
IEEE TRANSACTIONS ON COMPUTERS 1

Optimizing Hardware Function Evaluation
Dong-U Lee,Member, IEEE, Altaf Abdul Gaffar, Member, IEEE,
Oskar Mencer,Member, IEEE, and Wayne Luk,Member, IEEE

Abstract— We present a methodology and an automated system
for function evaluation unit generation. Our system selects the
best function evaluation hardware for a given function, accuracy
requirements, technology mapping and optimization metrics,
such as area, throughput and latency. Function evaluationf(x)
typically consists of range reduction, and the actual evaluation
on a small convenient interval such as[0, π/2) for sin(x). We
investigate the impact of hardware function evaluation with range
reduction for a given range and precision of x and f(x) on
area and speed. An automated bit-width optimization technique
for minimizing the sizes of the operators in the data paths is
also proposed. We explore a vast design space for fixed-point
sin(x), log(x) and

√

x accurate to one unit in the last place using
MATLAB and ASC, A Stream Compiler for Field-Programmable
Gate Arrays (FPGAs). In this study, we implement over 2000
placed-and-routed FPGA designs, resulting in over 100 million
Application-Specific Integrated Circuit (ASIC) equivalent gates.
We provide optimal function evaluation results for range and
precision combinations between 8 and 48 bits.

Index Terms— Computer arithmetic, elementary function ap-
proximation, gate arrays, minimax approximation and algo-
rithms, optimization.

I. I NTRODUCTION

FUNCTION evaluation can often be the performance bot-
tleneck of many important compute-bound applications.

Examples include elementary functions such aslog(x) and
compound functions such as

√

− log(x). Computing these
functions quickly and accurately is a major goal in computer
arithmetic and hardware design in general. Software imple-
mentations are often too slow for numerically intensive or
real-time applications. For instance, over 60% of the total
run time is spent on function evaluation operations in a
simulation of a jet engine reported by O’Grady and Wang [1].
The performance of such applications depends on the design
of an efficient hardware function evaluator. Yet in order
to implement function evaluation efficiently, the hardware
designer is faced with a multitude of function evaluation
methods such as polynomial approximation, or table lookup
combined with polynomial approximation [2]. The challenge
is to provide a programming tool or library, that delivers
the optimal hardware function evaluation unit for a given
function, with the associated input/output range and precision,
and optimization metric.

Manuscript received ————–
D. Lee is with the Electrical Engineering Department, University of

California, Los Angeles, USA (e-mail: dongu@icsl.ucla.edu).
A. Abdul Gaffar is with the Department of Electrical and Elec-

tronic Engineering, Imperial College, London, United Kingdom (e-mail:
altaf.gaffar@imperial.ac.uk).

O. Mencer and W. Luk are with the Department of Comput-
ing, Imperial College, London, United Kingdom (e-mail:{o.mencer,
w.luk}@imperial.ac.uk).

M
et

ric

(A
re

a
, L

a
te

n
cy

 o
r

T
h

ro
u

gh
pu

t)

Bit-Width

Method 3

Method 2Method 1

x1 x2

Fig. 1. Some approximation methods are better than others for a given metric
at different bit-widths.

For a given accuracy requirement it is possible to plot the
area, latency, and throughput tradeoff and thus identify the
optimal function evaluation method. The optimality depends
on further requirements such as available area, required latency
and throughput. For instance, consider Fig. 1. In order to
minimize the metric (e.g. area or latency), one should use
method 1 for bit-widths lower thanx1, method 2 for bit-widths
betweenx1 andx2, and method 3 for bit-widths greater than
x2.

Our approach explores, for a given function, seven different
dimensions in optimizing hardware function evaluation: range,
precision, method, hardware optimization, area, latency and
throughput. The main achievements of this paper are:

• Methodology for automated function evaluation unit gen-
eration to select optimal function evaluation hardware
based on a parameterized library.

• Framework for hardware function evaluation with range
reduction forsin(x), log(x) and

√
x.

• Algorithmic design space exploration using MATLAB to
guide the hardware design process in ASC.

• Bit-width optimization of the operators in the data paths
using a binary search technique in MATLAB.

• Vast hardware design space exploration of over 2000
FPGA designs on area, latency and throughput using
ASC.

The rest of this paper is organized as follows. Section II covers
background material and related work. Section III provides
an overview of our approach. Section IV describes range
reduction and its application to the three functions presented
in this paper. Section V examines the degrees of freedom in
hardware function evaluation. Section VI describes how we
explore the algorithmic side of the design space and automate
the generation of hardware designs. Section VII explains how

IEEE TRANSACTIONS ON COMPUTERS 2

the bit-widths of the operators in the data paths are optimized.
Section VIII presents our framework for hardware design
space exploration. Section IX discusses results, and Section X
offers conclusions and thoughts on future work.

II. BACKGROUND

There are numerous methods to approximate a function
over a given interval, and the optimal method depends on the
precisions of the inputs and outputs as studied in [3]. Yet, we
are not aware of any other work that attempts to guide the
designer as to which method is optimal for a particular case.
Direct table lookups are impractical for precisions higherthan
a few bits, since table size increases exponentially with the
input size. Symmetric table addition methods [4] are fast with
moderate table sizes for precisions lower than 20 bits, but
are perhaps inappropriate for larger precisions due to its large
table sizes. Function evaluations using CORDIC [5] provides a
popular research topic, involving only shift and add operations.
However, CORDICs have an execution time which is linearly
proportional to the number of bits in the operands, and is not
suitable for applications high accuracy and speed. Of course,
the tradeoffs depend on the optimization metric as well.

Function evaluation typically consists of range reduction
and the actual function approximation over a small interval.
Range reduction [2] is crucial, since function approximation
is rather limited without it, and numerous applications have
a large dynamic range. However, there has been a lack of
attention on hardware implementation of function approxima-
tion with range reduction for different ranges, precisionsand
approximation methods. To the best of our knowledge, this is
the first work that deals with this important issue. We show
that input and output ranges form another consideration when
choosing the optimal method. Our approach is demonstrated
with polynomial-only and table+polynomial methods with a
varying number of polynomial coefficients.

Peymandoust and De Micheli [6] use symbolic computer
algebra to optimize arithmetic data paths. Symbolic manip-
ulations such as tree-height-reduction, factorization, expan-
sions, and Horner transformation are incorporated to produce
minimal area or minimal delay data flow designs. The main
difference between their work and ours is that we consider
function evaluation units with range reduction rather thanjust
arithmetic data paths. In addition, we explore the tradeoffs of
using memory and polynomials instead of just polynomials.
However, their work is in some sense orthogonal to ours in
that an optimal system would combine the results of the two
works.

