
Automating Optimized Table-with-Polynomial
Function Evaluation for FPGAs

Dong-U Lee, Oskar Mencer, David J. Pearce and Wayne Luk

Department of Computing, Imperial College, London, UK
{dong.lee, o.mencer, d.pearce, w.luk }@ic.ac.uk

Abstract. Function evaluation is at the core of many compute-intensive applica-
tions which perform well on reconfigurable platforms. Yet, in order to implement
function evaluation efficiently, the FPGA programmer has to choose between a
multitude of function evaluation methods such as table lookup, polynomial ap-
proximation, or table lookup combined with polynomial approximation. In this
paper, we present a methodology and a partially automated implementation to se-
lect the best function evaluation hardware for a given function, accuracy require-
ment, technology mapping and optimization metrics, such as area, throughput
and latency. The automation of function evaluation unit design is combined with
ASC, A Stream Compiler, for FPGAs. On the algorithmic side, MATLAB designs
approximation algorithms with polynomial coefficients and minimizes bitwidths.
On the hardware implementation side, ASC provides partially automated design
space exploration. We illustrate our approach forsin(x), log(1 + x) and2x with
a selection of graphs that characterize the design space with various dimensions,
including accuracy, precision and function evaluation method. We also demon-
strate design space exploration by implementing more than 400 distinct designs.

1 Introduction

The evaluation of functions can often be the performance bottleneck of many compute-
bound applications. Examples of these functions include elementary functions such as
log(x) or

√
x, and compound functions such as(1− sin2(x))1/2 or tan2(x)+ 1. Hard-

ware implementation of elementary functions is a widely studied field with many re-
search papers (e.g. [1][10][11][12]) and books (e.g. [2][8]) devoted to the topic. Even
though many methods are available for evaluating functions, it is difficult for designers
to know which method to select for a given implementation.

Advanced FPGAs enable the development of low-cost and high-speed function eval-
uation units, customizable to particular applications. Such customization can take place
at run time by reconfiguring the FPGA, so that different functions, function evalua-
tion methods, or precision can be introduced according to run-time conditions. Conse-
quently, the automation of function evaluation design is one of the key bottlenecks in
the further application of function evaluation in reconfigurable computing. The main
contributions of this paper are:

– A methodology for the automation of function evaluation unit design, covering
table lookup, table with polynomial, and polynomial-only methods.

– An implementation of a partially automated system for design space exploration of
function evaluation in hardware, including:
• Algorithmic design space exploration with MATLAB.
• Hardware design space exploration with ASC.

– Method selection results forsin(x), log(1 + x) and2x.

The rest of this paper is organized as follows. Section 2 covers overview and back-
ground material. Section 3 presents the algorithmic design space exploration with MAT-
LAB. Section 4 describes the automation of the ASC design space exploration process.
Section 5 shows how ASC designs can be verified. Section 6 discusses results, and
Section 7 offers conclusion and future work.

2 Overview and Background

We can use polynomials and/or lookup tables for approximating a functionf(x) over
a fixed range[a, b]. On one extreme, the entire function approximation can be imple-
mented as a table lookup. On the other extreme, the function approximation can be
implemented as a polynomial approximation with function-specific coefficients. In our
work, we use Horner’s rule to reduce the number of multiplications.

Between these two extremes, we use a table followed by a polynomial. This table
with polynomial method partitions the total approximation into several segments. In
this work, we employ uniformly sized segments, which have been widely studied in
literature [1][3][5]. Uniform segmentation performs well for functions that are relatively
linear, such as the functions we consider in this paper. However, for highly non-linear
functions, non-uniform segmentation methods such as the hierarchical segmentation
method [4] have been found to be more appropriate.

In [7] the results show that for a given accuracy requirement it is possible to plot the
area, latency, and throughput tradeoff and thus identify the optimal function evaluation
method. The optimality depends on further requirements such as available area, required
latency and throughput. Looking at Figure 1, if one desires the metric to be low (e.g.
area or latency), one should use method 1 for bitwidths lower than x1, method 2 for
bitwidths between x1 and x2, and method 3 for bitwidths higher than x2. We shall
illustrate this approach using Figures 13 to 15, where several methods are combined
to provide the optimal implementations in area, latency or throughput for different bit-
widths for the functionsin(x).

