
Adaptive Range Reduction for Hardware Function Evaluation

Dong-U Lee, Altaf Abdul Gaffar, Oskar Mencer and Wayne Luk
Department of Computing, Imperial College

London, United Kingdom
{dong.lee, altaf.gaffar, o.mencer, w.luk}@ic.ac.uk

Abstract

Function evaluationf(x) typically consists of range re-
duction and the actual function evaluation on a small in-
terval. In this paper, we investigate optimization of range
reduction given the range and precision ofx andf(x). For
every function evaluation there exists a convenient interval
such as[0, π/2) for sin(x). The adaptive range reduction
method, which we propose in this work, involves deciding
whether range reduction can be used effectively for a par-
ticular design. The decision depends on the function being
evaluated, precision, and optimization metrics such as area,
latency and throughput. In addition, the input and output
range has an impact on the preferable function evaluation
method such as polynomial, table-based, or combinations
of the two. We explore this vast design space of adaptive
range reduction for fixed-pointsin(x), log(x) and

√
x ac-

curate to one unit in the last place using MATLAB and ASC,
A Stream Compiler. These tools enable us to study over
1000 designs resulting in over 40 million Xilinx equivalent
circuit gates, in a few hours’ time. The final objective is to
progress towards a fully automated library that provides op-
timal function evaluation hardware units given input/output
range and precision.

1 Introduction

The evaluation of functions is often the performance
bottleneck of many compute-bound applications. Exam-
ples of these functions include elementary functions such as
log(x), sin(x) and

√
x. Computing these functions quickly

and accurately is a major goal in computer arithmetic. Soft-
ware implementations are often too slow for numerically
intensive or real-time applications. The performance of
such applications depends on the design of a hardware func-
tion evaluator. Advanced FPGAs enable the development
of low-cost and high-speed function evaluation units, cus-
tomizable to particular applications. The challenge is to
provide a programming tool or library for FPGAs that deliv-

ers the optimal function evaluation unit for a given function,
with the associated input/output range and precision.

Recent work [6, 9] shows the connection between preci-
sion and function evaluation methods. This paper focuses
on adaptive range reduction. The main contributions of this
paper are:

• Framework for adaptive range reduction based on a
parametric function evaluation library, and on func-
tion approximation by polynomials and tables and pre-
computing all possible input/output ranges.

• Implementation of design space exploration for adap-
tive range reduction, using MATLAB in producing
function evaluation parameters for hardware designs
targeting the ASC system.

• Evaluation of the proposed approach by exploring var-
ious effects of range reduction of several arithmetic
functions such assin(x) andlog(x) on throughput, la-
tency and area for FPGA designs.

The rest of this paper is organized as follows. Section 2
covers overview and background material. Section 3 shows
the design of the adaptive function evaluation library for
ASC. Section 4 presents the implementation of the algo-
rithmic design space exploration with MATLAB, ASC li-
brary code generation, and the automation of the ASC de-
sign space exploration process optimizing area, latency or
throughput. Section 5 discusses results, and Section 6 of-
fers conclusions and thoughts on future work.

2 Background

Consider an elementary functionf(x), wherex andf(x)
have a given range[a, b] and precision requirement. The
evaluationf(x) typically consists of three steps [12]:

(1) range reduction, reducingx over the interval[a, b] to
a more convenienty over a smaller interval[a′, b′],

(2) function evaluation on the reduced interval, and

(3) range reconstruction: expansion of the result back to
the original result range.

There are two main types of range reduction:

• additive reduction:y is equal tox − mC;

• multiplicative reduction:y is equal tox/Cm

where integerm and a constantC are defined by the evalu-
ated function.

Range reduction is widely studied, especially for
CORDIC [13] and floating-point number systems on mi-
croprocessors [1]. Li et. al. [8] present theorems that prove
the correctness and effectiveness of commonly used range
reduction techniques. Lefévre and Muller [7] suggest a
method for performing range reduction on the fly: overlap-
ping the computation with the reception of the input bits for
bit-serial systems. Defour et. al. [2] present an algorithm
suitable for small and medium sized arguments in IEEE
double precision. Their method is significantly faster than
Payne and Hanek’s modular range reduction method [12],
at the expense of larger table sizes.

In contrast, range reduction which adapts to different in-
put ranges and precisions has received little attention. To
the best of our knowledge, this is the first paper that deals
with this issue.