We choose hardware designs based on FPGAs to demon-
strate our approach, due to their flexibility and speed. The
fundamental building block of Xilinx FPGAs is the logic
cell [7]. A logic cell comprises a 4-input lookup table, which
can also act as a16 × 1 RAM or a 16-bit shift register, a
multiplexer and a register. A simplified view of a logic cell is
depicted in Fig. 2. Two logic cells are paired together in an
element called a slice. A slice contains additional resources
such as multiplexors and carry logic to increase the efficiency
of the architecture. These extra resources are equivalent to

4-input
LUT

m
ux

flip-flop

a
b
c
d

e

clock

clock enable

set/reset

y

q

Fig. 2. Simplified view of a Xilinx logic cell. A single slice is equivalent to
2.25 logic cells.

function f(x) range/precision method

Evaluate f(x)
(MATLAB)

Hardware Compiler
(ASC)

FPGA
implementations

Library
Generator
(Perl Script)

ASC code
Function

Evaluation
Library

(ASC Lib)

User

Library Construction Library Usage

(Algorithmic Design Space)

(Hardware Design Space)

Fig. 3. Design flow: MATLAB generates all the ASC code for the library.
The user simply indexes into the library with range and precision values to
obtain the specific function evaluation unit.

having more logic cells, and therefore a slice is counted as
being equivalent of 2.25 logic cells. Recent-generation recon-
figurable hardware has a large amount of slices. For instance,
the Xilinx Virtex-4 XC4VLX200-11 FPGA [8], which we use
to obtain our results, has 89088 slices (200448 logic cells),
equivalent to over six million ASIC gates.

III. OVERVIEW

Fig. 3 shows the design flow of our automated hardware
function evaluation approach. The function of interest, its
range and precision, and evaluation method are supplied to our
MATLAB program, which automatically designs the function
approximator and produces its hardware description. In our
case, MATLAB produces code for ASC, A Stream Compiler
for FPGAs [9]. This large collection of ASC functions is
then transformed by a Perl script into an ASC function
evaluation library (ASC lib). ASC then takes care of design
space exploration on the architecture level, the arithmetic level,
and the gate level of abstraction. The result is an optimized
function evaluation library for computing with FPGAs. Device
independent results at the algorithmic level can be obtained
with MATLAB, and device specific results on FPGAs can be
obtained with ASC as they will be discussed in Section IX.

Sign-magnitude fixed-point representation is used through-
put this paper, since it allows easier manipulation of numbers

IEEE TRANSACTIONS ON COMPUTERS 3

sign integer fraction

range precision

Fig. 4. The sign-magnitude fixed-point representation usedin this work.

compared to two’s complement. We define the sign bit and
the integer bits to be the range, and the fractional bits to be
the precision (Fig. 4). Ranges of 4, 8, 12, 16, 20 and 24 bits,
and the same set of bits for precisions are explored. These
range/precision sets result in 36 different fixed-point formats.

Given a functionf(x) and an interval[a, b] we approximate
the function with polynomials and tables. Tasks in designing a
function evaluation library include automating the selection of
range reduction, the selection and design of the function eval-
uation method, and area, latency and throughput optimizations
on the lower levels of abstraction. The central contribution of
this paper lies in reconsidering the above structure for user-
defined fixed-point bit-widths. When implementing hardware
designs, one can select any bit-width for the range and the
precision of the fixed-point number. As a consequence, a
function evaluation library obtains the range and precision
of the input and can use this information to produce an
optimized function evaluation unit. Previous work [3] shows
the subproblem of how to select function evaluation methods
based on precision. Based on input range and precision, we
now have the following degrees of freedom:

1) applicability of range reduction
2) evaluation method selection
3) evaluation method design

• find minimal bit-widths
• find minimal polynomial degree

(for polynomial-only method)
• find minimal segments

(for table+polynomial method)

4) optimize: area, latency or throughput

The polynomial-only (po) approach approximates the inter-
val with a single polynomial, whereas the table+polynomial
(tp) approach performs piecewise polynomial approximation
with equally sized segments. The ASC function evaluation
library takes the range, precision and optimization metric,
and instantiates one of many instances of the corresponding
function evaluation unit.

In this paper, the outputs of our function evaluation units are
accurate to one unit in the last place (ulp). Assume we require
a hardware unit to computesin(x), wherex is a fixed-point
number with four range bits and eight precision bits. Then the
range of the input is(−8, 8) and the expected range of the
output is[−1, 1]. The same precision is used at the output as
at the input. Hence for this example, since the precision is
eight bits, the maximum absolute error of the output needs to
be2−8 or less to guarantee faithful rounding. The term faithful
rounding is first introduced in [10], meaning that the results
are rounded to the nearest or next nearest, thus accurate to one
ulp.

TABLE I

RANGE REDUCTION PROPERTIES OF THE THREE FUNCTIONS.

Function Range Reduction Range Reduced Interval Maximum
Type Interval Size Derivative

sin(x) Additive [0, π/2) π/2 1
log(x) Multiplicative [0.5, 1) 0.5 1.8
√

x Multiplicative [0.25, 1) 0.75 4

IV. RANGE REDUCTION

Consider an elementary functionf(x), wherex and f(x)
have a given range[a, b] and precision requirement. The
evaluationf(x) typically consists of three steps [2]:

(1) range reduction, reducingx over the interval[a, b] to a
more convenienty over a smaller interval[a′, b′],

(2) function approximation on the reduced interval, and
(3) range reconstruction: expansion of the result back to the

original result range.
There are two main types of range reduction:

• additive reduction:y is equal tox − mC;
• multiplicative reduction:y is equal tox/Cm

where integerm and a constantC are defined by the evaluated
function.

We use ASC code notation in Fig. 5 to show various
methods of function evaluation including range reduction
and range reconstruction, which follow the ideas presented
in [11] and [12]. The notationsx.range and x.prec refer
to the number of bits used for the range and precision of
x, respectively. The code in Fig. 5 shows us an example a
different function evaluation methods for each function. In
reality, we create many combinations of evaluation methods
and functions.

Table I summarizes the range reduction properties of
the three functions. Equally sized segments for the ta-
ble+polynomial method are employed, meaning that the ap-
proximation interval needs to be a power of two. Hence,
for sin(x) we approximate over[0, 2), for

√
x, we split the

interval into two sub-intervals:[0.25, 0.5) and [0.5, 1). The
table shows range reduced approximation interval sizes of
the three functions. The larger the approximation interval, the
more hardware resources are potentially required. The first
order absolute maximum derivatives give us an indication of
the non-linearities: more resources are required to approximate
non-linear functions with large derivatives.

Fig. 6 highlights the functions over the range reduced
intervals. We observe that the functions have a relatively
linear behavior over these intervals, making them feasibleto
approximate usingpo or tp with equally sized segments.

V. DEGREES OFFREEDOM

This section describes the degrees of freedom a designer
is faced with, when implementing function evaluation in
hardware. The applicability of range reduction, approximation
method selection and its design, and hardware optimizations
are discussed.

