
StReAm: Object-Oriented Programming of Stream Architectures using PAM-Blox

Oskar Mencer, Heiko Hübert, Martin Morf, Michael J. Flynn

Computer Systems Laboratory, Department of Electrical Engineering
Stanford, CA 94305, USA

email:
�
oskar,heiko,morf,flynn � @arith.stanford.edu
http://arith.stanford.edu/PAM-Blox/

Abstract

Simplifying the programming models is paramount to the
success of reconfigurable computing. We apply the princi-
ples of object-oriented programming to the design of stream
architectures for reconfigurable computing. The resulting
tool, StReAm, is a domain specific compiler on top of the
object-oriented module generation environment PAM-Blox.
Combining module generation with a high-level program-
ming tool in C++ gives the programmer the convenience to
explore the flexibility of FPGAs on the arithmetic level and
write the algorithms in the same language and environment.

Stream architectures consist of the pipelined dataflow
graph mapped directly to hardware. Data streams through
the implementation of the dataflow graph with only minimal
control logic overhead. The main advantage of stream archi-
tectures is a clock-frequency equal to the data-rate leading
to very low power consumption.

StReAm takes C++ expressions and converts them to
a pipelined, scheduled stream architecture, including FIFO
buffers for intermediate storage. The state of PAM-Blox
hardware objects includes size and scheduling attributes of
the object. The StReAm abstraction of PAM-Blox can han-
dle combinational, fully pipelined, and sequential (iterative)
arithmetic units.

We show a set of benchmarks from signal processing,
encryption, image processing and 3D graphics in order to
demonstrate the advantages of object-oriented programming
of FPGAs.

1. Introduction

In this paper we present StReAm, a domain specific com-
piler for programming FPGAs. StReAm is build on top
of the module generation environment PAM-Blox[10]. We
start by reviewing some advantages of FPGAs for computa-
tion.

FPGAs offer reconfigurability on the bit-level at the cost
of larger VLSI area and slower maximal clock frequency
compared to custom VLSI. SRAM-based FPGAs allow fast

reconfiguration of the entire chip. Thus, FPGAs are pro-
grammable devices that could compete with, or complement
microprocessors.

Since their introduction, FPGAs have shown the poten-
tial for high performance (or throughput) and low power
computation[28]. High performance and low power are a
result of exploiting high degrees of parallelism and pipelin-
ing:

� Parallelism: FPGAs enable us exploit parallelism on
the bit-level, arithmetic level, instruction level (ILP
for microprocessors), and application level. FPGAs
follow a long tradition of architectures that enable
parallelism, such as massively parallel computing, su-
perscalar and VLIW processors. Transforming the se-
quential description of an algorithm in order to com-
pute more operations in parallel is usually called “ex-
tracting parallelism”–a process that can be as painful
as it sounds if the algorithm is not cooperative.

� Pipelining: FPGAs have programmable registers in
every cell making them natural candidates for highly
pipelined architectures. For example, vector proces-
sors utilize pipelining of the data stream to achieve
high throughputs. Systolic arrays[2][3] offer a regu-
lar structure that can be pipelined for high through-
put applications. Stream architectures can be viewed
as an extension of vector processing and systolic ar-
rays. A pipelined dataflow graph is mapped directly
into hardware and the data streams through the mi-
croarchitecture. Initial results show a high potential
for stream architectures to improve performance and
power consumption[28] by an order of magnitude over
conventional microprocessors.

Simplifying the programming models is paramount to
the success of reconfigurable computing. In order to sim-
plify the programming of FPGAs it is necessary to hide
a CAD tool within a compiler. In this paper we explore
object-oriented programming of pipelined StReAm archi-
tectures for FPGAs.

DFG
FIFO bufferOperation

(a)

DFG

k data-rate.

(k-1) data-rate.

data-rate
data-rate

(b)

Figure 1: (a) shows an acyclic dataflow graph (DFG) with
operations and distributed FIFO buffers. (b) shows a DFG
with a loop(

���������
), and the associated clock frequencies

based on the data-rate.

1.1. Programming FPGAs–Related Work

FPGAs are programmable devices. Yet, programming FP-
GAs, or writing compilers for FPGAs, is much more com-
plex than writing compilers for microprocessors. Because
FPGAs offer programmability of the logic and the inter-
connect, compiling a program into an FPGA is similar to a
VLSI CAD system. On the other hand the CAD design flow
is not practical for programming FPGAs. The main ques-
tions are: How should the programming language express
the various levels of parallelism available in the FPGA?
How to express the timing of the design? How to explore
area-time tradeoffs? How to debug the program? How to
verify the compiler and module generator libraries?

HandelC[5] is a hardware (FPGA) programming lan-
guage based on communicating sequential processes[4]. Ev-
ery expression implies a latency of one clock cycle. Area-
time tradeoffs can be explored by rewriting expressions.