There are numerous methods to approximate a function
on a reduced interval, and the optimal method depends on
the precision of the input and output as shown in [9]. Di-
rect table look-ups are impractical for precisions higher than
a few bits. Symmetric table addition methods [4] are fast
with reasonable table sizes for precisions lower than 20 bits,
but are perhaps inappropriate for larger precisions due to
its large table sizes at high precisions. CORDIC function
evaluation provides a popular research topic, involving only
shift and add operations. However, CORDICs have an ex-
ecution time which is linearly proportional to the number
of operands, and is not suitable for applications requiring
high accuracy and speed. Of course the tradeoffs depend
on the optimization metric as well. In this paper we show
that input and output ranges form another consideration
when choosing the optimal method. We demonstrate the
principles with polynomial-only and table-with-polynomial
methods with a varying number of coefficients.

3 Design

This section describes our approach for adaptive range
reduction. Section 3.1 provides an overview. Section 3.2
describes the degrees of freedom for choosing different pa-
rameters in our method.

function f(x) input format method

Approximate f(x)
(MATLAB)

Hardware Compiler
(ASC)

FPGA
implementations

Library
Generator
(Perl Script)

ASC code
Function

Evaluation
Library

(ASC Lib)

User

Library Construction Library Usage

Figure 1:Work flow: MATLAB generates all the ASC code
for the library. The user simply indexes into the library to
obtain the specific function approximation unit.

3.1 Design Overview

Figure 1 shows the work flow of our approach. The func-
tion of interest, its input range and precision, and evaluation
method are supplied to our MATLAB program, which auto-
matically designs the function approximator and produces
its hardware description. In our case, MATLAB produces
code for ASC, A Stream Compiler for FPGAs [10]. This
large collection of ASC functions is then transformed by
a Perl script into an ASC function evaluation library (ASC
lib). ASC then takes care of design space exploration on the
architecture level, the arithmetic level, and the gate level of
abstraction. The result is an optimized function evaluation
library for computing with FPGAs.

Given a functionf(x) and an interval[a, b] we approxi-
mate the function with polynomials and tables. Tasks in de-
signing a function evaluation library include automating the
selection of range reduction, the selection and design of the
function evaluation method, and area, latency and through-
put optimizations on the lower levels of abstraction. This
section shows how we design a function evaluation library
that contains optimized implementations for a large number
of range/precision combinations.

The conventional way of implementing function evalua-
tion is shown below for the three functions evaluated in this
paper. We use ASC code notation [10] in Figure 2 to show
various methods of function evaluation including range re-
duction and range reconstruction, which follow the ideas
presented in [11] and [13].

The code in Figure 2 shows as an example a different
function evaluation method for each function. In reality,
we use many combinations of evaluation methods and func-
tions. sin(x) is an instance of additive reduction, whereas
log(x) and

√
x are instances of multiplicative reduction.

The central contribution of this paper lies in recon-

Evaluating f(x) = sin(x)

// Range Reduction
x1 = abs(x) % (2*pi);
x2 = IF(x1>pi, x1-pi, x1);
y = IF(x2>(pi/2), pi-x2, x2);

// Evaluation Method
// f(y) where y = [0,pi/2)
// e.g. polynomial-only (po)
f1 = (a*y+b)*y+c;

// Range Reconstruction
f = IF(x1>pi, f1, -f1);

Evaluating f(x) = log(x)

// Range Reduction
exp = LeadingOneDetect(x)-FracWidth(x);
y = x << exp;

// Evaluation Method
// f(y) where y = [0.5,1)
// e.g. table+degree-1-polynomial (tp1)
f1 = Table1[y]*y+Table2[y];

// Range Reconstruction
f = f1+exp*log(2);

Evaluating f(x) =
√

x

// Range Reduction
exp = LeadingOneDetect(x)-FracWidth(x);
x1 = x << exp;
y = IF(exp[0], x1 >> 1, x1);

// Evaluation Method
// f(y) where y = [0.25,1)
// e.g. table+degree-2-polynomial (tp2)
f1 = (Table1[y]*y+Table2[y])*y+Table3[y];

// Range Reconstruction
exp1 = IF(exp[0], exp+1 >> 1, exp >> 1);
f = f1 << exp1;