IEEE TRANSACTIONS ON COMPUTERS 4

Evaluatingf(x) = sin(x)

// Range Reduction
x1 = abs(x) % (2 * pi);
x2 = IF(x1>pi, x1-pi, x1);
y = IF(x2>(pi/2), pi-x2, x2);

// Approximation
// g(y) where y = [0,pi/2)
// e.g. polynomial-only (po)
g = (a * y+b) * y+c;

// Range Reconstruction
f = IF(x1>pi, g, -g);

Evaluatingf(x) = log(x)

// Range Reduction
exp = leading_one_detect(x)-x.prec;
y = x >> exp;

// Approximation
// g(y) where y = [0.5,1)
// e.g. table+degree-1-polynomial (tp1)
g = table1[y] * y+table2[y];

// Range Reconstruction
f = g+exp * log(2);

Evaluatingf(x) =
√

x

// Range Reduction
exp = leading_one_detect(x)-x.prec;
x1 = x >> exp;
y = IF(exp[0], x1 >> 1, x1);

// Approximation
// g(y) where y = [0.25,1)
// e.g. table+degree-2-polynomial (tp2)
g = (table1[y] * y+table2[y]) * y+table3[y];

// Range Reconstruction
exp1 = IF(exp[0], exp+1 >> 1, exp >> 1);
f = g << exp1;

Fig. 5. Description of range reduction, approximation method and range
reconstruction for the three functionssin(x), log(x) and

√
x.

A. Applicability of Range Reduction

Given a particular function that we want to evaluate, we can
decide whether it is necessary to implement range reductionor
not. In order to make the correct decision we need to consider
the optimization metric (area, latency or throughput), design a
function evaluation unit with and without range reduction,and
select the optimal one. A preliminary study of the applicability
of range reduction has been conducted in [13].

B. Approximation Method Selection

There are many possible function evaluation methods,
such as symmetric table addition methods, CORDIC, ratio-
nal approximation [14], polynomial-only methods and ta-
ble+polynomial methods. In this paper, we explore six meth-
ods: polynomial-only (po) and table+polynomial methods with
polynomials of degree two to six (tp2-6). The polynomials are

−0.5 0 0.5 1 1.5 2

0

0.5

1

x

si
n(

x)

−0.5 0 0.5 1 1.5 2

−3

−2

−1

0

x

lo
g(

x)

−0.5 0 0.5 1 1.5 2
0

0.5

1

x

√x

Fig. 6. Plots of the three functions overx = [−0.5, 2]. Range reduced
intervals for each function are shown in thick lines.

0.5 0.5625 0.625 0.6875 0.75 0.8125 0.875 0.9375 1

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

y

lo
g(

y)

Fig. 7. Segmentation for evaluatinglog(y) with eight uniform segments.
The leftmost (MSB) three bits of the inputs are used as the segment index.

of the form

g(y) = cdy
d + cd−1y

d−1 + . . . + c1y + c0. (1)

We use Horner’s rule [2] to reduce the number of multiplica-
tions:

g(y) = ((cdy + cd−1)y + . . .)y + c0 (2)

wherey is the input,d is the polynomial degree andc are
the coefficients. For the table+polynomial (tp) approach, the
input interval is split into2k equally sized segments. Thek
leftmost bits of the argumenty serve as the index into the
table, which holds the coefficients for that particular interval.
For the polynomial-only approach, there is just one entry in
the table holding the coefficients, hence no index bits are
needed. Segmentation for evaluatinglog(y) with eight uniform
segments (k = 3) is illustrated in Figure 7. We observe that
the range reduced interval is relatively linear, and hence the
use of uniform segmentation is sufficient.

IEEE TRANSACTIONS ON COMPUTERS 5

cd

0

index

1
...

...
2k-1

cd-1 ...

...

k j-k

n

wd-1wd

c0

w0

c1

w1

j

g(y)

y

ya yb

Fig. 8. Architecture of our table+polynomial (tp) approximation unit for
degreed polynomials.wi is the bit-width of the polynomial coefficientci,
wherei = 0, . . . , d.

The architecture for an approximation unit with atp scheme
is depicted in Fig. 8. Thetp methods trade off table area versus
polynomial area. A multiply-and-add based tree structure can
be observed, which follows Horner’s rule. The polynomial
coefficients are found in a minimax sense that minimize the
maximum absolute error [2]. With this architecture, we need
d + 1 table lookups,d multiplications andd additions. The
size of the lookup table is given by

table size= 2k ×
d

∑

i=0

wi bits. (3)

C. Evaluation Method Design

Once we know which method to use, we need to design
the optimized unit. For the polynomial-only (po) method, we
find the minimal degree of the polynomial that will satisfy
the required output precision. For the table+polynomial (tp)
methods, we find the minimal number of segments2k required
that satisfy output precision requirement. We further needto
determine the optimized bit-widths of the computation inside
the function evaluation units for all the methods. The heuristics
used forpo and tp methods have linear complexities whereas
the bit-width optimization process has logarithmic complexity
with respect to the desired precision. These are discussed in
Section VI and Section VII.

D. Optimize: Area, Latency or Throughput

While the options or selections of the previous degrees of
freedom are pre-computed with MATLAB, the area, latency

// for a given function f, polynomial degree d
// method m, input format i=[x.range,x.prec]

if (m==‘po’) // for polynomial-only (po)
// find minimal polynomial degree
min_degree = find_min_degree(f,i);
// optimize bit-widths
bw = optimize_bw(f,i,min_degree);
// generate polynomial coefficients
coeffs = gen_coeffs(f,i,min_degree,bw);
// generate ASC code
gen_ASC(f,i,min_degree,bw,coeffs);

elseif (m==‘tp’) // for table+polynomial (tp)
// find minimal number of segments
min_segs = find_min_segs(f,i,d);
// optimize bit-widths
bw = optimize_bw(f,i,d,min_segs);
// generate coefficient lookup table
table = gen_table(f,i,d,min_segs,bw);
// generate ASC code
gen_ASC(f,i,d,min_segs,bw,table);

end

Fig. 9. Structure of our MATLAB tool for algorithmic design space
exploration and ASC code generation.

and throughput optimizations on the arithmetic and gate-levels
can be left for the hardware compiler (ASC) to deal with.
Section VIII describes how this is achieved.

VI. A LGORITHMIC DESIGN SPACE EXPLORATION

We use MATLAB to generate a large number of imple-
mentations for function evaluation. Several function eval-
uation methods are considered: polynomial-only (po), and
table+polynomial of degree two to six (tp2-tp6). For a given
function and any range/precision pair, our MATLAB tool gen-
erates ASC code which includes the circuit description, poly-
nomial coefficients and optimized bit-widths. In this fashion,
we also obtain minimal bit-widths and the minimal number of
polynomial terms for thepo method. For thetp methods, we
find the minimal table-size and the coefficient bit-widths for
the given range and precision. Fig. 9 shows the structure of
our MATLAB tool for algorithmic design space exploration
and producing ASC codes for hardware implementations.

