
Custom Hardware Architectures for Posture Analysis

M. P. T. Juvonen, J. G. F. Coutinho, J. L. Wang, B. L. Lo, W. Luk, O. Mencer and G. Z. Yang
Department of Computing, Imperial College London
{mpj01,jgfc,lwang,benlo,wl,oskar,gzy}@doc.ic.ac.uk

Abstract
This paper describes the design and implementation
of hardware architectures for posture analysis. Pos-
ture analysis is an active research area in computer
vision. It can be used in providing health-care solu-
tions, such as monitoring home care patients. We re-
port four contributions in this paper: (a) requirements
for a posture analysis system with hardware support;
(b) a workflow for posture analysis that fulfils these re-
quirements; (c) various architectures and their imple-
mentation based on a high-level hardware design ap-
proach; (d) performance evaluation for our derived de-
signs. For instance our best design, which targets a Xil-
inx XC2V6000 FPGA at 90.2MHz, is able to perform
posture analysis at a rate of 1164 frames per second
with frame size of 320 × 240 pixels, or 220 frames per
second for DVD quality of 720 × 576 pixels per frame.
This represents a 145-fold speedup over a software ver-
sion running on a 3Ghz Pentium-4 computer.

1. Introduction

Computer vision and video processing often in-
volve computationally intensive tasks that need to be
applied to data streams in real time. They have many
exciting applications, such as vision-guided surgery and
robotic navigation; they are also useful in security,
surveillance and monitoring systems.

General-purpose computers can support a wide-
variety of tasks, but are often too slow or too
power hungry for vision applications. FPGAs (Field-
progammable Gate Arrays) provide an attractive alter-
native: they combine the flexibility of software with
a speed approaching that of custom hardware technol-
ogy. It has been shown that, for selected applications,
an FPGA at tens of MHz can run up to 1000 times faster
than a microprocessor with a GHz clock[3], while mov-
ing critical software loops into hardware can result in
average energy savings of 35% to 70% with an aver-
age speedup of 3 to 7 times, depending on the particular

device used[12].
In this paper we focus on the design and implemen-

tation of an FPGA-based architecture for human posture
analysis. Our overall goal is to build a pervasive visual
sensing system that can monitor and assess the daily
activities of home care patients. Instead of using body
sensors, we rely on images captured by video cameras
to identify multiple visual cues, using techniques such
as projection histogram and radial shape description, to
estimate changes in posture and gait. A number of clin-
ical studies have shown that changes in posture and gait
can hold information about the onset or progress of var-
ious diseases, such as early signs of neurological ab-
normalities linked to several types of non-Alzheimer’s
dementias.

Our method is based on previous work on ubiqui-
tous sensing for managed homecare of the elderly [14],
and includes the following four contributions:

1. requirements for a posture analysis system with
hardware support (Section 3);

2. a workflow for posture analysis that fulfils these
requirements (Section 4);

3. various architectures and their implementation tar-
geting a Xilinx XC2V6000 FPGA using a high-
level hardware design approach (Section 5);

4. performance evaluation for our derived designs
(Section 6).

The rest of this paper is structured as follows. Sec-
tion 2 covers background material, and provides an
overview of our work. Section 3 explores the require-
ments of a posture analysis system with hardware sup-
port. Section 4 describes a design workflow for pro-
ducing a hardware system that would meet the require-
ments, while Section 5 discusses its implementation.
Section 6 evaluates the performance and accuracy of our
approach, and Section 7 summarises the paper.

2. Background

Analysis of human motion has in recent years be-
come one of the most active areas of research in the field
of computer vision. As we mention in the previous sec-
tion, we are interested in providing an unobtrusive do-
mestic health monitoring system for home-care patients
using robust computer vision techniques. This includes
detecting changes in posture and gait to determine the
onset of an adverse event or worsening of an existing
condition.

In this paper we consider a posture analysis system
based on a frame-by-frame technique [14] comprising
three stages: human blob detection, posture type match-
ing based on blob metrics, and behaviour profiling. We
explain each stage below.

