = A.get_last();
signb = (sub ? ˜B.get_last() : B.get_last());

carry_in = signa ˆ signb;

// PAM-Blox II base class
PamComponent *Adder,*Inc;

// pipelined add/sub unit
Adder=new AddSub(A.from_to(0,A.size()-2),

B.from_to(0,B.size()-2),
carry_in,
AddSubOut,
&carry_out,
&clk);

sel=reg(carry_in,clk) & ˜carry_out;
// conditional increment
Inc = new XorIncrement(AddSubOut,

inc_sel,
OutMag,
&clk);

Adder->out(); // instantiate logic
Adder->place(); // relative placement

Inc->out(); // instantiate logic
Inc->place(); // relative placement

// assign magnitude to Result
W.EqualVector(OutMag, Result,

OutMag->size());

// generate the sign bit for the result
Result.get_last()=reg((reg(signa&signb)|

(reg(signa &˜signb) & carry_out)|
(reg(˜signa & signb) & ˜carry_out)));

}

Figure 5: PAM-Blox II code for sign-magnitude addition
and subtraction. Method from to() extracts a bitfield
out of a variable. Method get last() returns the most
significant bit which in this case is the sign bit. Note
that pipeline stages are set explicitly by declaring flip-flops
reg(input, clock).

6

5

4

x

latency
x
x

[ns] Compare

x

x
x

x

x

Compare w/ fast carry chain

Compare w/ reduction tree

x

x

bitwidth
8 16 24 32

Figure 6: The figure shows two options of comparing a vari-
able with a constant value. (1) with a carry chain, and (2)
with a reduction tree.

are two interesting solutions, one for checking equality of a
variable and a constant and one for checking equality of two
variables. Optimizing for area and latency respectively, one
could implement the comparison operation (1) with a carry
chain, or (2) with a parallel, tree-like implementation.

A closer look at the implementation for comparing a
variable with a constant shows that the carry-chain version
can be a subclass of an adder. Such a modified adder then
simply requires the overloading of the carry chain’s LUT
functionality which is a separate virtual function within the
adder. The code-fragment below shows one version of the
PAM-Blox II code defining a comparison between a vari-
able A and a constant K at bit position

�
.

virtual EquationHandler LUT(int i){
return((((K>>i)&1) ? A[i] :˜A[i])&

(((K>>(i+1))&1) ? A[i+1]:˜A[i+1])&
(((K>>(i+2))&1) ? A[i+2]:˜A[i+2])&
(((K>>(i+3))&1) ? A[i+3]:˜A[i+3]));

}

This code implies that a single four-input LUT com-
pares up to four bits against a constant value. As a con-
sequence, the area of the resulting unit is four times smaller
than a subtracter and delivers the result of the comparison
on the carry out wire of the unit. A similar construction for
comparing two variables leads to a unit of half the size of a
subtracter.

A tree-like implementation still reduces up to four bits
per lookup table, but instead of a carry chain, the result is
obtained by reducing the input in a tree like fashion. PAM-
Blox II code for such a reduction tree is slightly more ardu-
ous.

Figure 7: Size comparison in CLBs, for the function eval-
uation stage with varying data width. Note that values for
bipartite tables (lookup-add) are estimated based on compu-
tational resources per CLB.

Comparing two variables limits the number of bits that
can be compared in one lookup table to two bits of each in-
put variable. As a consequence, for the carry chain solution,
comparing two variables takes about twice the area of com-
paring a variable to a constant, and about half the area of a
subtracter.

Figure 6 shows the resulting latencies of comparing vari-
ables with constants for a range of input bitwidths. Latency
results for comparing variables with variables are similar.
From standard VLSI experience we expect a circuit with a
hierarchical, or tree based solution to be faster than a carry
chain. From an FPGA designers view we expect any solu-
tion that uses the fast carry chain to be superior. The results
show that the dedicated fast carry chain solution is in fact
faster than the hierarchical solution.