The find_min_degree function for thepo method finds
the minimal polynomial degree required to meet the output
error specification. It starts with a degree one polynomial and
finds the minimax polynomial coefficients. For all coefficients,
constants, and outputs of operators, which we shall refer
as “variables”, double precision floating-point is used and
the approximation performed. The result is compared to the
MATLAB computed value of the function to calculate the ap-
proximation error. The polynomial degree is incremented until
the desired accuracy is met. Thefind_min_seg function
finds the minimal number of segments2k needed for a given
polynomial degree. It starts withk = 0, which is equivalent to
po, and finds the minimax polynomial coefficients. Again, the
approximation of this structure is compared with the MATLAB
function evaluation.k is incremented until the maximum error
over all segments is lower than the requested error. The
optimize_bw function performs bit-width optimization on
the variables in the data paths. This procedure is discussedin
detail in Section VII. Thegen_coeffs and gen_table

IEEE TRANSACTIONS ON COMPUTERS 6

functions generate the bit-width optimized polynomial coeffi-
cients or coefficient table. Finally,gen_ASC generates the
ASC code with the circuit description and optimized bit-
widths.

Since the IEEE double precision floating-point format used
in MATLAB is significantly more accurate than the fixed-
point representations we use in this work, we regard double
precision as the exact value. In order to verify the correctness
of the designs at the algorithmic level, we emulate the function
evaluation steps described in Fig. 5 within MATLAB. The
emulator is ensured to be a bit-exact version of the actual
hardware model, and is used to debug ASC designs. Finite
precision effects for fixed-point can be effectively simulated
within MATLAB by rounding after each arithmetic operation.
For each coefficient and arithmetic operator, we store its
fractional bit-width for rounding.

The outputs of the emulator are tested rigorously with a
large set of random inputs to confirm that all results are indeed
faithfully rounded. For each chunk of ASC code, our tool
also generates a report file containing the polynomial degree
d used, number of segments fortp, fractional bit-widths of the
operators, table size, maximum ulp error and the percentage
of exactly rounded [11] (accurate to 0.5 ulp) results. 36 fixed-
point formats, three functions and six methods are examined.
Hence, we explore 648 ASC code segments, generated by our
MATLAB tool. The ASC code generation together with the
bit-width optimization process described in Section VII, takes
approximately ten hours on a dual Intel Xeon 2.6GHz PC with
4GB DDR-SDRAM.

VII. B IT-WIDTH OPTIMIZATION AND ERROR ANALYSIS

It is desirable to minimize the bit-widths for all variables
in the data paths, leading to size reductions in tables, and
operators such as adders and multipliers. We employ a bit-
width minimization scheme which minimizes bit-widths while
ensuring that the results meet the the one ulp error bound
requirement. We split the problem of minimizing fixed-point
bit-widths into two parts: range analysis followed by precision
analysis. The two parts are performed entirely within our
MATLAB framework, making use of the finite precision
hardware emulation models discussed in the previous section.
Our function evaluation circuits consist of many differenttypes
of operators including adders, barrel shifters, conditionals,
dividers, multipliers etc., making the designs complex and
difficult to analyze. Hence, a numerical approach is taken to
tackle the range and precision minimization problems.

Range analysis involves inspecting the dynamic range and
working out the bit-widths of the integer parts. Using insuffi-
cient bits for the range can cause overflows or underflows, and
excessive bits waste valuable hardware resources. Our range
analysis method uses a simulation based approach, where each
input of the design is supplied with a large set of random
numbers, which ranges over the interval of possible values
for the particular input, including the extreme values of that
interval. We then record the maximum absolute values for each
variable. No rounding is performed, in other words double
precision is used throughout.

Let the ith variable bevi and its maximum absolute value
be vi,max. By “variable”, we refer to coefficients, constants,
and outputs of operators in the design. The range bits required
for each variablevi can then be computed with

range bits=

{

⌈log2(|vi,max|)⌉ + 1 if |vi,max| > 1
1 if |vi,max| ≤ 1

(4)

Given that the number of test samples is large enough, the
probabilities of overflows and underflows can be kept arbi-
trarily low.

Precision analysis involves minimizing the fractional parts
of the variables, while respecting the output error criterion.
Precision analysis is significantly more challenging and there
is a wealth of literature devoted to this topic (e.g. [15], [16]).
However, much of the previous work is focused on digital
signal processing applications, in which the error analysis
criteria (such as signal to noise ratio) are rather different from
our needs. In addition, the techniques are rather difficult to
implement and slow, making them less amendable to optimize
all 648 designs. Hence, we opt for an approach where we keep
the factional bit-widths constant.

Let M be the number of variables in the system and the
fractional bit-width of theith variable bebvi

, and the factional
bit-widths of the approximationg and the evaluationf be bg

and bf , respectively (see Fig. 5). Rounding a variable causes
a maximum of 0.5 ulp error (2−bvi−1) and truncation causes a
maximum of 1 ulp error (2−bvi). Although a rounding circuit
requires a small adder, we opt for rounding, since it allows
smaller variables than truncation. In order to guarantee faithful
rounding, the errorǫf at the outputf must be

ǫf ≤ 2−bf . (5)

The errorǫf is composed of the following three error terms:
• ǫap for approximatingg with polynomials;
• ǫvr for rounding each variable,ǫvr = F (bv0

, . . . , bvM−1
);

• ǫfr for rounding the final resultf to bf fractional bits.
The error ǫvr is effectively the error propagated from the
variables in the data paths to the final result. Thus for faithful
rounding, one needs to ensure that

ǫap + ǫvr + ǫfr ≤ 2−bf . (6)

Roundingf can cause a maximum error of2−bf−1, so our
requirement can be modified as

ǫap + ǫvr ≤ 2−bf−1. (7)

Making the precisions of the variablesbvi
large enough, it

is possible to meet this error requirement, sinceǫap gets
arbitrarily small with ǫvr. The challenge is to keepbvi

as
small as possible, while meeting the error requirement in (7).
To keep the optimization process simple and fast, we employ
uniform (the same) fractional bit-widths for all variablesbvi

.
We propose a binary search method to find the optimal uniform
fractional bit-width bu. Our definition of “optimal uniform”
means that the polynomial degree (in the case ofpo) or number
of segments (in the case oftp) is the same asmin_degree
or min_segs in Fig. 9.