The contribution of this paper is the design and implementation of a methodology
to automate this process. Here, MATLAB automates the mathematical side of func-
tion approximation (e.g. bitwidth and coefficient selection), whileA Stream Compiler
(ASC)[6] automates the design space exploration of area, latency and throughput. Fig-
ure 2 shows the proposed methodology.

3 Algorithmic Design Space Exploration with MATLAB

Given a target accuracy, or number of output bits so that the required accuracy is one
unit in the last place (1 ulp), it is straightforward to automate the design of a sufficiently

M
e

tr
ic

Bitwidth

method 3

method 2
method 1

x1 x2

Fig. 1.Certain approximation methods are better
than others for a given metric at different preci-
sions.

Algorithm Selection

Algorithm Exploration

Function Range Accuracy

MATLAB

Arithmetic Exploration

FPGA Implementations

A Stream Compiler

ASC code

Results of
Design Space Exploration

Fig. 2. Block diagram of methodology for au-
tomation.

accurate table, and with help from MATLAB, also to find the optimal coefficient for
a polynomial-only implementation. The interesting designs are between the table-only
and polynomial-only designs – those involving both a table and a polynomial. Three
MATLAB programs have been developed: TABLE (table lookup), TABLE+POLY (ta-
ble with polynomial) and POLY (polynomial only). The programs take a set of pa-
rameters (e.g. function, input range, operand bitwidth, required accuracy, bitwidths of
the operations and the coefficients and the polynomial degree) and generate function
evaluation units in ASC code.

TABLE produces a single table, holding results for all possible inputs; each input is
used to index the table. If the input isn bits and the precision of the results ism bits, the
size of the table would be2n×m. It can be seen that the disadvantage of this approach
is that the table size is exponential to the input size.

TABLE+POLY implements the table with polynomial method. The input interval
[a, b] is split intoN = 2I equally sized segments. TheI leftmost bits of the argumentx
serve as the index into the table, which holds the coefficients for that particular interval.
We use degree two polynomials for approximating the segments, but other degrees are
possible. The program starts withI = 0 (i.e. one segment over the whole input range)
and finds the minimax polynomial coefficients which minimize the maximum absolute
error. I is incremented until the maximum error over all segments is lower than the
requested error. The operations are performed in fixed point and in finite precision with
the user supplied parameters, which are emulated by MATLAB.

POLY generates an implementation which approximates the function over the whole
input range with a single polynomial. It starts with a degree one polynomial and finds
the minimax polynomial coefficients. The polynomial degree is incremented until the
desired accuracy is met. Again, fixed point and finite precision are emulated.

4 Hardware Design Space Exploration with ASC

ASC [6] enables a software-like programming of FPGAs. ASC is built on top of the
module generation environment PAM-Blox II, which in turn builds upon the PamDC [9]
gate library. While [6] shows the details of the design space exploration process with
ASC, we now utilise ASC (version 0.5) to automate this process. The idea is to retain
user-control over all features available on the gate level, whilst automating many of the
tedious tasks involved in exploring the design space. Therefore ASC allows the user to
specify the dimensions of design space exploration, e.g. bitwidths of certain variables,
optimization metrics such as area, latency, or throughput, and in fact anything else that
is accessible in ASC code, which includes algorithm level, arithmetic unit level and
gate level constructs. For example, suppose we wish to explore how the bitwidth of a
particular ASC variable affects area and throughput. To do this we first parameterize
the bitwidth definition of this variable in the ASC code. Then we specify the detail of
the exploration in the following manner:

RUN0 = −XBITWIDTH = {8, 16, 24, 32} (1)

which states that we wish to investigate bitwidths of 8, 16, 24 and 32. At this point, typ-
ing ‘make run0’ begins an automatic exploration of the design space, generating a vast
array of data (e.g. Number of 4-input LUTs, Total Equivalent Gate Count, Throughput
and Latency) for each different bitwidth. ASC also automatically generates graphs for
key pieces of this data, in an effort to further reduce the time required to evaluate it.