One of the conclusions from this result is that knowl-
edge from VLSI design is not directly applicable to FPGA
design despite the fact that both are hardware design method-
ologies.

3.3. Elementary Functions

In a previous paper[37] we present an approach to param-
eterize pipelined designs for differentiable function evalu-
ation using lookup tables, adders, shifters, multipliers, and
dividers. This approach provides an efficient way to develop
implementations of function evaluators based on lookup ta-
bles, the size and performance of which can be estimated
parametrically.

Figure 8: Implementation of IDEA Encryption on an
XCV300E FPGA, including glue logic for an Annapolis
Microsystems Wildcard.

IDEA Performance

1

10

100

1000

Alpha Proc. XCV300(*) XCV600 XCV2000

Figure 9: Performance [Mbits/s] of IDEA Encryption on a
Compaq Alpha processor and a range of Xilinx Virtex de-
vices. (*)This implementation is run on the Wildcard board.

We compare the following options for a fully pipelined
function evaluation unit for the

�����
function: (1) full lookup

tables, (2) a lookup followed by a multiply-add step (lookup-
multiply), (3) a lookup followed by addition (lookup-add),
(4) shift and add based CORDIC units, and (5) rational ap-
proximation. The tradeoff between the various units in terms
of area required for achieving full throughput operation, given
a target output precision is shown in figure 7.

These results suggest that the optimal microarchitecture
for function evaluation depends on the bitwidth of the input
and output. For applications with high throughput require-
ments, these results for area of the various units are the main
criterium for deciding on the architecture. We are currently
implementing a library in the architecture generation and
module generation layers that utilizes these module genera-
tors for evaluating elementary functions.

4. Application 1: IDEA Encryption

IDEA encryption serves to demonstrate the effects of the
above redundant multipliers on the performance of an ap-
plication.

The International Data Encryption Algorithm (IDEA)
encrypts or decrypts 64-bit data blocks, using symmetric

Figure 10: Implementation of LZ compression on an
XCV300E FPGA, including glue logic for an Annapolis
Microsystems Wildcard.

Compress Performance

1

10

100

Alpha Proc. XCV300(*) XCV600 XCV1000

Figure 11: Performance [Mbits/s] of compression on an Al-
pha processor and a range of Virtex devices. (*)This imple-
mentation is run on the Wildcard board.

128-bit keys. The 128-bit keys are expanded further to 52
sub-keys, 16 bits each. A single algorithm uses different
keys for encryption and decryption. The inner loop is re-
peated eight times, and consists of operations: 	�
� , multi-
plication, addition, and (� ��� � �	��
 �).

Figure 9 shows a performance comparison of running
the inner loop of IDEA encryption on an Alpha, EV5.6
(21164A) processor operating at 532 MHz, and a series of
Xilinx VirtexE FPGAs (speedgrade -6). The FPGA designs
include glue logic for the Wildcard [38] from Annapolis Mi-
crosystems with a Xilinx XCV300E device. The implemen-
tation for the Wildcard (XCV300E) shown in figure 8 utiliz-
ing �� of the CLBs is obtained with a preliminary version
of the ASC system.

The performance results show a speedup of about � �
for the conventional XCV300E implementation without “re-
dundant multipliers”, and another factor of two speedup with
“redundant multipliers” for the XCV300E and the XCV600E,
using the redundant adders from section 3.1. In the case of
the XCV2000E the design is fully unrolled and throughput
does not depend on the latency of the operations.

5. Application 2: LZ Compression

The results for compression demonstrate the effects of opti-
mal comparison units on compression performance.

Lempel-Ziv (LZ) compression has many variations. In
this example we implement a very simple form of LZ com-
pression where we look at

�
bytes of history, and try to

match a string up to length
�

into the future. As a con-
sequence the implementation consists of a two-dimensional
array of comparison units.