The fractional bit-width of the output of the approximation
circuit bg can be analytically pre-determined by examining the

IEEE TRANSACTIONS ON COMPUTERS 7

b_u = b_f; // set initial b_u to precision of f
r = 2ˆ6; // initial search space e.g. 2ˆ6

for i=1:(log2(r)+1)

r = r/2; // reduce search space by half

if (m==‘po’) // for polynomial-only (po)
my_degree = find_degree(f,i,b_u);
// compare my_degree with the minimal
if (my_degree > min_degree)

b_u = b_u + r;
else

b_u = b_u - r;
end

elseif (m==‘tp’) // for table+polynomial (tp)
my_segs = find_segs(f,i,d,b_u);
// compare my_segs with the minimal
if (my_segs > min_segs)

b_u = b_u + r;
else

b_u = b_u - r;
end

end

end

b_u = b_u + r;

Fig. 10. Structure of our MATLAB tool to find the optimal uniform fractional
bit-width bu.

range reconstruction part. Looking at Fig. 5, the reconstruction
of sin(x) is simply a sign change, hence

for sin(x), bg = bf . (8)

For log(x) reconstruction, there is an addition with a variable.
Using one guard bit for the addition,

for log(x), bg = bf + 1. (9)

Looking at the reconstruction step of
√

x, g is shifted byexp1
(Fig. 5). This means that we needbg = ⌈exp + bf⌉ to have
enough bits to guaranteebf fractional bits at the outputf . By
analyzing the range reduction step, one can see thatexp1 can
be a maximum of⌈x.range/2⌉ bits wide. Hence,

for
√

x, bg = ⌈x.range/2⌉+ bf , (10)

wherebf = bx = x.prec.
Fig. 10 shows the structure of our MATLAB tool used for

finding thebu. Using binary search,bu gradually approaches
the optimal in log2(r) + 1 iterations, wherer is the search
space. The initial search spacer needs to be a power of two
and large enough to cover the largest possiblebu.

VIII. H ARDWARE DESIGN SPACE EXPLORATION AND

OPTIMIZATIONS

ASC, A Stream Compiler [9], is a C-like programming
environment for FPGAs. ASC code makes use of C++ syntax
and ASC semantics which allow the user to program on the
architecture-level, the arithmetic-level and the gate-level. As
a consequence ASC code provides the productivity of high-
level hardware design tools and the performance of low-
level optimized hardware design. ASC provides types and
operators to enable research on custom data representationand
arithmetic. Currently supported types areHWint , HWfix and

Area
Optimization
(Sequential)

Latency
Optimization

(Combinatorial)

Throughput
Optimization
(Pipelined)

Fig. 11. Principles behind automatic design optimization in ASC. The shaded
areas represent flip-flops.

HWfloat , which can store integers, fixed-point numbers and
floating-point numbers, respectively. For this paper, we use the
HWfix type. As a result of this work, function evaluation in
ASC is performed with the following declarations and library
call:

HWfix x(TMP, x.range+x.prec, x.prec, sign_mode);
HWfix f(TMP, f.range+f.prec, f.prec, sign_mode);
f = HWsin(x);

In order to create an optimized function evaluation library,
the MATLAB tool described in Section VI is utilized to
generate a large amount of ASC code. This ASC code forms
a two-dimensional matrix, which is indexed by range and
precision of the argument to the function evaluation call. Each
matrix entry consists of a pointer to an ASC function which is
called for the particular inputx. For instance, for each function
we can determine two design selection matrices: for minimal
area and for minimal latency. TheHWsin(x) call indexes
into the matrix to find the optimized ASC implementation.
The function evaluation code, for example forsin(x), then in-
dexes into the matrix of function pointers (HWsin_matrix)
and accesses the correct function based on input range and
precision:

HWfix &HWsin(HWfix &x){
return HWsin_matrix[x.range][x.prec](x);

}

The design of such matrices are demonstrated in Section IX.
ASC provides an automated mechanism for optimizing

designs for user specified metric [9]. The current supported
metrics are area, latency and throughput. Fig. 11 illustrates
how this is achieved. In area optimization mode, ASC uses
sequential arithmetic units, e.g. for multiplication ASC selects
an add-accumulate unit. In latency optimization mode, no flip-
flops are being inserted and as a consequence the resulting
circuit is purely combinational. In throughput optimization
mode, all flip-flops that are present in the slices utilized are
being used. The resulting circuit is balanced (scheduled) by
using FIFO buffers in between the arithmetic units.

All together, the 2000 lines of MATLAB code generate 648
hardware designs targeting FPGAs, which result in 300,000
lines of ASC code. We also generate a number of additional
designs to examine the area cost of range reduction, which is
discussed in Section IX. For each design, ASC generates three
designs which are optimized for area, latency and throughput.
The result is a huge experimentation space of over 2000 FPGA
designs. These are placed-and-routed on the recently-released

IEEE TRANSACTIONS ON COMPUTERS 8

1 2 3 4 5
0

5000

10000

15000

Range [bits]

T
ab

le
 S

iz
e

[b
its

]

sin(x) − Precision 16 bits

tp2 with range reduction
tp2 without range reduction
tp3 with range reduction
tp3 without range reduction
tp4 with range reduction
tp4 without range reduction

Fig. 12. Table size comparison when evaluatingsin(x) at precision of 16
bits with range reduction and without range reduction.

Xilinx Virtex-4 XC4VLX200-11 FPGA, which is the largest
device of the Xilinx Virtex-4 LX family. The designs are
synthesized with ASC and placed-and-routed with Xilinx ISE
6.3, resulting in over 100 million ASIC equivalent gates. This
work flow which is fully automated with a single “makefile”,
takes a weeks’ time on two dual Intel Xeon 2.6GHz PCs with
4GB DDR-SDRAM. The makefile accepts design space ex-
ploration parameters including range/precision sets, functions,
approximation methods and metric optimizations. The final
output is a report file containing area, latency and throughput
results for the user specified parameters.

IX. RESULTS

In this section, we present device independent and placed-
and-routed FPGA results. The device independent results are
obtained using our MATLAB tool at the algorithmic design
space exploration stage, showing table sizes and bit-widths of
the variables. The placed-and-routed results are obtainedusing
ASC and Xilinx ISE on a Xilinx Virtex-4 XC4VLX200-11
FPGA device.

A. Device Independent Results with MATLAB

Before mapping designs into actual hardware devices, it is
interesting to explore the tradeoffs at the algorithmic level.
The plots in Fig. 14 show the table size and uniform fractional
width bu variations at different ranges and precisions usingtp3.
We observe that for all three functions, the table size grows
with precision.

√
x has the largest table size requirement, fol-

lowed bysin(x) andlog(x). This follows from the discussions
in Section IV: more resources are needed for functions with
a large approximation interval and a large first derivative.The
table size increases with both range and precision for

√
x. This

is due to the accuracy of approximationg being dependent on
both range and precision as seen in (10). From (8) and (9),g
is independent of the range forsin(x) and log(x). Hence for
log(x), we see no change in table size with range. However,
slight increase can be seen forsin(x). This is because the
complexity of the modulus operation which incorporates a
divider in the range reduction circuit ofsin(x), increases with
the input range.