Human blob detection. A blob describes the shape
of an object against a blank background. A common
method to extract blobs is to employ image differenc-
ing and thresholding shown in Fig. 1 (c) and (d) re-
spectively. The former compares an image with a refer-
ence (background) frame to see what parts of the image
have changed. This is a simple process of taking the
difference between two images for each pixel in turn
(O(i, j) = |I(i, j)−R(i, j)|). To take into account changes
in the background, such as lighting conditions, the refer-
ence image can be adapted progressively. On the other
hand, the thresholding process generates a 1-bit (bi-
nary) image where pixels with values above the chosen
threshold are part of the blob representation, and below
the threshold define the background. Binary images are
ideal representation for blobs since they are fast to pro-
cess and store. Noise and distortion can be removed
using Gaussian filters as can be seen in Fig. 1 (b).

Blob metrics. Once a blob is extracted, we can repre-
sent it in a number of ways (Fig. 2). Different represen-
tations of the blob shape may reveal different features of
the shape of the blob. These metrics can then be further
used to analyse the shape in various ways. Examples of
blob representations include:

• Projection histogram representation. Projection his-
tograms are one-dimensional representations that de-
scribe the distribution of pixels of an object along the
horizontal and vertical axes. Projection histograms can
be generated by projecting the binary image on each of
the axes. Fig. 2 (c) and (d) show the horizontal and ver-
tical projections of the blob in Fig. 2 (a).

• Radial shape representation. Radial shape representa-
tion describes the outline of the blob by measuring the
distance of the outline from the shape centroid at various
angles. The radial shape bears resemblance to the blob
contour but, as the shape is described as a function of
the angle instead of along the contour, it will not be the

(a) (b)

(c) (d)

Figure 1. An example of blob extraction. An ini-
tial Gaussian blur filter is applied on the origi-
nal image (a) to reduce noise and detail in im-
age (b). The effect of the image differencing filter
is shown in (c). In (d) we see the effects of the
thresholding filter, which creates a binary image
by dividing the image into two intensities accord-
ing to the threshold value.

same. Fig. 2 (b) shows an example of the radial shape
of the blob of Fig. 2 (a), plotted in polar coordinates to
show the resemblance of the shape and the object.

Posture type matching. Posture estimation can be de-
termined by fusing two or more blob metrics, such as
the projection histogram, radial shape and elliptical fit-
ting. In particular, blob metrics are used to classify a
given posture (T) to one of three main postures (stand-
ing, sitting, lying down) by minimising the similarity
between it and all reference patterns (T i):

c = argi mind(T,Ti)
where d is the similarity measure computed for the three
different representations.

Behaviour profiling. To analyse posture changes, an
accumulate score based on appearance information is
kept so that if a score is beyond a certain range consid-
ered as normal, then the system registers it as a change
in behaviour. Also, the optical-flow technique can be
used to monitor subtle changes in posture from certain
parts of the body, such as head, hand and legs.

For the scope of this paper, we focus on human
blob detection for hardware implementation, and pos-
ture type matching for software execution.

Previous work. The recognition and analysis of human
motion and activity are currently some of the most ac-
tive research topics in the field of computer vision [15].

1

0.5

0

0.5

1
1 100.5 0.5

1

0

0.2

0.4

0.6

0.8

0 200 400 600 800 1000

1

0

0.2

0.4

0.6

0.8

0 200 400 600 800 1000

(b)

(c) (d)

(a)

Figure 2. Different representations for the blob
shown in image (a), including a radial shape
mapped in a polar coordinate space (b), and hor-
izontal (c) and vertical (d) projection histograms.

For example, W4 [6] uses a combination of shape analy-
sis and tracking. It is a sophisticated feature-based sys-
tem that can be used to track more than one person and
recognise various activities. Its posture recognition uses
projection histograms as well as silhouette shape.

Some of the most sophisticated systems are not
aimed for real-time detection. A system containing an
automatically calibrating, distributed set of sensors has
been proposed that learns common patterns of activity,
and can detect patterns that are out of the ordinary [5].
Other systems use statistical modelling with multiple
cameras and can detect interesting activity even with
random movement in the background.

Numerous other projects exist, making use of a
wide range of analysis techniques. Some are limited to a
single person in the image, while others are able to anal-
yse people in groups as well. Some systems only con-
sider single isolated frames, while others follow posture
changes over several frames [15].

3. Design Approach and Requirements

This section introduces the selection criteria and re-
quirements for implementing the posture analysis sys-
tem into hardware. The basic workflow and scope of
the system is shown in Fig. 3.