Figure 2: Description of range reduction, evaluation
method and range reconstruction for the three functions
sin(x), log(x) and

√
x.

sidering the above structure for user-defined fixed-point
bitwidths. When programming FPGAs one can select any
bitwidth for the integer part and the fractional part of the
fixed point number. As a consequence, a function evalua-
tion library obtains the range and precision of the input and
can use this information to produce an optimized function
evaluation unit. Previous work [9] shows the subproblem
of how to select function evaluation methods based on pre-
cision. In this work we add the issue of input/output range
and range reduction. Based on input range and precision we
now have the following degrees of freedom:

1. applicability of range reduction

2. evaluation method selection

3. evaluation method design

• find minimal bitwidths

• find minimal polynomial degree
(for polynomial-only method)

• find minimal segments
(for table-with-polynomial method)

4. optimize: area, latency or throughput

The ASC function evaluation library takes the range, pre-
cision and optimization metric and instantiates one of many
instances of the corresponding function evaluation unit.

3.2 Degrees of Freedom

Applicability of Range Reduction

Assume we require a hardware unit to computesin(x)
wherex is a fixed point variable with four integer bits and
eight fraction bits. Then the range of the input is[0, 16) and
the expected range of the output is[−1, 1]. The precision of
the input and output is2−8 which also sets the ulp (unit in
last place). Given a particular function that we want to eval-
uate, we can decide whether it is necessary to implement
range reduction or not. In order to make the correct decision
we need to consider the optimization metric (area, latency
or throughput), design a function evaluation unit with and
without range reduction, and select the more optimal one.

In practice, we actually pre-compute all possible input
ranges and store for each function a particular ranger so
that for all input ranges smaller thanr we do not use range
reduction, and for all input ranges abover we use range
reduction. We obtain the graphs which determiner after
place-and-route. Section 5 shows the detailed graphs of this
step.

Evaluation Method Selection

There are many possible function evaluation methods, such
as symmetric table addition methods, CORDIC, rational
approximation, polynomial-only methods and table-with-
polynomial methods. In this paper we explore polynomial-
only (po) and table-with-polynomial methods with polyno-
mials of degree two to four (tp2-4). The architecture for an
approximation unit with a table-with-polynomial scheme is
shown in Figure 4. The polynomial coefficients are found
in a minimax sense that minimizes the maximum absolute
error.

0.5 0.5625 0.625 0.6875 0.75 0.8125 0.875 0.9375 1

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

y

lo
g(

y)

Figure 3:Segmentation for evaluatinglog(y) with eight uni-
form segments. The leftmost three bits of the inputs are used
as the segment index.

For the table-with-polynomial approach, the input in-
terval is split into2k equally sized segments. Thek left-
most bits of the argumenty serve as the index into the ta-
ble, which holds the coefficients for that particular interval.
Note that for the polynomial-only approach, there would be
just one entry (coefficient) in the table and no addressing
bits. Segmentation for evaluatinglog(y) with eight uniform
segments (k = 3) is illustrated in Figure 3. We observe
that the range reduced interval is relatively linear, and hence
the use of uniform segmentation is sufficient. However, for
non-linear functions such as certain compound functions,
one should use non-linear segmentation techniques such as
the hierarchical segmentation method [5]. Note that for the
polynomial-only approach, there would be just one entry
(coefficient) in the table and no addressing bits.

The table-with-polynomial (tp) methods trade off table
area versus polynomial area, while the polynomial-only
method results in precision and polynomial degree related
to the precision of the input and output of the function eval-
uation.

Evaluation Method Design

Once we know which method to use, we need to design the
optimized unit. For the polynomial-only method we can
find the minimal degree of the polynomial that will satisfy
the required output precision. Then we need to find the opti-
mized bitwidths of the computation inside the function eval-
uation units for all the methods.

Optimize: Area, Latency or Throughput

While the options or selections of the previous degrees of
freedom are pre-computed with MATLAB, the area, latency
and throughput optimizations on the arithmetic and gate-
levels can be left for the compiler to worry about. The next
section about the implementation contains details on how
this is achieved.

cd

0

index

1
...

...
2k

cd-1 ...

...

k j-k

n

wd-1wd

c0

w0

c1

w1

j

f(y)

y

ya yb

Figure 4:Architecture of table-with-polynomial unit for de-
greed polynomials. Horner’s rule is used to evaluate the
polynomials.