The size of bu gives us an indication of the operator
complexities in the design. We see thatbu increases in a

4 8 12 16 20 24

4000

8000

12000

16000

20000

Precision [bits]

A
re

a
[s

lic
es

]

√x − Range 20 bits

po
tp3
tp5

Fig. 13. Area usage of different methods at various precisions for evaluating√
x with a range of 20 bits.

linear manner with range and precision except forlog(x),
where it stays pretty much constant with range. As noted
earlier, the complexity of the range reduction circuit ofsin(x)
increases with range. For

√
x, the accuracy requirement of the

approximation circuit grows with range. Hence, the increase
in bu for the two functions. Looking at the three functions, the
bit-width requirement oflog(x) is low, whereassin(x) and

√
x

are both high. Finally, the plots Fig. 14 give us an indication
that

√
x takes the most area, followed bysin(x) and log(x).

Fig. 12 shows a comparison in table size as a function of
range, when evaluatingsin(x) at precision of 16 bits with
range reduction and without range reduction for threetp meth-
ods. Note that the term range reduction is used to also include
range reconstruction. When the function is evaluated without
range reduction, the whole input interval is approximated
without the use of a range reduction step. As one would expect,
the table size stays constant with range when range reduction is
used. However, when range reduction is not used, the table size
increases exponentially with the range, since each additional
bit in the range doubles the interval of approximation. We note
that when the range is small (e.g. less than two bits fortp2),
it is more sensible to skip range reduction due to the smaller
table size.

B. Placed-and-Routed Results on FPGA

We summarize the results of the 2000 FPGA implemen-
tations obtained with the ASC system discussed in Sec-
tion VIII. One dimension of the design space is technology
mapping on the FPGA side. In addition to slices, the Virtex-
4 FPGA contains embedded RAMS and multiply-and-add
blocks. However, in this work, we decide to use slices only
to make the comparisons easier and fairer. To implement the
coefficient tables, the 4-input LUTs are used together with
logic minimization [17]. Instead of using the 4-input LUTs
directly as memory (known as distributed RAM), this approach
can lead to smaller and faster tables for the designs used in
this work.

Fig. 13 shows the area requirements ofpo, tp3 and tp5 at
various precisions for evaluating

√
x with a range of 20 bits.

We recognize that this figure is analogous to the example used
in Fig. 1. For these particular set of parameters, for precisions

IEEE TRANSACTIONS ON COMPUTERS 9

5
10

15
20

10

20

1000

2000

3000

4000

5000

Precision [bits]

sin(x) − tp3

Range [bits]

T
ab

le
 S

iz
e

[b
its

]

5
10

15
20

10

20

1000

2000

3000

Precision [bits]

log(x) − tp3

Range [bits]

T
ab

le
 S

iz
e

[b
its

]

5
10

15
20

10

20

10000

20000

30000

40000

Precision [bits]

√x − tp3

Range [bits]

T
ab

le
 S

iz
e

[b
its

]

5
10

15
20

10

20

10

20

30

40

Precision [bits]

sin(x) − tp3

Range [bits]

U
ni

fo
rm

 F
ra

ct
io

n
[b

its
]

5
10

15
20

10

20

10

15

20

25

Precision [bits]

log(x) − tp3

Range [bits]

U
ni

fo
rm

 F
ra

ct
io

n
[b

its
]

5
10

15
20

10

20

10

20

30

Precision [bits]

√x − tp3

Range [bits]

U
ni

fo
rm

 F
ra

ct
io

n
[b

its
]

Fig. 14. Device independent results with MATLAB: table size and uniform fractional bit-widthbu variations at different ranges/precisions usingtp3.

5
10

15
20

10

20

2000

4000

6000

8000

10000

12000

Precision [bits]

sin(x) − tp3 − Latency Opt

Range [bits]

A
re

a
[s

lic
es

]

5
10

15
20

10

20

2000

4000

6000

Precision [bits]

log(x) − tp3 − Latency Opt

Range [bits]

A
re

a
[s

lic
es

]

5
10

15
20

10

20

5000
10000
15000
20000
25000
30000

Precision [bits]

√x − tp3 − Latency Opt

Range [bits]

A
re

a
[s

lic
es

]

5
10

15
20

10

20

200
400
600
800

1000
1200
1400

Precision [bits]

sin(x) − tp3 − Latency Opt

Range [bits]

La
te

nc
y

[n
s]

5
10

15
20

10

20

80

100

120

140

160

Precision [bits]

log(x) − tp3 − Latency Opt

Range [bits]

La
te

nc
y

[n
s]

5
10

15
20

10

20

100

150

200

Precision [bits]

√x − tp3 − Latency Opt

Range [bits]

La
te

nc
y

[n
s]

Fig. 15. Placed-and-routed results on FPGA:area and latency variations at different ranges/precisions usingtp3 with latency optimization.

less than 16 bits,po results in the minimal area.tp3 gives the
least area between 16 and 20 bits, andtp5 provides the least
area above 20 bits.

Fig. 15 shows the area and latency variations for various
range/precision combinations usingtp3. Latency optimization
is chosen to illustrate these design spaces, since combinatorial
circuits best reflect the complexity of designs. Looking at the
two figures, we see a remarkable consistency to the device
independent results in Fig. 14, suggesting that our approach
could be applied across different device technologies.

From the area results in Fig. 15, we observe that
√

x requires

the most area, followed bysin(x) and log(x). This can be
explained by the table size requirements shown in Fig. 14:
large tables lead to large utilizations of 4-input LUTs. Whereas
the table size forsin(x) stays relatively constant with range in
Fig. 14, the area usage is actually increasing. This is probably
due to the presence of divider in the range reduction step,
whose area requirement increases with its operand size. The
latency results area related to the uniform fractional bit-width
bu in Fig. 14. Sincebu dictates the size of the operands such
as adders, dividers and multipliers.

Fig. 16 and 17 highlight the area cost of range reduction for

IEEE TRANSACTIONS ON COMPUTERS 10

4 8 12 16 20 24
0

2000

4000

6000

8000

10000

12000

sin(x) − tp3 − Latency Opt

A
re

a
[s

lic
es

]

Range [bits]

Prec 4 bits
Prec 8 bits
Prec 12 bits
Prec 16 bits
Prec 20 bits
Prec 24 bits

Fig. 16. Area cost of range reduction (upper part) forsin(x) using tp3 and
latency optimization.