Figure 11 shows the performance comparison of the vari-
ant of LZ compression with

� � � � , using the same method-
ology as in the previous example. The implementation for
the Wildcard/XCV300E shown in figure 10 utilizes ���! of
the CLBs. The results show that the �� improvement in
cycle time of the stand-alone compare units, described in
section 3.1, scales to a �� performance improvement for
our variant of LZ compression.

6. Related Work

The commercial module generator library available from
Xilinx (CoreGen) contains module generators which can
be instantiated through a stand-alone GUI. This approach
is very well suited for the CAD tool flow but less ideal for
a programming environment. A direct comparison of the
performance values from the Xilinx CoreGen datasheets is
complicated since the numbers in this paper are real design
results, while Xilinx values are maximal (best-case) values.

Pebble[40] a language designed at Imperial College gen-
erates VHDL modules for a conventional CAD flow, but re-
quires the user to learn a new language syntax and use the
CAD design methodology. The Java Hardware Description
Language (JHDL)[31] is a similar effort to PAM-Blox/ASC.
Besides the arguments for and against Java, JHDL also in-
tegrates module generation with the higher compilation lay-
ers. Additionally, JHDL contains a runtime system, a port
to Virtex II, and a large set of modules. Similarly, a com-
mercial effort by Celoxica[28] provides the “programming
feel” to FPGA design, mostly targetting embedded systems.

One difference of the approach proposed in this paper to
these related projects is the emphasis on handling different
number representations to tap into the full potential of the
FPGAs flexibility on the bit level.

7. Conclusions

A large and flexible module generator library is at the core
of computing with FPGAs, enabling the programmer to take
full advantage of the bit-level flexibility of FPGAs. Care-
ful utilization of C++ features yields an efficient abstraction
for the development, maintenance, and extension of a large
module generator library. Concrete conclusions from the
sample module generators shown in this paper are:

1. A single redundant (constant latency) addition is com-
parable to a 32 bit carry chain add. Despite that fact,
a collection of adders such as present in an array mul-
tiplier shows significant time savings for redundant
adders even for bitwidths smaller than 32 bits. This
surprising result can be explained by finding that most
of the delay of a stand-alone constant-time adder can
be optimized away when compiling a whole set of
such adders, while the delay through the carry chain
is fixed by the technology.

2. Knowledge from VLSI design is not directly appli-
cable to FPGA design despite the fact that both are
hardware design methodologies. In particular, design
tradeoffs depend largely on the available resources in
the FPGA cell, and on the optimality of technology
mapping, which can be controlled within the module
generation layer.

3. Optimizing the efficiency of elementary function eval-
uation requires the adaption of the microarchitecture
to the precision requirements of the application and
the underlying FPGA structure.

We are currently focusing our attention on the architecture
generation level. However, we foresee another layer of soft-
ware on top of architecture generation, which will auto-
mate tasks such as precision analysis, loop transformations,
memory management generation, and partitioning of an ap-
plication into software and hardware accelerators. In ad-
dition, such a high level transformation layer will be able
to deal efficiently with data-structures. The combination
of these techniques has the potential to attack the mem-
ory wall[39] and result in productive interactions with the
microprocessor design community. Clearly, some of the
high level transformations will not be fully automate-able
in the short run. Some transformations will have to be par-
tially automated in conjunction with user hints. Minimizing
the user hints necessary for successful acceleration across a
wide range of applications is one of the long term goals.

8. Acknowledgments

We are indebted to Mark Shand for keeping PamDC up
to date with current Xilinx technology, for his efforts in
porting PamDC to GNU gcc, and for his help with vari-
ous PamDC related issues. Wayne Luk has been a constant
source of encouragement and help. Nicolas Boullis imple-
mented the initial array multipliers, dividers, a generator for
the evaluation of the �
�� function.

9. References

[1] P. Bertin, D. Roncin, J. Vuillemin, Programmable Ac-
tive Memories: A Performance Assessment, ACM FPGA,
February 1992.