The design space explorer, or “user”, in our case is of course the MATLAB program
that mathematically designs the arithmetic units on the algorithmic level and provides
ASC with a set of ASC programs, each of which results in a large number of implemen-
tations. Each ASC implementation in return results in a number of design space explo-
ration graphs and data files. The remaining manual step, which is difficult to automate,
involves inspecting the graphs and extracting useful information about the variation of
the metrics. It would be interesting to see how such information from the hardware
design space exploration can be used to steer the algorithmic design space exploration.

One dimension of the design space is technology mapping on the FPGA side.
Should we use block RAMs, LUT memory or LUT logic implementations of the math-
ematical lookup tables generated by MATLAB? Table 1 shows ASC results which sub-
stantiate the view that logic minimization of tables containing smooth functions is usu-
ally preferable over using block RAMs or LUT memory to implement the table. There-
fore, in this work we limit the exploration to combinational logic implementations of
tables.

5 Verification with ASC

One major problem of automated hardware design is the verification of the results, to
make sure that the output circuit is actually correct. ASC offers two mechanisms for
this activity based on a software version of the implementation.

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 8 10 12 14 16 18 20 22 24

M
ax

 E
rr

or

Bitwidth

sin(x)

POLY
TABLE

TABLE+POLY

Fig. 3. Accuracy graph: maximum error versus bitwidth forsin(x) with the three methods.

Table 1. Various place and route results of 12-bit approximations tosin(x). The logic mini-
mized LUT implementation of the tables minimizes latency and area, while keeping comparable
throughput to the other methods, e.g. block RAM (BRAM) based implementation.

ASC memory 4-input LUTs clock speed latency throughput

optimization type [MHz] [ns] [Mbps]

latency block RAM 919 + 1BRAM 17.89 111.81 250.41

LUT memory 1086 15.74 63.51 220.43

LUT logic 813 16.63 60.11 232.93

throughput block RAM 919 + 1BRAM 39.49 177.28 552.79

LUT memory 1086 36.29 192.88 508.09

LUT logic 967 39.26 178.29 549.67

– Accuracy Graphs: graphs showing the accuracy of the gate-level simulation result
(SIM) compared to a software version using double precision floating point (SW),
automatically generated by MATLAB, plotting:
max.error = max(|SW − SIM |), or
max.error = max(|SW − FPGA|)
when comparing to an actual FPGA output (FPGA).
Figure 3 shows an example graph. Here the precisions of the coefficients and the
operations are increased according to the bitwidth (e.g. when bitwidth=16, all co-
efficients and operations are set to 16 bits), and the output bitwidth is fixed at 24
bits.

– Regression Testing: same as the accuracy graph, but instead of plotting a graph,
ASC compares the result to a maximally tolerated error and reports only ‘pass’ or
‘fail’ at the end. This feature allows us to automate the generation and execution of
a large number of tests.

6 Results

We show results for three elementary functions:sin(x), log(x+1) and2x. Five bit sizes
8, 12, 16, 20 and 24 bits are considered for the bitwidth. In this paper, we implement
designs withn-bit inputs andn-bit outputs. However, the position of the decimal (or
binary) point in the input and output formats can be different in order to maximize the
precision that can be described. The results of all 400 implementations are post place
and route, and are implemented on a Xilinx Virtex-II XC2V6000-6 device.

In algorithmic space explored by MATLAB, there are three methods, three functions
and five bitwidths, resulting in 45 designs. These designs are generated by the user
with hand-optimized coefficient and operation bitwidths. ASC takes the 45 algorithmic
designs and expands them into over 400 implementations in the hardware space. With
the aid of the automatic design exploration features of ASC (Section 4), we are able
to generate all the implementation results in one go with a single ‘make’ file. It takes
around twelve hours on a dual Athlon XP 2.13GHz PC with 2GB RAM.

The following graphs are a subset of the full design space exploration which we
show for demonstration purposes. Figures 4 to 15 show a set of FPGA implementations
resulting from a 2D cut of the multidimensional design space.