JHDL[11] and Pebble[8] are examples for structural lan-
guages for FPGAs on the PAM-Blox level. JBITS[12] is an
object-oriented environment on the FPGA configuration bit-
stream level.Neither JHDL nor Pebble offer operator over-

loading. Instead, expressions are constructed by nesting
function calls.

Novel architectures combining a microprocessor with
reconfigurable logic are natural targets for hardware compi-
lation using software languages. For example, Callahan[17]
compiles C for the Garp processor including a reconfig-
urable datapath.

Most available programming environments target gen-
eral microarchitectures. StReAm is a domain specific com-
piler targeted at a specific architecture–stream architectures.
The main objective is to limit the set of resulting architec-
tures in order to achieve a very efficient implementation.

1.2. Stream Architectures

General purpose microprocessors are designed to deliver
low latency computation with maximal clock frequencies
leading to high power consumption. In terms of perfor-
mance and power consumption, latency tolerant applica-
tions can be efficiently implemented with architectures that
provide high throughputs, such as Imagine[23], Score[16],
RaPiD[24], and the PCI-PipeRench[15].

Stream architectures[15] are fully pipelined, high through-
put microarchitectures. Algorithms are executed by build-
ing the dataflow graph in hardware and streaming the data
through the architecture. In the best case, when all the
loops are fully unrolled, the dataflow graph is acyclic and
the clock frequency of the design is the data-rate.

Figure 1 (a) shows the execution model of the stream
architecture with completely unrolled loops. In a micropro-
cessor the data goes from the register-file to the arithmetic
unit. The result of the arithmetic operation can be forwarded
to another arithmetic unit and is finally written back to the
register file. In a stream architecture the role of the register
file is taken over by distributed FIFO buffers with a delay
equal to the time between production of the value and con-
sumption of the value by the following operation. The dis-
tributed FIFO buffers enable us to exploit temporal data lo-
cality, while streaming data through pipelines exploits spa-
tial data locality.

Unrolling a loop of a program requires the duplication
of the loop-body in hardware. If complete unrolling of the
loops requires more than the available hardware resources,
we can not fully unroll the loops. In this case there are two
options:

1. Increasing clock frequency or reducing data-rate: The
resulting stream architecture has a loop. The clock-
frequency is equal to the data-rate times the remain-
ing number of loop iterations (k) shown in figure 1 (b).

���
	�� ������
������� ������������ � ��� � ���
(1)

2. Reconfiguration: We can partition the design into mul-
tiple configurations and stream the data through each

configuration separately.

In StReAm we focus on the first option, increasing the
clock frequency when necessary. The StReAm extension
to PAM-Blox[10] allows the programmer to design stream
objects in C++.

2. PAM-Blox: Module Generation

Traditional VLSI design for high-performance ASICs con-
sists of complete hand-layout of the data-path and high-level
compilation of the control circuit. FPGAs do not offer the
high flexibility of silicon area. For data-paths it is therefore
sufficient to specify the logic, map the logic to lookup-tables
and specify their location using Xilinx Netlist (XNF) direc-
tives.

PamDC[1] maps a structural description on the gate level
to a Xilinx netlist. Experience with PamDC has shown that
a low level, structural representation of FPGA circuits in
C++ is very well suited for high-performance FPGA de-
sign. The major drawback of PamDC is the low level of
design. In order to simplify the design process, we intro-
duce additional levels of abstraction on top of PamDC. Fig-
ure 2 shows an overview of the PAM-Blox system including
StReAm.

PamBlox is a template class library for hardware objects
of low complexity, such as adders, counters, etc. PaModules
are complex, fixed circuits implemented as C++ objects.
PaModules may consist of multiple PamBlox and are op-
timized for a specific data-width. Examples are constant(k)
coefficient multipliers (KCMs), Booth multipliers, dividers,
and special purpose arithmetic units such as a constant mul-
tiply modulo

��������� �
	
operation for IDEA encryption[28].

PAM-Blox simplify the design of datapaths for FPGAs
by implementing arithmetic module-generators in object-
oriented C++. With PAM-Blox, hardware designers can
benefit from all the advantages of object-oriented system
design such as:

� Inheritance: Code-reuse is implemented by a C++
class hierarchy. Child objects inherit all public meth-
ods (function) and variables (state). For example, all
objects with a carry-chain, such as adders, counters,
and shifters, inherit the absolute and relative place-
ment functions from their common parent.

� Virtual Functions and Function Overloading: Func-
tion overloading enables selective code-reuse. Part
of the parent object can be redefined by overload-
ing of inherited (virtual) methods. For example, a
two’s complement subtract unit can be derived from
an adder by forcing a carry-in of one, and inverting
one of the inputs.

St
R

eA
m

B
SA

T

PamDC

PamBlox

PaModules

Netlist

PAM-Blox
Module Generators

Domain Specific Compilers

Figure 2: The figure shows the “city-model” for program-ming FPGAs. Vertical domain specific compilers such as
StReAm and BSAT[31] sit on top of a horizontal founda-
tion of PAM-Blox layers for module-generation.