4 Implementation

This section presents the implementation of the algo-
rithmic design space exploration with MATLAB, and ASC
code generation and optimization.

4.1 Algorithmic Design Space Exploration

We use MATLAB to generate a large number of imple-
mentations for function evaluation. We consider several
function evaluation methods: polynomial-only (po), and
table-with-polynomial of degree two to four (tp2-tp4). For a
given function and any range/precision pair, the MATLAB
code generates polynomial coefficients which form entries
of the lookup tables based on the Remez method [12]. This
method computes the minimax coefficients that minimize
the maximum absolute error over an interval. The range
and precision are represented by the integer and fraction
bitwidths respectively. In this fashion we also obtain mini-
mal bitwidths and the minimal number of polynomial terms
for the po method. For thetp methods, we find the minimal
table-size and the coefficient bitwidths for the given range
and precision.

The following structure is used to produce 2000 lines of
MATLAB code for design exploration.

// for a given function f, input format i,
// method m and polynomial degree d

if (m==’po’) // for polynomial-only
// find minimum polynomial degree
min_degree = find_min_degree(f,i);
// find minimum internal fraction bitwidth
int_bw = find_min_int_bw(f,i,min_degree);
// generate polynomial coefficients
coeffs = gen_coeffs(f,i,min_degree,int_bw);
// generate ASC code
gen_ASC(f,i,min_degree,int_bw,coeffs);

elseif (m==’tp’) // for table-with-polynomial
// find minimum number of segments
min_segs = find_min_segs(f,i,d);

// find minimum internal fraction bitwidth
int_bw = find_min_int_bw(f,i,d,min_segs);

// generate coefficient lookup table
table = gen_table(f,i,d,int_bw,min_segs);

// generate ASC code
gen_ASC(f,i,d,int_bw,table,min_segs);

end

For this implementation we use uniform bitwidths for the
internal datapath fraction bitwidth. This minimum bitwidth
is found using a binary search method.

4.2 ASC Code Generation and Optimizations

ASC, A Stream Compiler [10], provides a programming
environment for FPGAs. ASC code makes use of C++ syn-
tax and ASC semantics which allow the user to program
on the architecture-level, the arithmetic-level and the gate-
level. As a consequence ASC code provides the produc-
tivity of high-level hardware design tools and the perfor-
mance of low-level optimized hardware design. ASC pro-
vides types and operators to enable research on custom data
representation and arithmetic. Currently supported types
are HWint, HWfix and HWfloat. For this paper we use the
HWfix type which is defined as follows:

HWfix x(TMP,size,fract_size,sign_mode);

All results in this paper are given for sign-magnitude repre-
sentation which makes most sense for range reduction. ASC
provides operator-level optimizations of area, latency, and
throughput, which is refered to below as the optimization
mode.

As a result of this work, ASC provides a function evalu-
ation library call of the form:

y = HWsin(x);

In order to create an optimizing function evaluation library,
we utilize MATLAB to generate a vast amount of ASC
code. This ASC code forms a two-dimensional matrix,
which is indexed by range and precision of the argument to
the function evaluation call. Each matrix entry consists ofa
pointer to an ASC function which is called for the particular
inputx.

Note that for each function we determine two design
selection matrices: for minimum area (Figure 13) and for

minimum latency (Figure 14) as shown in Section 5. The
HWsin(x) call indexes into the matrix to find the opti-
mized ASC implementation. For instance, from Figure 13, a√

x design with 12-bit range and 16-bit precision, the small-
est implementation would betp3.

The function evaluation code, for example forlog(x),
then indexes into the matrix of function pointers
(HWlog_matrix) and accesses the correct function based
on input range and precision:

HWfix &HWlog(HWfix &x){
return HWlog_matrix[x.range][x.precision](x);

}

All together, the 2000 lines of MATLAB code gener-
ates 300,000 lines of ASC code, resulting in over 1000 de-
signs with a total of over 40 million Xilinx equivalent circuit
gates.

5 Results

The method in Section 4.2 produces 1000 distinct de-
signs, which are placed and routed on a Xilinx Virtex-
II XC2V6000-6 device. These result in over 150
graphs/figures. We summarize all the results in two ma-
trices which show the Pareto-optimal solutions in Figure 13
for area and Figure 14 for latency. In essence, these ma-
trices tell us, for each combination of range and precision
of the input, which method to use for the three functions to
get the minimum area or latency. Note that we use the term
range reduction to also include range reconstruction.