In Figures 4 to 6, we fix the function and approximation method tosin(x) and
TABLE+POLY, and obtain area, latency and throughput results for various bitwidths
and optimization methods. Degree two polynomials are used for all TABLE+POLY
experiments in our work.

Figure 4 shows how the area (in terms of the number of 4-input LUTs) varies with
bitwidth. The lower part shows LUTs used for logic while the small top part of the bars
shows LUTs used for routing. We observe that designs optimized for area are signifi-
cantly smaller than other designs. In addition, as one would expect, the area increases
with the bit width. Designs optimized for throughput have the largest area; this is due
to the registers used for pipelining. Figure 5 shows that designs optimized for latency
have significantly less delay, and the increase in delay with the bitwidth is lower than
others. Designs optimized for area have the longest delay, which is due to hardware
being shared in a time-multiplexed manner. Figure 6 shows that designs optimized for
throughput perform significantly better than others. Designs optimized for area perform
worst, which is again due to the hardware sharing. An interesting observation is the fact
that throughput is relatively constant with bitwidth. This is due to increased routing
delays as designs get larger with increased precision requirements.

Figures 7 to 9 show various metric-against-metric scatter plots of 12-bit approxi-
mations tosin(x) with different methods and optimizations. For TABLE, only results
with area optimization are shown since the results for other optimizations applied are
identical. With the aid of such plots, one can decide rapidly what methods to use for
meeting specific requirements in area, latency or throughput.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

242016128

A
re

a
[4

-in
pu

t L
U

T
s]

Bitwidth

TABLE+POLY, sin(x)

OPT-AREA
OPT-LATENCY

OPT-THROUGHPUT

Fig. 4. Area versus bitwidth forsin(x) with
TABLE+POLY. OPT indicates for what metric
the design is optimized for. Lower part: LUTs
for logic; small top part: LUTs for routing.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 8 10 12 14 16 18 20 22 24

La
te

nc
y

[n
s]

Bitwidth

TABLE+POLY, sin(x)

OPT-AREA
OPT-LATENCY

OPT-THROUGHPUT

Fig. 5. Latency versus bitwidth forsin(x) with
TABLE+POLY. Shows the impact of latency
optimization.

 0

 100

 200

 300

 400

 500

 600

 8 10 12 14 16 18 20 22 24

T
hr

ou
gh

pu
t [

M
bp

s]

Bitwidth

TABLE+POLY, sin(x)

OPT-AREA
OPT-LATENCY

OPT-THROUGHPUT

Fig. 6. Throughput versus bitwidth forsin(x)
with TABLE+POLY. Shows the impact of
throughput optimization.

 0

 200

 400

 600

 800

 1000

 0 500 1000 1500 2000 2500 3000

La
te

nc
y

[n
s]

Area [4-input LUTs]

sin(x), 12 bits

OPT-AREA-TABLE+POLY
OPT-LATENCY-TABLE+POLY

OPT-THROUGHPUT-TABLE+POLY
OPT-AREA-TABLE
OPT-AREA-POLY

OPT-LATENCY-POLY
OPT-THROUGHPUT-POLY

Fig. 7. Latency versus area for 12-bit approxi-
mations tosin(x). The Pareto optimal points in
the latency-area space are shown.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 100 200 300 400 500 600 700

La
te

nc
y

[n
s]

Throughput [Mbps]

sin(x), 12 bits

OPT-AREA-TABLE+POLY
OPT-LATENCY-TABLE+POLY

OPT-THROUGHPUT-TABLE+POLY
OPT-AREA-TABLE
OPT-AREA-POLY

OPT-LATENCY-POLY
OPT-THROUGHPUT-POLY

Fig. 8. Latency versus throughput for 12-bit
approximations tosin(x). The Pareto opti-
mal points in the latency-throughput space are
shown.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 500 1000 1500 2000 2500 3000

T
hr

ou
gh

pu
t [

M
bp

s]

Area [4-input LUTs]

sin(x), 12 bits

OPT-AREA-TABLE+POLY
OPT-LATENCY-TABLE+POLY

OPT-THROUGHPUT-TABLE+POLY
OPT-AREA-TABLE
OPT-AREA-POLY

OPT-LATENCY-POLY
OPT-THROUGHPUT-POLY

Fig. 9. Area versus throughput for 12-bit ap-
proximations tosin(x). The Pareto optimal
points in the throughput-area space are shown.