� Template Class: The template class feature of C++
enables us to efficiently combine C++ objects and
module-generation. In case of an adder, the template
parameter is the bit-width of the adder. The instantia-
tion of a particular object based on the template class
creates an adder of the appropriate size.

� Operator overloading and template functions are used
by StReAm described below.

3. StReAm: Programming FPGAs

StReAm is a domain specific tool build on top of PAM-
Blox. Figure 2 shows the “city-model” for programming
FPGAs. StReAm uses operator overloading and template
functions in C++ to create dataflow graphs which are con-
secutively scheduled to obtain a stream architecture. The
nodes of the stream architecture are mapped to PAM-Blox
modules, to create a netlist file for the Xilinx place-and-
route tools. Figure 3 shows the details of the class hierarchy
of the system.

StreaModule is a subclass of PaModule. Applications
are written as subclasses of StreaModule. StReAm enables
high-level programming on the expression level. StReAm
includes automatic scheduling of stream architectures, hi-
erarchical wire naming and block placement. In addition,
StReAm supports structural programming and allows the
designer to combine structural descriptions with expressions.
Thus, StReAm simplifies the design of complex stream ar-
chitectures to just a few lines of code.

FIFO buffer
Adder
Counter
Register

IDEA Encryption
FIR Filter

IDCT
3D Graphics

PaModules

PamComponent

PamBlox

Compaq PamDC

StreaModule

StReAm

PAM-Blox

schedule()
DFGplace()

build()

simulate()

SerialMult
Multiplier
Divider
Reciprocal

ConstMult(KCM)

Figure 3: The figure shows StReAm’s class hierarchy on
top of PAM-Blox. Arrows (�) denote a subclass, or a set of
subclasses. The dotted and curved arrows denote operator
overloading. Applications (stream architectures) are imple-
mented as subclasses of StreaModules.

Designs are created by overloading the build() function
of a StreaModule. A hardware integer (HWint) data type
supports the common operators +,-,*,/,%. The user can de-
fine other operators and functions by utilizing operator over-
loading and template functions in C++. Extending the set
of operators and functions requires manual design of op-
timized PamBlox or PaModules. Thus, the designer can
adapt the arithmetic units to the specific needs of the appli-
cation. The benchmarks in section 6 give a number of ex-
amples for application specific extensions and demonstrate
the features mentioned above.

Calling the � Name� ::build() function creates the
dataflow required for automatic scheduling and placement.
The schedule() function also creates all the required
FIFO buffers and supplies the sequential and serial com-
ponents with start signals. Finally, placement methods of
hardware objects determine relative placement within the
hardware objects.

StReAm currently supports arrays of the hardware inte-
ger type HWint, expressions with HWint’s and C++ inte-
gers resulting in hardware constants, and static ’for’ loops.
In addition, more complex hardware units with possibly mul-
tiple inputs and outputs are implemented as template func-

tions.
Currently, the resulting architectures are stream archi-

tectures with fully unrolled loops and no resource sharing
in order to maximize throughput. Configuration registers
can be added to the design in order to enable efficient com-
munication between the host CPU and the reconfigurable
device. An example using configuration registers is shown
in section 6.4.

3.1. Families of Arithmetic Operators

One of the advantages of using FPGAs for computing is
the flexibility on the arithmetic level. We define families
of arithmetic units that are compatible with each other. As
an example, the 4-bit digit-serial family consists of a 4-bit
wide datapath with arithmetic units for addition, constant
addition, and constant multiplication. The arithmetic family
can be specified as a global parameter (used in the examples
in section 6), or at the equation level.

StReAm supports the following arithmetic families:

� bit-serial

� 4-bit (nibble) serial

� parallel pipelined

� parallel combinational

The above arithmetic families are currently implemented
for hardware integers. Future work includes extending the
hardware types to other number representations such as log-
arithmic numbers (HWlog), fixed point numbers (HWfix),
floating point numbers (HWfloat), the residue number sys-
tem (HWresidue) based on the Chinese remainder theo-
rem, redundant number representations, and rational num-
ber systems[32]. The main difficulty arises from the explo-
sion of the number of necessary hand-designed arithmetic
units. For example, in order to introduce HWfix numbers
it is necessary to design arithmetic units for all operators
and all possible combinations of inputs: (HWint,HWfix),
(int,HWfix), and (HWfix,HWfix), taking into account
the various formats that a fixed point number can take.

In addition to the basic arithmetic operators described
above, PaModules include higher-level arithmetic modules
such as CORDIC (Coordinate Rotation Digital Integrated
Computer) units. For more information on the state-of-the-
art in high-level arithmetic modules see [29].

StReAm gives the programmer access to these special
arithmetic modules. Ideally, future special purpose high-
level tools[30] will be able to map algorithms directly to
such high-level arithmetic modules.