For an algorithm to be worth considering for hard-
ware implementation, it must be able to behave reli-
ably and predictably in a variety of conditions. Real-
life scenes include complications such as image noise,
changing illumination and camera shake. The aim of
the hardware architecture is to input a video frame, lo-

Figure 3. Our posture estimation system. The
posture analysis system is implemented in hard-
ware, while the posture type matching is per-
formed in software.

cate an object in the frame, then output data describ-
ing the shape of this object. Some of the considera-
tions taken in account when designing the architecture
include the following:

Noise reduction. The purpose of noise reduction in the
posture analysis system is to ensure that the binary im-
age with the blob to be analysed is as clear as possible
(Fig. 1(b)). In practice an initial blur filtering of the
image seems to give the best results. Blur filtering usu-
ally reduces detail in the image; sophisticated structure-
adaptive filters are sometimes used to achieve best re-
sults with minimal loss of detail. In the case of the pos-
ture analysis workflow the loss of detail is not a great
concern as, because of later thresholding, the filtering
has minimal effect on the shape of the blob. Applying
erosion and dilation filters further corrupts the outline
of the blob, and does not remove large groups of pix-
els. A large kernel causes more dramatic changes to
the blob outline, while a small kernel does not remove
larger groups of noise pixels.

Reference image updating. Because the image pro-
cessing system should perform well under a variety of
conditions, it should be able to adapt to changing con-
ditions. Reference image updating should therefore be
used to enable the system to adapt to gradual chang-
ing conditions. The actual update rate should be slow
enough to adapt to the changing environmental condi-
tions while ensuring that interesting objects that merely
move slowly do not blend into the background.

It is possible to adjust the rate at which the ref-
erence image is updated by controlling two variables.
First, the update frequency can be adjusted so that the
reference image need not be updated with each frame.
Second, because the reference image is a weighted av-
erage of the previous reference image and the latest
frame, the ratio between the two source can be adjusted.
A combination of these two parameters provides finer-
grain control on how the reference image is updated.

Colour space considerations. The selection of the
colour space is important to the functionality of the
thresholding filter. Ideally, the image should be in a
format where the contrast between the object and the
background is as high as possible in all circumstances,
while noise blends well into the background.

For physiological reasons, the eye is more sensi-
tive to differences in brightness (luminance) than colour
(chrominance). This fact is used in many applica-
tions, including video capture and transmission (where
the luminance channel holds more information that the
chrominance channel), and lossy compression. In the
context of this project this means that when pictures are
acquired from a video camera or an image sequence, the
quality of individual channels in the frame may be low.
Hence decomposing the image may lead to poor results
even if the channel increases contrast.

Because of these problems, and due to the extra
overhead required for colour space conversion, the RGB
colour model is chosen for this project. This approach
works well in most cases for thresholding, and the qual-
ity of the results can be improved by thresholding each
channel separately and ORing the result.

Monitoring home care patients. Since the intended
use of this system is to monitor home care patients, we
need to take into account two considerations:

• Privacy. One of the possible advantages of a posture
analysis system, as opposed to a traditional video mon-
itoring system, is that it provides a level of privacy. It
should not be possible to reconstitute an image frame
from the posture descriptions.

• Bandwidth. Most residential buildings are not equipped
with high-speed data links. Any data to be transmit-
ted between a posture analysis node and some central
monitoring location should have low bandwidth require-
ments.

The system assumes a single, isolated person in the im-
age. Such an assumption is made by a number of ex-
isting tracking systems [10, 11, 14]. Systems to track
multiple people exist, both for isolated people [1, 7] or
people in groups [6]. Object tracking has also been im-
plement in hardware [8]. Note that in the context of
home care monitoring, the assumption of a single per-
son is a reasonable one, as such a system would be used
mainly by people living alone.

4. Design Workflow

This section introduces the posture analysis work-
flow taking in account the requirements set in the pre-
vious section, and outlines the main points about the
design of some of the algorithms used in the system.

Figure 4. Our posture analysis system and its im-
age processing blocks, which are implemented in
hardware.

The main workflow is shown in Fig. 3 and from
an implementation perspective in Fig. 4. First, a frame
is acquired from a video source. Next a blur filter
(BlurBlock) is applied to the frame to reduce noise,
as explained in the previous section. A difference filter
(DiffBlock) finds the difference between the blurred
frame and a blurred reference image. Then, a thresh-
old filter (ThreshBlock) is applied to create a binary
image. This image is then used by the histogram
(HistBlock) and radial (RadialBlock) algorithms to
output posture descriptions.