4 8 12 16 20 24
0

2000

4000

6000

8000

10000
log(x) − tp3 − Latency Opt

A
re

a
[s

lic
es

]

Range [bits]

Prec 4 bits
Prec 8 bits
Prec 12 bits
Prec 16 bits
Prec 20 bits
Prec 24 bits

Fig. 17. Area cost of range reduction (upper part) forlog(x) using tp3 and
latency optimization.

sin(x) andlog(x), with the approximation circuit implemented
using tp3. The lower part of the bars shows the slices used
for function approximation, and the small upper part shows
the slices used for range reduction. For both functions, it can
be seen that the cost of range reduction grows with range and
precision. This is mostly due to the modulus incorporated in
sin(x), and the barrel shifter and multiplier inlog(x), which
are all affected by the operator size. The range reduction
cost for sin(x) is considerably higher thanlog(x), because
the modulus operator contains a division. On average, the
percentage area used by range reduction forsin(x) andlog(x)
are 37% and 23%, respectively. The behavior of

√
x is found

to be similar tolog(x), due to their resemblance in their range
reduction circuits.

The scatter plots in Fig. 18 and 19 highlight the Pareto-
optimal [17] points in the area-latency and area-throughput
space. The evaluation ofsin(x) with 12-bit range and 12-bit
precision is chosen as an example. Assortedtp methods are
shown, performed with area, latency and throughput optimiza-
tions. As expected, designs optimized for a particular metric
result in best performance in its own metric. With the aid of
such plots, one can decide rapidly what methods to use for
meeting specific requirements in area, latency or throughput.
Focusing on the latency optimized results in Fig. 18,tp designs
with lower polynomial degrees are always going to the faster

0 1000 2000 3000 4000 5000 6000 7000
1000

1500

2000

2500

3000

3500

4000

4500

Latency [ns]

A
re

a
[s

lic
es

]

sin(x) − Range 12 bits − Precision 12 bits

tp2 − Area Opt
tp3 − Area Opt
tp4 − Area Opt
tp5 − Area Opt
tp2 − Latency Opt
tp3 − Latency Opt
tp4 − Latency Opt
tp5 − Latency Opt
tp2 − Throughput Opt
tp3 − Throughput Opt
tp4 − Throughput Opt
tp5 − Throughput Opt

Fig. 18. Pareto-optimal points in the area-latency space for 12-bit range and
12-bit precision evaluation tosin(x).

0 100 200 300 400 500 600 700
1000

1500

2000

2500

3000

3500

4000

4500

Throughput [Mbps]

A
re

a
[s

lic
es

]

sin(x) − Range 12 bits − Precision 12 bits

tp2 − Area Opt
tp3 − Area Opt
tp4 − Area Opt
tp5 − Area Opt
tp2 − Latency Opt
tp3 − Latency Opt
tp4 − Latency Opt
tp5 − Latency Opt
tp2 − Throughput Opt
tp3 − Throughput Opt
tp4 − Throughput Opt
tp5 − Throughput Opt

Fig. 19. Pareto-optimal points in the area-throughput space for 12-bit range
and 12-bit precision evaluation tosin(x).

due to their shallower multiply-and-add tree illustrated in
Fig. 8. In terms of area, low polynomial degree designs are
generally smaller for the same reason. However, table size
grows with the precision required, making low polynomial
degree designs potentially larger, as demonstrated in Fig.13.

As proposed in Section VIII, Fig. 20 sums up the most
interesting results in two matrices, which show the Pareto-
optimal solutions for different range/precision pairs. Although
many more matrices can be generated for different metric and
optimization combinations, we choose these two matrices for
illustration purposes of our approach. The first matrix shows
designs that result in minimal area with area optimization,
and the second matrix shows designs that result in minimal
latency with latency optimization. For instance, from the first
matrix, the dashed box tells us that for asin(x) design with
12-bit range and 12-bit precision, the smallest implementation
would be tp2 with a uniform fractional bit-width of 20 bits
and a table size of 504 bits. In essence, these matrices tell us,
for each combination of range and precision, which method
to use for the three functions to get the minimal metric.

C. Performance of the Units and their Usage

Recent processors such as those based on the IA-64 archi-
tecture can evaluate functions in between 50 and 70 clock
cycles [18]. Considering a typical processor clock speed of