3.2. Debugging by Simulation

Debugging is one the main bottlenecks in programming any
device. PamDC enables PAM-Blox and StReAm to run the
compiled C++ executable to generate a netlist, or to simu-
late the design. Simulation occurs on the register-transfer
level(RTL). Therefore StReAm simulations can optimally
use C++ compiler optimizations. In addition, since most
algorithms are initially written in C or C++, the software
version can be easily used to verify the functionality of the
FPGA design.

4. Scheduling Stream Architectures

StReAm automatically schedules the arrival of input data
for each arithmetic component. The scheduling algorithm
creates FIFO buffers and component start signals (for se-
quential components). The scheduler also calculates overall
latency and data-rate for a given stream architecture. Our
initial implementation utilizes “as soon as possible” (ASAP)
scheduling, which is optimized for minimum-latency and
resource unconstraint problems [6] without resource shar-
ing.

Operator overloading creates a dataflow graph with arith-
metic units as nodes. The scheduling algorithm traverses the
dataflow graph including the components, data dependen-
cies and scheduling information such as latency and through-
put of each component. The scheduler retrieves the schedul-
ing information from the state of the hardware objects. Us-
ing the dataflow graph, StReAm builds a sequencing graph,
which contains all the information required for scheduling.
A sample sequencing graph is given in figure 4. The se-
quencing graph contains the operations as vertices includ-
ing their latency and data rate values. The edges of the
sequencing graph are interconnecting wires which carry a
time stamp. The time stamp of a wire is the time when
a valid signal on this wire is generated. Initially, only the
time stamps of input signals are set to zero. The remaining
internal time stamps are set by the scheduling algorithm.

The scheduling algorithm performs the following four
tasks:

� Determine time stamps: For each global output, the
scheduler recursively traverses the sequencing graph.
For each component, the time stamp (

���
) of the com-

ponent output is set according to:

ouput �����	��
��� input ������� component latency

� Global latency and data rate calculation: The sched-
uler calculates overall latency and data rate of a StreaMod-
ule while traversing the sequencing graph. Global
latency is determined by the sum of latencies in the
longest path of the design which is equal to the max-
imal time stamp of global StreaModule outputs. The

46

0 0 0 0 0 0

6

6 16

6 6 01 1 0

0 1 0 6 6 0

%*-

& *

stream

1 10

10 10 0

5

+
2 1 0

8

out[1]

in[1]in[0]

out[0]

start time=0
data rate=1

+

5
1

6

2 1 0
latency=2

8
time stamp=8

time stamp=1

fifo depth=5

time stamp=6

in[2] in[3] in[4] in[5]

Figure 4: The figure shows the scheduled data-flow graph
implementing the equations: ������� ����������� � ��"!#���$�&%��'�(�
���$�)%*�,+-���.�$� /�$0(���$� 1��'�*2����3�4�&%��5�6���$� /�708���$� 1��709�����$� :��';<���$� =� .
Sequencing information is given in the nodes (component
latency, data-rate and start time) and interconnections in-
clude time stamps.

data rate describes the time interval in which compo-
nents consume and produce data. For sequential com-
ponents the data rate is equal to the latency, whereas
for pipelined components the data rate is usually smaller
than the latency. The global data rate is determined by
the minimal data rate of all components in the design.

� Introduction and configuration of FIFO buffers: The
scheduler ensures equal arrival times of component
inputs by inserting delays. Delays are realized as dis-
tributed FIFO buffers. The dual-ported RAMs and
registers available in a Configurable Logic Block (CLB)
can be utilized to implement the FIFO buffer compo-
nent. The FIFO depth (> �.?) for a given component
input

?
is calculated as:

> ��? 	 �A@CBED � input �*� 	GF �H� ��? 	
(2)

The scheduler connects the dual-ported RAMs to a
global address generator according to their FIFO buffer
depth.

� Supplying components with start signals: Sequential
and serial components require a start signal each time
new input data can be applied to the component. Start
time (

�
start) depends on the maximum input time

stamp (
� �

) and the previously calculated global data
rate.

� start �	��
���� input � � � � ��� data rate �
�

(3)

A global state counter generates the required start sig-
nals.

4.1. Dealing with Precision and Overflow

Each arithmetic unit (PamComponent) includes a precision
value and an overflow bit as part of the state of the hardware
object. Hardware objects representing the arithmetic units
are the nodes of the dataflow graph. The precision value
inside the hardware object can be used at compile time to
evaluate error propagation through the dataflow graph.

The stream architecture includes overflow detection per
data item. The overflow bit is part of the HWint type. The
overflow bit of the output of an arithmetic unit is set if the
previous arithmetic operation overflows, or if any overflow
bit of the inputs to the previous operation is set. Finally,
each datum leaving the stream architecture has an overflow
bit signaling the correctness of the result.