Projection histogram. A projection histogram de-
scribes the distribution of pixels across the image. The
nth element of the horizontal projection histogram is a
count of the number of white pixels in the nth column
of the binary (blob) image; similarly, the mth element of
the vertical projection histogram is a count of the num-
ber of white pixels in the mth row in the image.

Radial shape. The radial shape describes the outline of
the blob as an array of distances from the centre of the
blob over a full rotation around the blob.

The projection histogram can be used to find the
centre of the blob. First, count all white pixels in the
image and store the value in sum.

Then, using a loop, find n such that:

n∑

i=0

histogram[i]< sum/2 ≤
n+1∑

j=0

histogram[j]

This is the point in the histogram with half of the bi-
nary image pixels on either side, and therefore it marks
a coordinate of the centre of the blob along one axis.

To find the radial shape, go over all integral angles
from 0 to 359 degrees in a loop. For each angle, follow
a straight line from the centre of the blob to the direction
of the angle until the edge of the shape (black pixel) is
found.

Figure 5. The pipelined design for the pos-
ture analysis system. The design contains three
stages that run concurrently using dual-buffers.

5. Hardware Implementation

This section describes the hardware implementa-
tion of the posture analysis system, which is shown in
Fig. 5. The design is pipelined and contains three stages
that are run in parallel using dual-buffering technique.
The first stage (BlobGen) generates a binary image con-
taining the blob. The second stage produces the hor-
izontal and vertical projection. This data is used not
only as a metric to determine posture position, but can
also help determine the blob centroid. The last stage
determines the radial shape.

Next we highlight some aspects of the implemen-
tation that are specific to hardware implementation.

Ring buffer. While microprocessors work generally
well with algorithms that access data randomly,
hardware-based architectures work best with algorithms
that are based on processing streams of elements in a
pipeline. For the case of a convolution (BlurBlock),
memory accesses can be reduced by introducing a ring
buffer to store pixels needed for subsequent stages of
filtering.

The ring buffer is usually implemented using block
rams in FPGAs, and must be large enough to store pix-
els needed for the convolution mask. In the case of a
3× 3 pixel filter kernel and an image of width w, the
ring buffer must be able to store at least 2w + 3 pixels.
The advantage of this technique is that the 9 memory
accesses required to process a pixel (for a 3 × 3 kernel
mask) are reduced to a single access.

Reference image updating. Updating the reference
image without using floating-point operations places
some limitations on how to perform the operation. If

the decay rate is high, for example w = 1/4, integer op-
erations can give acceptable results. In this case, the
operation is:

re f P = ((re f P×3) + (currP))/4
Problems arise if w is very low. For example, if

w = 1/128, then:
re f P = ((re f P×127) + (currP))/128
In this case the value that the current pixel con-

tributes to the result is so small that rounding errors may
mean it does not affect the end result. There are two
possible solutions to the problem. The first solution is
to set w to a reasonably high value can reduce the ef-
fects of rounding errors. This can then be compensated
by lowering the reference image update frequency. The
second solution is to increase the precision of the stored
reference image and treating the reference image pix-
els as fixed point values. Instead of storing each colour
component as an 8-bit value, it could be stored in 12
bits. Now, the operation with w = 1/128 is:

re f P = ((re f P×127) + (currP << 4))/128
This ensures that the pixel values are not stores as

integers but rather as fixed-point values with 4-bit deci-
mal portion. In addition, the operation can be done with
no multiplies or divisions, with shifts and adds:

re f P = (((re f P << 7)− re f P) + (currP << 4)) >> 7
When shifts are used, the weight must be a power

of two. This is usually an acceptable limitation, though,
because this granularity can be compensated with a suit-
able combination of w and the reference image update
frequency.

Approximating trigonometric functions. In order to
find a radial description of a blob, the algorithm needs
to iterate over different angles for a complete rotation.
The software version, running on a CPU with a floating-
point processor, used sine and cosine functions to con-
vert between Cartesian and polar coordinate systems.
Such functions are not readily available for program-
ming hardware.

A number of algorithms exist for approximat-
ing trigonometric functions without a floating-point
unit [9]. CORDIC [13] is an iterative algorithm for cal-
culating trigonometric functions to an arbitrary preci-
sion using only shifts and adds. Table lookup is a sim-
ple and effective method for trigonometric approxima-
tion. Multipartite tables can be used for greater preci-
sion, either using lookup with add or lookup with multi-
ply. Polynomial approximation such as the Taylor series
can be used as well.