In Figures 10 to 12, we fix the approximation method to TABLE+POLY, and obtain
area, latency and throughput results for all three functions at various bitwidths. Opti-
mum optimization methods are used for all three experiments (e.g. area is optimized to
get the area results).

From Figure 10, we observe thatsin(x) requires the most and2x requires the least
area. The difference gets more apparent as the bitwidth increases. This is because2x

is the most linear of the three functions, hence requires fewer number of segments for
the approximations. This leads to a reduction in the number of entries in the coefficient
table and hence less area on the device.

Figure 11 shows the variations of the latency with the bitwidth. We observe that all
three functions have similar behavior. In Figure 12, we observe that again the three func-
tions have similar behavior, with2x performing slightly better than others for bitwidths
higher than 16. We suspect that this is because of the lower area requirement of2x,
which leads to less routing delay.

Figures 13 to 15 show the main emphasis and contribution of this paper, illustrating
which approximation method to use for the best area, latency or throughput perfor-
mance. We fix the function tosin(x) and obtain results for all three methods at various
bit widths. Again, the optimum optimization is used for a given experiment. For exper-
iments involving TABLE, we have managed to obtain results up to 12 bits only, due to
memory limitations of our PCs.

From Figure 13, we observe that TABLE has the least area at 8 bits, but the area
increases rapidly making it less desirable at higher bitwidths. The reason for this is the
exponential increase in table to the input size for full lookup tables. The TABLE+POLY
approach yields the least area for precisions higher than eight bits. This is due to the
efficiency of using multiple segments with minimax coefficients for each. We have ob-
served that for POLY, roughly one more polynomial term (i.e. one more multiply-and-
add module) is needed every four bits. Hence, we see a linear behavior with the POLY
curve.

Figure 14 shows that TABLE has significantly smaller latency than others. We ex-
pect that this will be the case for bitwidths higher than 12 bits as well. POLY has the
worst delay, which is due to computations involving high-degree polynomials, and the
terms of the polynomials increase with the bitwidth. The latency for TABLE+POLY is
relatively low across all bitwidths, which is due to the fact that the number of memory
accesses and polynomial degree are fixed.

In Figure 15, we observe how the throughput varies with bitwidth. For low bitwidths,
TABLE designs result in the best throughput, which is due to the short delay for a sin-
gle memory access. However, the performance quickly degrades and we predict that at
bit widths higher than 12 bits, it will perform worse than the other two methods due to
rapid increase in routing congestion. The performance of TABLE+POLY is better than
POLY before 15 bits and gets worse after. This is due to the increase in the size of the
table with precision, which leads to longer delays for memory accesses.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

242016128

A
re

a
[4

-in
pu

t L
U

T
s]

Bitwidth

Optimize Area

sin(x)
log(1+x)

2x

Fig. 10.Area versus bitwidth for the three func-
tions with TABLE+POLY. Lower part: LUTs
for logic; small top part: LUTs for routing.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 8 10 12 14 16 18 20 22 24

La
te

nc
y

[n
s]

Bitwidth

Optimize Latency

sin(x)
log(1+x)

2x

Fig. 11. Latency versus bitwidth for the three
functions with TABLE+POLY.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 8 10 12 14 16 18 20 22 24

T
hr

ou
gh

pu
t [

M
bp

s]

Bitwidth

Optimize Throughput

sin(x)
log(1+x)

2x

Fig. 12. Throughput versus bitwidth for the
three functions with TABLE+POLY. Through-
put is similar across functions, as expected.

 0

 500

 1000

 1500

 2000

 2500

 3000

 8 10 12 14 16 18 20 22 24

A
re

a
[4

-in
pu

t L
U

T
s]

Bitwidth

Optimize Area, sin(x)

TABLE
POLY

TABLE+POLY

Fig. 13. Area versus bitwidth forsin(x) with
the three methods. Note that the TABLE
method gets too large already for 14 bits.