5. High-Level Object Placement

StReAm includes the option to explore high-level place-
ment. Placement is done via congestion modeling devel-
oped for high-level placement of VLSI circuits [21]. On the
object level, we have a set of blocks and a set of intercon-
nections. The placer arranges the blocks to minimize a cost
function, using simulated annealing. The placement is opti-
mized with a non-slicing structure using the sequence-pair
representation proposed by Murata [20].

In our case, the main objective is to maximize perfor-
mance and minimize clock cycle time. Thus, we minimize
area, wire length and/or wire congestion according to the
following cost function:

cost � area ��� ��� wireLength �	��
 � wireCongestion
The details of the model are described in [21]. StReAm

allows the designer to specify � � and �� in order to ex-
plore the solution space for optimal area and performance.
Optimizing the algorithm for FPGA placement is work in
progress.

6. Benchmarks and Results

We chose the following benchmarks from signal process-
ing, encryption, image processing and graphics to demon-
strate the advantages of designing stream architectures with

StReAm. Final results show the performance of the final
circuits for the Xilinx XC4000 family after Xilinx place and
route tools.

6.1. FIR Filter

The following code creates FIR filters with constant coef-
ficients. Operators ’+’ and ’*’ are overloaded to create the
appropriate arithmetic units. Multiplying by a constant in-
teger instantiates efficient constant-coefficient multipliers.
Data width and datapath width are specified separately to
enable digit-serial arithmetic. In the case below we imple-
ment a 16-bit FIR filter with 4-bit digit serial arithmetic
units. The delay operator inserts the FIR filter delays
(deltas) similar to the way delays are specified in the Silage
language[6]. The variables in[], out[] are the inputs
and outputs of the stream architecture, defined by setting
NUM BLOCK INPUTS,NUM BLOCK OUTPUTS:

const int NUM_BLOCK_INPUTS=1;
const int NUM_BLOCK_OUTPUTS=1;
const int BITS = 16;
const int COMP_MODE = DIGIT_SERIAL;

const int STAGES=4;
const int coef[STAGES]={23,45,67,89};

HWint<BITS> delayOut;
HWint<BITS> adderOut;

void Filter::build()
{

delayOut=in[0];
adderOut=delayOut*coef[0];

for (i=1;i<STAGES;i++){
delayOut=delay(delayOut,1);
adderOut=adderOut+delayOut*coef[i];

}
out[0]=adderOut;

}

Table 1 shows the results for four variations of the 4-
tap FIR filter. The results show a 4-stage FIR filter im-
plemented with combinational arithmetic units, and three
pipelined versions. As expected the bit-serial design takes
the smallest area with the longest latency. The parallel,
pipelined version has higher throughput but requires most
area. The lower part of the table shows the maximal number
of stages that StReAm can fit on a Xilinx XC4020 FPGA
with 800 CLBs. All designs are created with the same few
lines of code shown above by simply setting the compiler
parameter COMP MODE.

Table 1: FIR Filter � preliminary � Results

combi- pipelined
national parallel digit-serial bit-serial

4 stage FIR
Area[CLB] 246 293 210 184

Cycle Time(CT) 70.1ns 20.8ns 21.2ns 24.2ns
Latency 3 9 17 52

Throughput 16bits/CT 16bits/CT 4bits/CT 1bit/CT

FIR Stages 6 6 14 17
Area[CLB] 332 432 678 635

Latency 5 11 57 260
Cycle Time(CT) 88.7ns 25.1ns 27.3ns 28.0 ns

Throughput 16bits/CT 16bits/CT 4bits/CT 1bit/CT

6.2. IDEA Encryption

IDEA (International Data Encryption Algorithm)[18] was
developed by Xuejia Lai and James Massey. IDEA is a
strong encryption algorithm developed for DSP micropro-
cessors. IDEA encrypts or decrypts 64-bit data blocks, us-
ing symmetric 128-bit keys. The 128-bit keys are expanded
further to 52 sub-keys, 16 bits each. The kernel loop (or
round) is generally executed 8 times for either encryption
or decryption. Hand crafted results for a stream architecture
implementation of IDEA are presented in [28].

One IDEA round can be mapped to a four-input, four-
output stream architecture. In order to fit two loops onto one
Xilinx XC4020E FPGA we use digit serial arithmetic with
a datapath width of 4 bits. The following code shows the
four-input, four-output IDEA::build implementation of
one round of IDEA encryption:

const int NUM_BLOCK_INPUTS=4;
const int NUM_BLOCK_OUTPUTS=4;
const int BITS = 16;
const int COMP_MODE=DIGIT_SERIAL;

// Encryption Key:
const int key[10]={9277,98,237,4,978,

122,723,3654,24,1536};
HWint<BITS> t[9];
HWint<BITS> temp;

void IDEA::build(){

t[1] = ideaKCM16(in[0] , key[0]);
t[2] = (in[1] + key[1]);
t[3] = (in[2] + key[2]);
t[4] = ideaKCM16(in[3] , key[3]);
tmp = t[1] ˆ t[3];
tmp = ideaKCM16(tmp , key[4]);
t[7] = (tmp + (t[2] ˆ t[4]));
t[8] = ideaKCM16(t[7] , key[5]);
tmp = (t[8] + tmp);

out[0] = t[1] ˆ t[8];
out[3] = t[4] ˆ tmp;
tmp = tmp ˆ t[2];
out[1] = t[3] ˆ t[8];
out[2] = tmp;

}

The resulting stream architecture with 14 arithmetic units
and 8 automatically generated and scheduled FIFO buffers
is shown in figure 1. In addition to operator overloading,
IDEA requires a special mod

� � � � �
constant multiplier

implemented as a PaModule with fixed bitwidth, which is
instantiated by the function ideaKCM16(). Final results
are shown in Table 2.