The remaining result figures show a sample of the graphs
that we have to consider for making the decisions presented
in the matrices above. For latency optimization, ASC sim-
ply generates a purely combinatorial circuit with no pipeline
registers. For area optimization, a single adder is used re-
peatedly for multiplication. Note that latency in our work
refers to the combinatorial delay.

To decide when to use range reduction, we consider as
an examplesin(x) andlog(x) evaluated with range reduc-
tion (WRR) and without range reduction (WOR). Figures 5,
6, 7 and 8 show the area and latency results. The results
cover various ranges with the precision fixed at eight bits.
In the case of evaluating with WOR, we approximate the
function over the entire user defined range with the given
methods (tp2,tp3,tp4). With po, it is difficult to approxi-
mate with WOR, because of the non-linearities of the func-
tions over the user defined range. Considering the area for
sin(x), WOR has a lower LUT usage than WRR when the
range is less then six bits. In the case oflog(x), we ob-
serve that even for ranges as low as two bits, the LUT usage
for WOR is significantly higher than WRR and this gap in-
creases with range. This is due to the non-linear region of

4 6 8
0

1000

2000

3000

4000

5000

6000

7000

8000

Range [bits]

A
re

a
[4

−
in

pu
t L

U
T

s]

sin(x)

tp2 WOR
tp2 WRR
tp3 WOR
tp3 WRR
tp4 WOR
tp4 WRR

Figure 5: Area for sin(x) with precision of eight bits for
different methods with (WRR, solid line) and without (WOR,
dashed line) range reduction, with the designs optimized for
area.

4 6 8
40

60

80

100

120

140

160

180

200

220

240

Range [bits]

La
te

nc
y

[n
s]

sin(x)

tp2 WOR
tp2 WRR
tp3 WOR
tp3 WRR
tp4 WOR
tp4 WRR

Figure 6:Latency forsin(x) with precision of eight bits for
different methods with (WRR, solid line) and without (WOR,
dashed line) range reduction, with the designs optimized for
latency.

log(x) near zero which requires more segments to approxi-
mate with WOR. There is little change in the area results for
WOR with varying ranges. This is because there are small
changes in the range reduction circuits (modulus forsin(x)
and barrel shifter forlog(x)) for such small bit differences.
Looking at the latency results forsin(x) andlog(x), WOR
is always faster than the corresponding WRR method. This
is due to the absence of the range reduction step.

Figures 9 and 10 show the area cost of range reduction
for sin(x) andlog(x), with the approximation circuit imple-
mented usingtp3. The lower part of the bars shows LUTs
used for function evaluation, and the small upper part shows
the LUTs used for range reduction. On average, the per-
centage area used by range reduction forsin(x) andlog(x)
are 41% and 22% respectively. The cost of range reduction
with increasing range is more significant forsin(x), due to
the use of the modulus operation which incorporates a di-

2 3 4
0

2000

4000

6000

8000

10000

12000

Range [bits]

A
re

a
[4

−
in

pu
t L

U
T

s]

log(x)

tp2 WOR
tp2 WRR
tp3 WOR
tp3 WRR
tp4 WOR
tp4 WRR

Figure 7: Area for log(x) with precision of eight bits for
different methods with (WRR, solid line) and without (WOR,
dashed line) range reduction, with the designs optimized for
area.

2 3 4
50

60

70

80

90

100

110

120

130

140

Range [bits]

La
te

nc
y

[n
s]

log(x)

tp2 WOR
tp2 WRR
tp3 WOR
tp3 WRR
tp4 WOR
tp4 WRR

Figure 8:Latency forsin(x) with precision of eight bits for
different methods with (WRR, solid line) and without (WOR,
dashed line) range reduction, with the designs optimized for
latency.

vider. In contrast,log(x) uses a barrel shifter to perform
range reduction.

Figures 11 and 12 highlight the area and latency trade-
offs of various functions and methods, when we consider
the range while keeping the precision fixed at eight bits. The
area results indicate that generally, thepo andtp4 methods
occupy the largest area due to their large polynomials. The
area requirements for

√
x is the largest, because the approx-

imation interval is slightly more non-linear than the other
two functions.