 0

 50

 100

 150

 200

 250

 300

 350

 8 10 12 14 16 18 20 22 24

La
te

nc
y

[n
s]

Bitwidth

Optimize Latency, sin(x)

TABLE
POLY

TABLE+POLY

Fig. 14. Latency versus bitwidth forsin(x)
with the three methods.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 8 10 12 14 16 18 20 22 24

T
hr

ou
gh

pu
t [

M
bp

s]

Bitwidth

Optimize Throughput, sin(x)

TABLE
POLY

TABLE+POLY

Fig. 15.Throughput versus bitwidth forsin(x)
with the three methods.

7 Conclusions

We present a methodology for the automation of function evaluation unit design, cover-
ing table lookup, table with polynomial, and polynomial-only methods. An implemen-
tation of a partially automated system for design space exploration of function evalua-
tion in hardware has been demonstrated, including algorithmic design space exploration
with MATLAB and hardware design space exploration with ASC.

We conclude that the automation of function evaluation unit design is within reach,
even though there are many remaining issues for further study. Current and future work
includes optimizing polynomial evaluation, exploring the interaction between range re-
duction and function evaluation, including more approximation methods, and develop-
ing a complete and seamless automation of the entire process.

Acknowledgements

The authors thank George Constantinides and Ray Cheung for their assistance. The sup-
port of Xilinx Inc. and the U.K. Engineering and Physical Sciences Research Council
(Grant number GR/N 66599, GR/R 55931 and GR/R 31409) is gratefully acknowl-
edged.

References

1. J. Cao, B.W.Y. We and J. Cheng, “ High-performance architectures for elementary function
generation”,Proc. 15th IEEE Symp. on Comput. Arith., 2001.

2. M.J. Flynn and S.F. Oberman,Advanced Computer Arithmetic Design, John Wiley & Sons,
New York, 2001.

3. V.K. Jain, S.A. Wadecar and L. Lin, “A universal nonlinear component and its application to
WSI”, IEEE Trans. Components, Hybrids and Manufacturing Tech., vol. 16, no. 7, pp. 656–
664, 1993.

4. D. Lee, W. Luk, J. Villasenor and P.Y.K. Cheung, “Hierarchical Segmentation Schemes for
Function Evaluation”,Proc. IEEE Int. Conf. on Field-Prog. Tech., pp. 92–99, 2003.

5. D.M. Lewis, “Interleaved memory function interpolators with application to an accurate
LNS arithmetic unit”,IEEE Trans. Comput., vol. 43, no. 8, pp. 974–982, 1994.

6. O. Mencer, D.J. Pearce, L.W. Howes and W. Luk, “Design space exploration with a stream
compiler”,Proc. IEEE Int. Conf. on Field-Prog. Tech., pp. 270–277, 2003.

7. O. Mencer and W. Luk, “Parameterized high throughput function evaluation for FPGAs”,
J. of VLSI Sig. Proc. Syst., vol. 36, no. 1, pp. 17–25, 2004.

8. J.M. Muller, Elementary Functions: Algorithms and Implementation, Birkhauser Verlag
AG, 1997.

9. B. Patrice, R. Didier and V. Jean, “Programmable active memories: a performance assess-
ment”,Proc. ACM Int. Symp. on Field-Prog. Gate Arrays, 1992.

10. M.J. Schulte and J.E. Stine, “Approximating elementary functions with symmetric bipartite
tables”,IEEE Trans. on Comput., vol. 48, no. 9, pp. 842–847, 1999.

11. P.T.P. Tang, “Table lookup algorithms for elementary functions and their error analysis”,
Proc. IEEE Symp. on Comput. Arith., pp. 232–236, 1991.

12. W.F. Wong and E. Goto, “Fast hardware-based algorithms for elementary function com-
putations using rectangular multipliers”,IEEE Trans. on Comput., vol. 43, pp. 278–294,
1994.