6.3. Inverse Discrete Cosine Transform (IDCT)

The IDCT is used in signal and image processing (e.g. MPEG,
H.263 standards). We implement an 8x8 1-dimensional IDCT.
The StreaModule below is based on an optimized IDCT im-
plementation [19].

const int NUM_BLOCK_INPUTS=8;
const int NUM_BLOCK_OUTPUTS=8;
const int BITS = 14;
const int COMP_MODE=PARALLEL;

const int coef[8] = {16069, 15137, 13623,
11585, 11585, 3196, 6270, 9102};

HWint<BITS> t[18];

IDCT::build() {

t[0] =((in[0]+in[4])*coef[4]+256)>>9;
t[1] =((in[0]-in[4])*coef[4]+256)>>9;
t[2] =(in[2]*coef[6]-in[6]*coef[1]+256)>>9;
t[3] =(in[2]*coef[1]+in[6]*coef[6]+256)>>9;
t[4] =(in[1]*coef[0]+in[7]*coef[5]+256)>>9;
t[5] =(in[1]*coef[5]-in[7]*coef[0]+256)>>9;
t[6] =(in[3]*coef[2]+in[5]*coef[7]+256)>>9;
t[7] =(in[3]*coef[7]-in[5]*coef[2]+256)>>9;

t[8] =(t[0]+t[3]+2)>>2;
t[9] =(t[1]+t[2]+2)>>2;
t[10]=(t[1]-t[2]+2)>>2;
t[11]=(t[0]-t[3]+2)>>2;

t[0]=(t[4]+t[6]+2)>>2;
t[1]=(t[5]+t[7]+1)>>1;
t[2]=(t[4]-t[6]+1)>>1;
t[3]=(t[5]-t[7]+2)>>2;

t[4]=(((t[1]+t[2]+1)>>1)*coef[3]+8192)>>14;
t[5]=(((t[1]-t[2]+1)>>1)*coef[3]+8192)>>14;

out[0]=(t[8]+t[0]+4)>>3;

out[1]=(t[9]+t[4]+4)>>3;
out[5]=(t[10]+t[5]+4)>>3;
out[3]=(t[11]+t[3]+4)>>3;
out[7]=(t[8]-t[0]+4)>>3;
out[6]=(t[9]-t[4]+4)>>3;
out[2]=(t[10]-t[5]+4)>>3;
out[4]=(t[11]-t[3]+4)>>3;

}

The resulting stream architecture consists of 98 arith-
metic units and 4 FIFO buffers. The final results are shown
in Table 2.

6.4. 3D Motion: Real-time Translation and Rotation

In 3D graphics, a common problem is the translation and
rotation of a large set of points in 3D. This stream of points
is transformed by a translation vector and two 2D rotation
angles obtained from one 3D rotation. The following im-
plementation uses 2D CORDIC modules (ROTATE()) im-
plemented as PaModules[30]. The StReAm program looks
as follows:

const int NUM_BLOCK_INPUTS=3;
const int NUM_BLOCK_OUTPUTS=3;
const int BITS = 12;
const int COMP_MODE=PARALLEL;

HWint<BITS> x_in,y_in,z_in; //inputs
HWint<BITS> x0,y0,z0,phi1,phi2;//rotation
HWint<BITS> dx,dy,dz; //translation
HWint<BITS> x[2],y[2],z[2]; //temp coords

MOTION3D::build(){

x_in = in[0];
y_in = in[1];
z_in = in[2];

x0 = configReg[0];
y0 = configReg[1];
z0 = configReg[2];
phi1 = configReg[3];
phi2 = configReg[4];
dx = configReg[5];
dy = configReg[6];
dz = configReg[7];

(x[0],y[0])=ROTATE((x_in-x0),(y_in-y0),phi1);
(y[1],z[1])=ROTATE(y[0],(z_in-z0),phi2);

out[0]=x[0] + x0 + dx;
out[1]=y[1] + y0 + dy;
out[2]=z[1] + z0 + dz;

}

The StreaModule above takes 3 input coordinates (x in,
y in, z in). representing a point in space. The result is

Table 2: Benchmark Results

IDEA IDCT 3D MOTION
Area[CLB] 460 463 320

Cycle Time(CT) 24.1ns 27.9ns 33.9ns
Throughput(bits/CT) : � � % ��� : � � % � 12.4 36

Total Latency 17 15 27
Arithmetic digit-serial parallel � parallel

16-bit data 14-bit 12-bit data
� sequential multiply

a rotated and translated point (out[0...2]). The cen-
ter of rotation (x0, y0, z0), angles phi1, phi2) and
translation vector (dx, dy, dz) are stored in configura-
tion registers (configReg). The value of the configu-
ration registers can be changed without reconfiguration of
the FPGAs. Writing these eight configuration values to the
FPGA configures the stream architecture to perform a par-
ticular 3D motion.