The radial description algorithm aims to find the
distance of the blob outline over a complete rotation.
This is done by iterating over a set of angles between 0
and 359 degrees at 1 degree intervals. For the purposes
of this algorithm and for the frame sizes considered, this

is a reasonable precision. For each angle, starting from
the blob centroid, the algorithm moves outward one step
at a time until it finds the blob boundary. The distance
of the boundary from the blob centroid is then recorded
in an array.

A lookup table of 91 entries is used to do direct
table lookup for integral angles between 0 and 359 de-
grees. This table stores a quarter of a cosine wave be-
tween 0 and 90 degrees. All angles between 0 and 359
degrees for both sine and cosine can be generated by
shifting and mirroring the quarter-wave along each of
the axes.

In order to look up the sine and cosine values in
the same clock cycle, dual-ported RAMs are used to
store the lookup table. A C program is used to generate
a table using any arbitrary fixed-point precision. The
current architecture uses a 32-bit lookup table.

Pipelined radial block. The radial analysis algorithm
is pipelined. The pipeline stages are:

1. Find the quadrant in which the angle lies.

Resolve the angle to the range [0:90] for all angles. The
results are indices to the lookup table and will be used
in the next stage of the pipeline. The angles needed are:

α, α−90, α−180, α−270,

90−α, 180−α, 270−α, 360−α
2. Perform table lookup for both sine and cosine, depend-

ing on the quadrant and resolved angles. For example, if
the angle α lies in the second quadrant, the values would
be

cosα = −cos(180−α)

= 0− table[180−α]

sinα = cos(α−90)

= table[α−90]

3. Multiply the angles by the radius to get the offset from
the centre in Cartesian coordinates.

4. Add the offset coordinates to the centroid coordinates to
get the absolute position of the point in considerations.

5. Translate each (x,y) coordinate pair into a location
in the memory. The memory location is simply y ×
[framewidth] + x. For certain known frame widths, this
can be made more efficient with a combination of shifts
and adds. For example, for a frame width of 320 pixels,
the location is (y << 8) + (y << 6) + x.

6. Read memory at the location.

7. If the pixel read is black (background colour), we have
found a shape boundary so break and repeat for the next
angle. Otherwise increase radius and repeat.

Hardware design with Haydn-C. We use the Haydn
design flow [4] for generating hardware designs. Haydn
extends DK3 [2] capabilities of simulation and hard-
ware synthesis with automatic source-to-source trans-
formations. In particular, Haydn supports two main
features: deriving architectures that meet performance
goals involving metrics such as resource usage and ex-
ecution time, and inferring design behaviour by gener-
ating behavioural code that is easy to verify and modify
from scheduled designs such as pipeline architectures.
Fig. 6 shows the hardware compilation design flow. All
hardware architectures have been implemented using
the Haydn-C language [4], which is an extension to the
Handel-C language. It contains an annotation language
that directs the source-to-source transformation process
as well as including powerful macro capabilities. On
the other hand, the software module executing on the
host, such as the posture type matching, is built using
Visual Studio C++. One main feature of the Haydn
design flow is that simulation and hardware synthesis
can both be performed without changing the hardware
(Haydn-C) and software (C++) source-code when tar-
geting the RC2000 board. For hardware synthesis, a bit-
stream and the host application are generated, and both
communicate with each other using the PCI bus. Simu-
lation involves linking both hardware and host designs
into a single multi-threaded application to simulate the
behaviour and communication protocols.

6. Evaluation

In this section we evaluate the performance and ac-
curacy of the posture analysis system.

Accuracy. The accuracy of our results is an impor-
tant criterion for building a posture estimation system.
When a posture is compared against a set of known pos-
tures, the most useful definition of accuracy is the per-
centage of correctly identified matches.

Image data used in testing the algorithm is a selec-
tion of video sequences portraying different postures.
The postures are classified as standing, sitting and lying.
The test data comprises 2,943 frames totalling 1,830MB
of raw image data. The data are acquired with a sta-
tionary Samsung SCC-641 camera and stored in AVI
format with Motion JPEG (MJPEG) compression. We
chose reference images from the entire data set by se-
lecting typical examples for each posture (standing, sit-
ting and lying). The amount of movement in these im-
ages is smaller than that in the test data, so that we can
evaluate the tolerance of the algorithm.