Considering the latency results, we observe thatsin(x)
is significantly slower, which is due to the increase in the
divider circuit with bitwidth. By looking at these figures
along with the other figures which do not fit into this paper,
we are able to create the resulting matrices in Figure 13 and
Figure 14.

4 8 12 16
0

1000

2000

3000

4000

5000

6000

7000
sin(x) − tp3

Range [bits]

A
re

a
[4

−
in

pu
t L

U
T

s]

Precision 4
Precision 8
Precision 12
Precision 16

Figure 9: Area cost of range reduction (upper part) for
sin(x) implemented usingtp3with the designs optimized for
area.

4 8 12 16
0

500

1000

1500

2000

2500

3000

3500

4000

4500
log(x) − tp3

Range [bits]

A
re

a
[4

−
in

pu
t L

U
T

s]

Precision 4
Precision 8
Precision 12
Precision 16

Figure 10: Area cost of range reduction (upper part) for
log(x) implemented usingtp3with the designs optimized for
area.

4 8 12 16
400

600

800

1000

1200

1400

1600

1800

2000
Area Optimization − Precision 8 bits

Range [bits]

A
re

a
[4

 In
pu

t L
U

T
s]

sin, tp2
sin, tp3
sin, tp4
sin, po
sqrt, tp2
sqrt, tp3
sqrt, tp4
sqrt, po
log, tp2
log, tp3
log, tp4
log, po

Figure 11:Area versus range for all three functions using
different methods with the precision fixed at eight bits opti-
mized for area.

4 8 12 16
0

100

200

300

400

500

600

700
Latency Optimization − Precision 8 bits

Range [bits]

La
te

nc
y

[n
s]

sin, tp2
sin, tp3
sin, tp4
sin, po
sqrt, tp2
sqrt, tp3
sqrt, tp4
sqrt, po
log, tp2
log, tp3
log, tp4
log, po

Figure 12:Latency versus range for all three functions us-
ing different methods with the precision fixed at eight bits
optimized for latency.

sin: tp2
log: tp2
sqrt: tp2

sin: tp2
log: tp2
sqrt: tp2

sin: tp2
log: tp2
sqrt: tp2

sin: tp2
log: tp2
sqrt: po

sin: tp2
log: tp2
sqrt: tp2

sin: tp2
log: tp2
sqrt: tp2

sin: tp2
log: tp2
sqrt: tp2

sin: po
log: tp2
sqrt: tp2

sin: tp2
log: tp2
sqrt: tp3

sin: tp2
log: tp2
sqrt: tp2

sin: tp2
log: tp2
sqrt: tp2

sin: tp2
log: tp2
sqrt: tp2

sin: tp2
log: tp2

sqrt: tp3

sin: tp2
log: tp2
sqrt: tp2

sin: tp2
log: tp2
sqrt: tp2

sin: po
log: po
sqrt: tp2

161284

4

8

12

16

Range [bits]

P
re

ci
si

o
n

[b
its

]

Figure 13: Area matrix showing, for each input
range/precision combination, the design with minimum
area.

sin: tp2
log: tp2
sqrt: tp2

sin: tp2
log: tp2
sqrt: tp2

sin: tp2
log: tp2
sqrt: tp2

sin: po
log: po
sqrt: po

sin: tp2
log: tp2
sqrt: tp2

sin: tp2
log: tp2
sqrt: tp2

sin: tp2
log: tp2
sqrt: tp2

sin: tp2
log: po
sqrt: tp2

sin: tp2
log: tp2
sqrt: tp2

sin: tp2
log: tp2
sqrt: tp2

sin: tp2
log: tp2
sqrt: tp2

sin: po
log: tp2
sqrt: tp2

sin: tp2
log: tp2
sqrt: tp2

sin: tp2
log: tp2
sqrt: tp2

sin: tp2
log: tp2
sqrt: tp2

sin: tp2
log: po
sqrt: tp2

161284

4

8

12

16

Range [bits]

P
re

ci
si

o
n

[b
its

]

Figure 14: Latency matrix showing, for each input
range/precision combination, the design with minimum la-
tency.