[2] D. A. Buell, J. M. Arnold, W. J. Kleinfelder, Splash-2, FP-
GAs in a Custom Computing Machine IEEE Computer So-
ciety Press, 1996.

[3] W.H. Mangione-Smith, B. Hutchings, D. Andrews, A. De-
Hon, C. Ebeling, R. Hartenstein, O. Mencer, J. Morris, K.
Palem, V. Prasanna, H. Spaanenburg, Seeking Solutions in
Configurable Computing, IEEE Computer, Dec. 1997.

[4] O. Mencer, M. Morf, M. Flynn, Hardware Software Tri-
Design of Encryption for Mobile Communication Units In-
ternational Conference on Application Specific Signal Pro-
cessing, Seattle, May 1998.

[5] O. Mencer, M. Morf, CORDICs for Reconfigurable Com-
puting The Sixth FPGA / PLD Design Conference and Ex-
hibit, Yokohama, Japan, June 24-26, 1998.

[6] M. Shand, J. Vuillemin, Fast Implementations of RSA Cryp-
tography, 11th IEEE Symposium on Computer Arithmetic,
Windsor, ONT, Canada, 1993.

[7] F. F. Lee, A Scalable Computer Architecture for Lattice Gas
Simulation, PhD Thesis, Stanford, June 1993.

[8] H. Styles, W. Luk, Customising graphics applications:
techniques and programming interface, IEEE Sympo-
sium on Field Programmable Custom Computing Machines
(FCCM), Napa, CA, April 2000.

[9] S. D. Haynes, P.Y.K. Cheung, W. Luk, J. Stone, Video Im-
age Processing with the SONIC Architecture, IEEE Com-
puter, April 2000, pp 50 - 57.

[10] T. J. Callahan, J. R. Hauser, J. Wawrzynek, The Garp Ar-
chitecture and C Compiler., IEEE Computer, April 2000.

[11] J. Frigo, M. Gokhale, D. Lavenier, Evaluation of the
Streams-C C-to-FPGA Compiler: An Applications Perspec-
tive., IEEE FPGA Conference, Monterey, CA, Feb. 2001.

[12] M. Weinhardt, W. Luk, Pipeline Vectorisation for Reconfig-
urable Systems, Proc. Int. Symp. FCCM, IEEE Computer
Society Press, 1999.

[13] M. Stephenson, J. Babb, S. Amarasinghe, Bitwidth Analysis
with Application to Silicon Compilation, Proc. of the ACM
Conf. on Programming Language Design and Implementa-
tion, Vancouver, BC, June 2000.

[14] R. Razdan, PRISC: Programmable Reduced Instruction Set
Computers, Ph.D. thesis, Harvard University, Division of
Applied Sciences, May 1994.

[15] K. Bondalapati, V.K. Prasanna, Dynamic Precision Man-
agement for Loop Computations on Reconfigurable Archi-
tectures, In IEEE Symposium on FPGAs for Custom Com-
puting Machines, April 1999.

[16] M. Budiu, S. C. Goldstein, K. Walker, M. Sakr, BitValue
Inference: Detecting and Exploiting Narrow Bitwidth Com-
putations, Europar Conf., Munich, Germany, Aug. 2000.

[17] L. Semeria, Applying Pointer Analysis to the Synthesis of
Hardware from C, Ph.D. thesis, Electrical Engineering De-
partment, Stanford University June 2001.

[18] O.S. Unsal, I. Koren, C. M. Krishna, C. A. Moritz, Cool-
Cache for Hot Multimedia, MICRO-34 Conference, Austin,
Texas, Dec, 2001.

[19] L. Zhang, Z. Fang, M. Parker, B. K. Mathew, L. Schaelicke,
J. B. Carter, W. C. Hsieh, S. A. McKee, The Impulse Mem-
ory Controller, IEEE Trans. on Computers, Nov. 2001.