Table 1 shows the accuracy of the different algo-
rithms. The horizontal projection description returns
the most accurate matches for both the standing and

ADMXRC2 (Virtex II board)
Hardware Library

HyHC =>
DK3 simulator

HyHc => DK3 =>
Synplify => P&R

bitstream

TC-1 Compiler
(based on SUIF)

Haydn-C design
(hardware)

Source-to-source transformations

Haydn-C

C++ design
(host/software) C++ Compiler

(MS-VS C++)

C++ Compiler
(MS-VS C++) executable host / CPU

fpga board

PCI Bus

multi-threaded
application

FPGA Sim

host

ADMXRC2 (Virtex II board)
Simulation Library

Simulation

feedback Haydn Info
Tool

Hardware Synthesis

Source +
Constraints

Figure 6. The Haydn design flow, which performs
hardware synthesis, simulation and source-to-
source transformations. The Haydn-C language
is used to describe hardware designs, whereas
C++ is used to implement the host which runs on
a CPU.

the sitting postures. For the lying posture, radial shape
is slightly more accurate than projection. Note that
the system is usable even with accuracies below 100%,
as we can still derive statistical information about the
change of posture over time.

Overall, horizontal projection seems to give a
higher accuracy for all three postures. This may partly
be characteristic to the selected set of three postures.
The horizontal projection of a standing person is likely
to be significantly different from that of a sitting or a
lying posture.

The combined posture description is obtained by
comparing the three descriptions and selecting the pos-
ture with most support from the algorithms. In other
words, a posture that matches lying in two algorithms
and sitting in one is considered likely to be the lying
posture.

Performance. It is important that, regardless of which
posture estimation method is used, it should be able to
process frames at a rate equal to or faster than the video
source to provide real-time computation. The test data
used in this project was captured at a rate of 15 frames
per second, a common rate for computer-based appli-
cations. Common frame rates vary between 15 and 30
frames per second. The frame size used for this project

Accuracy (%)
Data set Frame Horiz. Vert. Radial Combined
(posture) count project. project. shape description
Standing 1261 97.3 86.2 43.5 89.2
Sitting 841 98.6 44.9 64.3 85.0
Lying 841 86.9 64.0 91.1 86.6

Table 1. Accuracy of the different posture estima-
tion algorithms.

is 320 × 240 pixels.
Table 2 shows eight designs that implement the

posture analysis system shown in Fig. 5, including the
projection histogram and radial shape analysis algo-
rithms. Note that frame rate is projected for the design
maximum frequency reported by Xilinx tools. The pro-
jected frame rate is for data streamed into the process-
ing core, and does not take into account other I/O con-
straints such as external memory and video input. We
exploit the flexibility of FPGA devices to derive differ-
ent architectures using two types of multipliers (block
and LUT multipliers), and different colour depths (12,
24, 36 and 48 bits per pixel).

Note that the projected video processing speed is
calculated taking in account the maximum frequency of
a design reported by Xilinx tools. However, because
of the PCI bus speed restriction, a design targeting an
RC2000 board runs slower. For instance, a frame size of
320 × 240 is processed at around 850fps when using 24
bits per pixel. On the other hand, the software version
is able to process a frame of size 320 × 240 at the 8
frames per second on a Pentium-4 3Ghz. As the input
video is captured at a rate of 15 frames per second, it
is clear that the current software version is not able to
perform real-time posture analysis.

In summary, the hardware version running on a
RC2000 board executes 106 times faster than the soft-
ware version, and 145 times faster when considering the
maximum frequency reported by Xilinx tools.

7. Conclusion

This paper describes the design and implementa-
tion of an FPGA-based architecture for human posture
analysis that can be used to monitor and assess the daily
activities of home care patients. The techniques applied
include the use of multiple visual cues, such as projec-
tion histogram and radial shape description, to estimat-
ing changes in posture. The accuracy of our results is
around 86%, and our hardware implementation at about
80–100MHz can run from 106 to 145 times faster than
the software version running on a Pentium-4 3Ghz com-
puter.