6 Conclusions

This paper shows the design space exploration of func-
tion evaluation with custom range and precision. The result
is an optimizing function evaluation library for A Stream
Compiler, ASC. The novel aspect of this work is the method
and range reduction selection based on range and precision
of the input/output variables. The detailed research issues
to which this paper contributes are:

• exploration of the area and speed tradeoffs of func-
tion evaluation with and without range reduction, using
ASC;

• given a function, its input/output range/precision, and
an optimization metric, we automate the decision
about whether range reduction helps to optimize the
metric by pre-computing a large library of function
evaluation generators;

• given the above and a decision regarding range re-
duction, we automate the decision which is the op-
timal evaluation method to use by looking at the
range/precision/method space and selecting the best
method in each case;

• given the method, we automate the decision about
which bitwidths and number of polynomial terms to
use by constructing the function evaluation generators
via MATLAB simulation and computation.

In addition, we show the productivity which we obtain
from combining MATLAB with ASC, exploring over 40
million Xilinx equivalent circuit gates in a relatively short
amount of time.

Future work includes implementing other elementary
functions, exploring other evaluation methods such as ra-
tional approximation and symmetric table addition meth-
ods, and utilizing block RAMs and embedded multipliers.
We also hope to optimize our designs further by employ-
ing non-uniform bitwidth minimization techniques [3]. The
final objective is to progress towards a fully automated li-
brary that provides optimal function evaluation hardware
units given input/output range and precision.

Acknowledgment

The authors thank Ray C.C. Cheung and David J. Pearce
for their assistance. The support of Xilinx Inc. and the
U.K. Engineering and Physical Sciences Research Coun-
cil (Grant number GR/N 66599, GR/R 55931 and GR/R
31409) is gratefully acknowledged.

References

[1] W.J. Cody and W. Waite.Software Manual for the
Elementary Functions. Prentice Hall, 1980.

[2] D. Defour, P. Kornerup, J.M. Muller, and N. Revol. A
new range reduction algorithm. InProc. IEEE Asilo-
mar Conf. on Sig., Syst. and Comput., volume 2, pages
1656–1660, 2001.

[3] A. Abdul Gaffar, O. Mencer, W. Luk, and P.Y.K. Che-
ung. Unifying bit-width optimisation for fixed-point
and floating-point designs. InProc. IEEE Symp. on
Field-Prog. Cust. Comput. Mach. (FCCM), 2004.

[4] J.E. Stine and M.J. Schulte. The symmetric table ad-
dition method for accurate function approximation.J.
of VLSI Sig. Proc., 32(2):167–177, 1999.

[5] D. Lee, W. Luk, J.D. Villasenor, and P.Y.K. Cheung.
Hierarchical segmentation schemes for function eval-
uation. InProc. IEEE Int. Conf. on Field-Prog. Tech.
(FPT), pages 92–99, 2003.

[6] D. Lee, O. Mencer, D.J. Pearce, and W. Luk. Automat-
ing optimized table-with-polynomial function evalua-
tion for FPGAs. InProc. Int. Conf. on Field-Prog.
Logic and App. (FPL), LNCS 3203, pages 364–373.
Springer-Verlag, 2004.

[7] V. Lefévre and J.M. Muller. On-the-fly range reduc-
tion. J. of VLSI Sig. Proc., 33:31–35, 2003.

[8] R.C. Li, S. Boldo, and M. Daumas. Theorems on ef-
ficient argument reductions. InProc. IEEE Symp. on
Comput. Arith., pages 129–136, 2003.

[9] O. Mencer and W. Luk. Parameterized high through-
put function evaluation for FPGAs.J. of VLSI Sig.
Proc. Syst., 36(1):17–25, 2004.

[10] O. Mencer, D.J. Pearce, L.W. Howes, and W. Luk.
Design space exploration with A Stream Compiler.
In Proc. IEEE Int. Conf. on Field-Prog. Tech. (FPT),
pages 270–277, 2003.

[11] M.J. Schulte and E.E. Swartzlander Jr. Hardware de-
signs for exactly rounded elementary functions.IEEE
Trans. on Comput., 43(8):964–973, 1994.

[12] J.M. Muller. Elementary Functions: Algorithms and
Implementation. Birkhauser Verlag AG, 1997.

[13] J.S. Walther. A unified algorithm for elementary func-
tions. In Proc. AFIPS Spring Joint Comput. Conf.,
pages 379–385, 1971.