[20] O. Mencer, H. Huebert, M. Morf and M.J. Flynn,
StReAm: Object-Oriented Programming of Stream Archi-
tectures using PAM-Blox, Field-Programmable Logic and
Applications, LNCS 1896, Springer, pp. 595–604, 2000.

[21] M. Gokhale, J. Kaba, A. Marks, J. Kim, Malleable architec-
ture generator for FPGA computing, Reconfigurable Logic,
Proc. SPIE 2914, Bellingham, WA, Oct. 1996.

[22] S.G. Abraham, B.R. Rau, Efficient design space exploration
in PICO Proc. CASES 2000 Internatinal Conference on
Compilers. Architecture and Synthesis for Embedded Sys-
tems, San Jose, California, Nov. 2000.

[23] The Xtensa Processor http://www.tensilica.com/
[24] O. Mencer, M. Morf and M.J. Flynn, PAM-Blox: High

Performance FPGA Design for Adaptive Computing, Proc.
IEEE Symp. on FPGAs for Custom Computing Machines,
IEEE Computer Society Press, pp. 167–174, 1998.

[25] Synopsys, http://www.synopsys.com/products/fpga/
fpga express.html

[26] P. Bertin, H. Touati, PAM Programming Environments:
Practice and Experience, IEEE Workshop on FPGAs for
Custom Computing Machines, April 1994.

[27] J. Kunkel, K. Kranen, SystemC demonstrates rapid
progress, EE Times, Sept. 2000.

[28] J. Kunkel, K. Kranen, Celoxica adds simulator, debugger
to Handel-C compiler, EE Times, Feb. 2001.

[29] S. A. Guccione, D. Levi, XBI: A Java-based Interface to
FPGA Hardware”, in Configurable Computing Technology,
Proc. SPIE Photonics East, John Schewel, ed., Bellingham
WA, Nov. 1998.

[30] A. Frey, G. Berry, P. Bertin, F. Bourdoncle, J. Vuillemin,
Jazz is a high-level programming language for ex-
pressing

������� �
large digital synchronous circuits.

http://www.exalead.com/jazz/
[31] B. Hutchings, P. Bellows, J. Hawkins, S. Hemmert, B. Nel-

son, M. Rytting, A CAD Suite for High-Performance FPGA
Design, IEEE Symposium on Field Programmable Custom
Computing Machines (FCCM), Napa, CA, April 1998.

[32] B. Stroustrup, The C++ Programming Language, 3rd ed.
Addison-Wesley, 1997.

[33] H. Boehm, Space Efficient Conservative Garbage Collec-
tion, Proceedings of the ACM SIGPLAN ’91 Conference on
Programming Language Design and Implementation, SIG-
PLAN Notices 28, 6, June 1993.

[34] D.S. Phatak, T. Goff, I. Koren, Constant-Time Addition and
Simultaneous Format Conversion based on Redundant Bi-
nary Representation, IEEE Trans. on Comp., Nov. 2001.

[35] I. Koren, Computer Arithmetic Algorithms, Prentice Hall,
1993.

[36] A. Omondi, Computer Arithmetic Systems, Prentice Hall,
1994.

[37] O. Mencer, W. Luk, Parameterized High Throughput Func-
tion Evaluation for FPGAs, Journal on VLSI and Sig-
nal Processing (special issue on field programmable logic),
Kluwer Academic Publishers, Netherlands, 2002.

[38] Annapolis Microsystems Wildcard, a Cardbus based FPGA
Accelerator card. http://www.annapmicro.com/

[39] W. A. Wulf, S. A. McKee, Hitting the Memory wall: Im-
plications of the Obvious. Computer Architecture News,
23(1), March 1995.

[40] W. Luk, S. McKeever, Pebble: a language for parametrised
and reconfigurable hardware design. Field-Programmable
Logic and Applications (FPL), Springer, 1998.