Current and future work includes refining our ar-

Design Max. Freq. Slices frames per second
(Mhz) (projected)

d12-blk 96.3 1435 1243
d24-blk 90.2 1543 1164
d36-blk 80.9 1651 1044
d48-blk 79.5 1759 1026
d12-lut 92.6 2857 1195
d24-lut 89.3 2965 1153
d36-lut 78.6 3073 1014
d48-lut 80.2 3181 1035

Table 2. Performance comparison of 8 designs,
including resource utilisation for the Xilinx Virtex-
II XC2V6000-4 FPGA. The frame rate is calculated
for a 320 × 240 frame for 12, 24, 36 and 48 bits per
pixel. Designs with a ‘blk’ suffix use block multi-
pliers, otherwise LUT multipliers are employed.

chitecture by replacing some of the simple algorithms
with more sophisticated versions. For example, cur-
rently the position of the blob is found by analysing the
histograms. A more sophisticated object tracking algo-
rithm capable of tracking multiple people can be used
instead.

New posture analysis algorithms can be designed,
either to replace the current versions or increase the va-
riety of algorithms. Work is currently under way to de-
sign new algorithms to analyse the blob metrics. The
radial description of the blob can be used as a basis for
many algorithms, including ones that measure changes
in stride and gait frequency. Such algorithms may re-
veal more useful data to track changes in gait compared
to simpler, posture-based algorithms.

The architecture runs fast enough to analyse more
image data than one camera could supply, so another
interesting improvement would be adding support for
multiple cameras. These cameras could work either in-
dependently of each other to monitor a large area, or
together to improve detection accuracy. Alternatively,
further speed/area/power consumption tradeoffs can be
examined in order to target low-cost devices while still
keeping performance sufficient for real-time use.

Acknowledgements. The support of DTI NExtwave
Programme, Fundação para a Ciência e Tecnologia
(Grant number SFRH/BD/3354/2000), UK Engineering
and Physical Sciences Research Council (Grant number
EP/C 509625/1 and EP/C 549481/1), Celoxica Limited
and Xilinx, Inc. is gratefully acknowledged.

References

[1] T. Boult, “Frame-rate multibody tracking for surveil-
lance”, Proceedings of DARPA Image Understanding
Workshop, 1998.

[2] Celoxica Ltd, http://www.celoxica.com/
[3] C.C. Cheung, W. Luk and P.Y.K. Cheung, “Reconfig-

urable Elliptic Curve Cryptosystem on a Chip”, Proc.
Int. Conf. on Design Automation and Test in Europe
(DATE), 1:24–29, 2005.

[4] J. G. F. Coutinho, J. Jiang and W. Luk, “Interleaving
Behavioural and Cycle-Accurate Descriptions for Re-
configurable Hardware Compilation”, IEEE Symposium
on Field-Programmable Custom Computing Machines,
2005.

[5] E. Grimson and C. Stauffer, “Adaptive background mix-
ture models for real time tracking”, Proceedings of the
Computer Vision and Pattern Recognition Conference,
1999.

[6] I. Haritaoglu, D. Harwood and L. S. Davis, “W4: Real-
time surveillance of people and their activities”, IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 22(8):809–830, 2000.

[7] A. Lipton, H. Fujiyoshi and H. Patil, “Moving target
detection and classification from real-time video”, Pro-
ceedings of the IEEE workshop application of computer
vision, 1998.

[8] W. Luk et al, “Reconfigurable computing for augmented
reality”, Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines, 136–145,
1999.

[9] O. Mencer and W. Luk, “Parameterized high throughput
function evaluation for FPGAs” The Journal of VLSI
Signal Processing, 36(1):17–25, 2004.

[10] T. Olson and F. Brill, “Moving object detection and
event recognition algorithms for smart cameras”, Pro-
ceedings of DARPA Image Understanding Workshop,
159–175, 1997.

[11] J. M. Rehg, M. Loughlin and K. Waters, “Vision for a
smart kiosk”, Computer Vision and Pattern Recognition,
1997.

[12] G. Stitt, F. Vahid and S. Nematbakhsh, “Energy savings
and speedups from partitioning critical software loops
to hardware in embedded systems”, ACM Trans. on Em-
bedded Computing Systems, 3(1):218–232,2004.

[13] J. E. Volder, “The cordic trigonometric computing tech-
nique”, IRE Transactions on Electronic Computers,
September 1959.

[14] B. Lo, J. L. Wang and G. Z. Yang, “From Imaging
Networks to Behavior Profiling: Ubiquitous Sensing for
Managed Homecare of the Elderly”, Adjunct Proceed-
ings of the 3rd International Conference on Pervasive
Computing, May 2005.

[15] L. Wang, W. Hu and T. Tan, “Recent develop-
ments in human motion analysis”, Pattern Recognition,
36(3):585–601, 2003.