This example demonstrates a template function:ROTATE.
C++ instantiates the ROTATE function to create CORDIC
units[30] with the appropriate bitwidth based on the types of
the input variables. In addition, the rotate function demon-
strates a multi-input, multi-output module instantiation by
overloading the “,” operator in (x[0],y[0]) leading to
the efficient program above.

The code above results in 9 add/sub units, 2 CORDIC
units and 1 FIFO buffer. The final results of a fully pipelined
3D rotation and translation module are shown in Table 2.

7. Conclusions and Future Work

StReAm applies an object-oriented design methodology to
programming FPGAs. The advantages of object-oriented
design with C++ which have been recognized in the soft-
ware industry find their way into VLSI CAD[26][27] and
into programming of FPGAs shown in this paper. FPGAs
offer the flexibility to adapt the number representation, pre-
cision, and arithmetic algorithm to the particular needs of
the application. Yet, in general it is difficult to explore com-
pletely different arithmetic solutions. Combining module
generation with a high-level programming tool in C++ gives
the programmer the convenience to explore the flexibility of
FPGA on the arithmetic level and write the algorithms in the
same language and environment.

For StReAm the key enabling C++ technologies are dy-
namic operator overloading and template functions. Fur-
thermore, just as in PAM-Blox, the class hierarchy, inheri-
tance, template classes and method overloading enable effi-
cient code-reuse and code-management.

Future work needs to address the problem of debugging,
simulation, and verification of module generators. Another
important next step is to adapt the state-of-the-art in hard-

ware/software co-design of parallel and pipelined systems[25]
into a compiler for FPGAs or reconfigurable resources closely
coupled with a microprocessor or memory. Ideally, such a
compiler would be able to explore parallelism and pipelin-
ing on the algorithm level, instruction level, arithmetic level
and bit level.

8. Acknowledgments

We would like to thank W. Luk, J. Wawrzynek, and Arvind
for helpful discussions on module-generation and the pro-
gramming approach to hardware design. Thanks to Com-
paq Systems Research Center for support of this work, and
M. Shand for maintaining PamDC. Thanks to L. Séméria
for discussions on the draft of this paper. The second author
thanks his advisor Prof. H. Klar for support of this research.

9. References
[1] P. Bertin, D. Roncin, J. Vuillemin, Programmable Ac-

tive Memories: A Performance Assessment, ACM FPGA,
February 1992.

[2] H. T. Kung, Why Systolic Arrays, IEEE Computer, Jan. ’82.

[3] H. M. Ahmed, J.-M. Delosme, M. Morf, Highly Concur-
rent Computing Structures for Matrix Arithmetic and Signal
Processing, IEEE Computer, vol. 15, no. 1, Jan. 1982.

[4] C.A.R. Hoare Communicating Sequential Processes, Pren-
tice Hall International, London, 1985.

[5] Embedded Solutions Handel C,
http://www.embeddedsol.com/

[6] G. DeMicheli Synthesis and Optimization of Digital Cir-
cuits, McGraw-Hill, 1994.

[7] W.H. Mangione-Smith, B. Hutchings, D. Andrews, A. De-
Hon, C. Ebeling, R. Hartenstein, O. Mencer, J. Morris, K.
Palem, V. Prasanna, H. Spaanenburg, Seeking Solutions in
Configurable Computing, IEEE Computer Magazine, De-
cember 1997.

[8] W. Luk, S. McKeever, Pebble: A Language for
Parametrised and Reconfigurable Hardware Design, Field-
Programmable Logic and Applications (FPL), Tallinn, Es-
tonia, Aug. 1998.

[9] J.M. Emmert, A. Randhar, D. Bhatia, Fast Floorplanning
for FPGAs, Field-Programmable Logic and Applications
(FPL), Tallinn, Estonia, Aug. 1998.

[10] O. Mencer, M. Morf, M. J. Flynn, PAM-Blox: High Perfor-
mance FPGA Design for Adaptive Computing, IEEE Sym-
posium on FPGAs for Custom Computing Machines, Napa
Valley, CA, 1998.
http://arithmetic.stanford.edu/PAM-Blox/

[11] P. Bellows, B. Hutchings, P. Bellows, J. Hawkins, S. Hem-
mert, B. Nelson, M. Rytting, A CAD Suite for High-
Performance FPGA Design, IEEE Symposium on FPGAs
for Custom Computing Machines, Napa Valley, CA, 1999.

[12] S. A. Guccione, D. Levi and P. Sundararajan, JBits: A Java-
based Interface for Reconfigurable Computing, 2nd An-
nual Military and Aerospace Applications of Programmable
Devices and Technologies Conference (MAPLD), Laurel,
Maryland, 1999.

[13] M.B. Gokhale, J.M. Stone, NAPA C: Compiling for a
Hybrid RISC/FPGA Architecture, IEEE Symposium on
FPGAs for Custom Computing Machines, Napa Valley,
CA, 1999.

[14] A. Koch, Enabling Automatic Module Generation for
FCCM Compilers, Poster Session 1, IEEE Symposium on
FPGAs for Custom Computing Machines, Napa Valley, CA,
1999.

[15] R. Laufer, R. Reed Taylor, H. Schmit PCI-PipeRench
and SWORDAPI: A System for Stream-based Reconfigurable
Computing, IEEE Symposium on FPGAs for Custom Com-
puting Machines, Napa Valley, CA, 1999.

[16] Berkeley Brass Project, SCORE: Stream Computations Or-
ganized for Reconfigurable Execution Fast Module Map-
ping and Placement for Datapaths in FPGAs,
http://www.cs.berkeley.edu/Research/
Projects/brass/SCORE/

[17] T.J. Callahan, J. Wawrzynek, Instruction-Level Parallelism
for Reconfigurable Computing, Field-Programmable Logic
and Applications (FPL), Tallinn, Estonia, Aug-Sep 1998

[18] X. Lai, J.L. Massey, S. Murphy, Markov Ciphers and Dif-
ferential Cryptanalysis, EUROCRYPT ’91, Lecture Notes
in Computer Science 547, Springer-Verlag, 1991.

[19] E. Linzer, E. Feig, New Scaled DCT Algorithms for
Fused Multiply/Add Architectures, International Confer-
ence on Acoustics, Speech, and Signal Processing, Proceed-
ings ICASSP .91, Vols.1-5, pp.2201-2204, 1991.

[20] H. Murata et al., Rectangle-Packing-Based Module Place-
ment, Proc. of International Conference on Computer Aided
Design, 1995.

[21] Patrick Hung and Michael Flynn, Deep Submicron VLSI
Floorplanning Algorithm, Electronic Devices and Systems
Conference, Nov. 1999.

[22] T.J. Callahan, P. Chong, A. DeHon, J. Wawrzynek, Fast
Module Mapping and Placement for Datapaths in FP-
GAs, Proceedings of the 1998 ACM/SIGDA Sixth Inter-
national Symposium on Field Programmable Gate Arrays,
Feb. 1998.

[23] S. Rixner, W.J. Dally, U.J. Kapasi, B. Khailany, A. Lopez-
Lagunas, P.R. Mattson, J.D. Owens, A Bandwidth-Efficient
Architecture for Media Processing, Proceedings of the
31st Annual International Symposium on Microarchitec-
ture, Dallas, Texas, Nov. 1998.

[24] C. Ebeling, D.C. Cronquist, P. Franklin, J. Secosky, S.G.
Berg, Mapping Applications to the RaPiD Configurable Ar-
chitecture, IEEE Symposium on Field-Programmable Cus-
tom Computing Machines, Napa Valley, CA, 1997.

[25] S. Bakshi, D.D. Gajski, Partitioning and Pipelining
for Performance-Constrained Hardware/Software Systems,
IEEE Transaction on VLSI Systems, Dec. 1999.

[26] Technical Papers, The SystemC Community,
http://www.systemc.org/

[27] S. Vernalde, P. Schaumont, I. Bolsens, An Object Oriented
Programming Approach for Hardware Design, IEEE Work-
shop on VLSI’99, Orlando, April 1999.

[28] O. Mencer, M. Morf, M. Flynn, Hardware Software Tri-
Design of Encryption for Mobile Communication Units, In-
ternational Conference on Acoustics, Speech, and Signal
Processing, Proceedings ICASSP, May 1998.

[29] J.M. Muller, Elementary Functions, Algorithms and Imple-
mentation, Birkhaeuser, Boston, 1997.

[30] O. Mencer, L. Séméria, M. Morf, J.M. Delosme, Applica-
tion of Reconfigurable CORDIC Architectures, The Journal
of VLSI Signal Processing, Special Issue: VLSI on Custom
Computing Technology, Kluwer, March 2000.

[31] O. Mencer, M. Platzner, Dynamic Circuit Generation for
Boolean Satisfiability in an Object-Oriented Design Envi-
ronment, Hawaii International Conference on System Sci-
ences (ConfigWare Track), Jan. 1999

[32] O. Mencer, Rational Arithmetic Units in Computer Systems,
PhD Thesis (with M.J. Flynn), E.E. Dept., Stanford, Jan.
2000.