IEEE TRANSACTIONS ON COMPUTERS 11

sin: tp2, 24, 78
log: po2, 8, 30
sqr: tp2, 18, 912

sin: po2, 19, 61
log: po2, 7, 27
sqr: tp2, 18, 456

sin: tp2, 16, 54
log: po2, 7, 27
sqr: tp2, 17, 324

sin: po2, 9, 31
log: po2, 7, 27
sqr: tp2, 12, 156

sin: po2, 6, 22
log: po2, 7, 27
sqr: tp2, 7, 27

sin: po2, 6, 22
log: po2, 7, 27
sqr: po2, 7, 25

sin: tp2, 28, 348
log: tp2, 12, 78
sqr: tp2, 24, 2400

sin: tp2, 24, 300
log: tp2, 12, 78
sqr: tp2, 20, 2016

sin: tp2, 19, 240
log: tp2, 12, 78
sqr: tp2, 18, 912

sin: tp2, 16, 204
log: tp2, 12, 78
sqr: tp2, 18, 456

sin: tp2, 10, 132
log: tp2, 11, 72
sqr: tp2, 17, 324

sin: tp2, 10, 132
log:tp2, 11, 72
sqr: tp2, 12, 156

sin: tp2, 32, 792
log: tp2, 15, 384
sqr: tp2, 26,10368

sin: tp2, 28, 696
log: tp2, 15, 384
sqr: tp2, 24, 4800

sin: tp2, 24, 600
log: tp2, 15, 384
sqr: tp2, 24, 2400

sin: tp2, 20, 504
log: tp2, 15, 384
sqr: tp2, 20, 2016

sin: tp2, 16, 408
log: tp2, 15, 384
sqr: tp2, 18, 912

sin: tp2, 15, 384
log: tp2, 15, 384
sqr: tp2, 18, 456

sin: tp2,32, 3168
log: tp2,21, 1056
sqr: tp2,30,23808

sin: tp2,32, 3168
log: tp2,21, 1056
sqr: tp2,32,12288

sin: tp2,28, 2784
log: tp2,21, 1056
sqr: tp2,26,10368

sin: tp2,24, 2400
log: tp2,21, 1056
sqr: tp2,24, 4800

sin: tp2,19, 1920
log: tp2,21, 1056
sqr: tp2,24, 2400

sin: tp2,19, 1920
log: tp2,17, 1056
sqr: tp2,20, 2016

sin: tp2,40, 7872
log: tp2,24, 4800
sqr: tp3,34,17920

sin: tp2,32, 6336
log: tp2,24, 4800
sqr: tp3,33, 8704

sin: tp2,32, 6336
log: tp2,24, 4800
sqr: tp2,30,23808

sin: tp2,28, 5568
log: tp2,24, 4800
sqr: tp2,31,12288

sin: tp2,24, 4800
log: tp2,24, 4800
sqr: tp2,26,10368

sin: tp2,23, 4608
log: tp2,24, 4800
sqr: tp2,24, 4800

sin: tp3,42, 5504
log: tp2,28,11136
sqr: tp4,39,12800

sin: tp3,38, 4992
log: tp2,27,10752
sqr: tp3,37,19456

sin: tp3,32, 4224
log: tp2,27,10752
sqr: tp3,34,17920

sin: tp2,32,12672
log: tp2,27,10752
sqr: tp3,33, 8704

sin: tp2,28,11136
log: tp2,27,10752
sqr: tp2,30,23808

sin: tp2,28,11136
log: tp2,27,10752
sqr: tp2,31,12288

sin: po2, 24, 76
log: po2, 7, 27
sqr: tp2, 18, 912

sin: po2, 19, 61
log: po2, 7, 27
sqr: tp2, 18, 456

sin:po2, 16, 52
log: po2, 7, 27
sqr: tp3, 15, 128

sin: po2, 9, 31
log: po2, 7, 27
sqr: tp2, 12, 156

sin: po2, 6, 22
log: tp2, 6, 21
sqr: tp2, 10, 66

sin: po2, 6, 22
log: tp2, 6, 21
sqr: po2, 7, 25

sin: tp2, 28, 348
log: tp2, 12, 78
sqr: tp4, 22, 920

sin: tp2, 24, 300
log: tp2, 12, 78
sqr: tp4, 20, 420

sin: tp2, 19, 240
log: tp2, 12, 78
sqr: tp2, 18, 912

sin: tp2, 16, 204
log: tp2, 12, 78
sqr: tp2, 18, 456

sin: tp2, 10, 132
log: tp2, 11, 72
sqr: tp3, 15, 128

sin: tp2, 10, 132
log: tp2, 11, 72
sqr: tp2, 12, 156

sin: tp2, 32, 792
log: tp2, 15, 384
sqr: tp6, 27, 784

sin: tp2, 28, 696
log: tp2, 15, 384
sqr: tp4, 24, 1000

sin: tp2, 24, 600
log: tp2, 15, 384
sqr: tp4, 22, 920

sin: tp2, 20, 504
log: tp2, 15, 384
sqr: tp4, 20, 420

sin: tp2, 16, 408
log: tp2, 15, 384
sqr: tp2, 18, 912

sin: tp3, 14, 240
log: tp2, 15, 384
sqr: tp2, 18, 456

sin: tp3, 32, 1056
log: tp3, 19, 640
sqr: tp5, 33, 1632

sin: tp3, 32, 1056
log: tp3, 19, 640
sqr: tp5, 28, 1392

sin: po5, 28, 174
log: tp3, 19, 640
sqr: tp6, 27, 784

sin: tp3, 24, 800
log: tp3, 19, 640
sqr: tp4, 24, 1000

sin: tp4, 19, 400
log: tp3, 19, 640
sqr: tp4, 22, 920

sin: tp4, 18, 380
log: tp3, 19, 640
sqr: tp4, 20, 420

sin: po6, 40, 288
log: tp4, 24, 1000
sqr: tp6, 35, 2016

sin: tp5, 32, 792
log: tp4, 24, 1000
sqr: tp6, 32, 1848

sin: po6, 32, 232
log: tp4, 24, 1000
sqr: tp5, 33, 1632

sin: po6, 28, 204
log: tp4, 24, 1000
sqr: tp6, 29, 840

sin: tp5, 24, 600
log: tp4, 24, 1000
sqr: tp6, 27, 784

sin:tp5, 22, 552
log: tp5, 24, 600
sqr: tp4, 24, 1000

sin: tp5, 42, 1032
log: tp3, 28, 3712
sqr: tp6, 39, 4480

sin: tp5, 38, 936
log: tp5, 28, 696
sqr: tp6, 37, 4256

sin: tp5, 32, 792
log: tp5, 28, 696
sqr: tp6, 35, 2016

sin: tp5, 32, 792
log: tp5, 28, 696
sqr: tp6, 32, 1848

sin: tp5, 28, 696
log: tp5, 28, 696
sqr: tp5, 28, 1632

sin:tp4, 27, 1120
log: tp5, 28, 696
sqr:tp6, 29, 840

R
an

ge
 [b

its
]

Precision [bits]

Minimal Area(OptimizedforArea)

24

20

16

12

8

4

4 8 12 16 20 24

R
an

ge
 [b

its
]

Precision [bits]

Minimal Latency(OptimizedforLatency)

24

20

16

12

8

4

4 8 12 16 20 24

Fig. 20. Area (with area optimization) and latency (with latency optimization) matrices showing for each range/precision combination, the design with
minimal area and latency. For each entry, the optimal method, uniform fractional bit-width and table size in bits are shown. The number afterpo indicates
the polynomial degree used. For instance, the dashed box tells us that for asin(x) design with 12-bit range and 12-bit precision, the smallestimplementation
would betp2 with a uniform fractional bit-width of 20 bits and a table size of 504 bits.

3GHz, this means that a result can be produced in around 20ns.
The automated throughput optimized designs in this work are
fully pipelined and have a clock speed of around 100MHz
(much higher clock speeds could be achieved with manual
pipelining), meaning that we can produce a result every 10ns,
which is a speed-up of a factor of two over a 3GHz processor.
Since one function evaluation unit does not take much space
on an FPGA, we could have multiple units running in parallel,
potentially resulting in orders of magnitude speed-up.

The proposed method is developed to produce, for a given
function, metric, range and precision, an optimal hardware
function evaluation unit. The results can be arranged in the
form of matrices as shown in Fig. 20. Our method can be seen

as a step in the hardware optimization process, after the range
and precision have been determined by application developers
or by other methods [16].

X. CONCLUSIONS

A methodology and an automated function evaluation unit
generation, for given function and a set of user requirements
with custom range and precision values have been presented.
The result is an optimized fixed-point function evaluation
generator library for hardware designs. Our approach has been
demonstrated with three elementary functionssin(x), log(x)
and

√
x for 36 range and precision combinations between 8

and 48 bits. MATLAB is used for algorithmic design space

IEEE TRANSACTIONS ON COMPUTERS 12

exploration and ASC code generation, while ASC is used to
perform hardware design space exploration targeting FPGAs.

The degrees of freedom including applicability of range
reduction, approximation method selection, and hardware op-
timization have been discussed. Bit-width optimization tech-
niques for minimizing both range and precision have been
proposed, based on a binary search technique. We have
examined various device independent and device specific
results, covering a vast design space of over 2000 designs,
equivalent to 100 million ASIC gates. We have shown two
matrices showing for each range/precision combination, which
approximation method to use for minimal area and latency. We
conclude that the automation of optimized hardware function
evaluation is already within reach.

ACKNOWLEDGMENTS

The authors thank Ray C.C. Cheung, David Pearce and
the anonymous reviewers for their assistance. The support
of the Jet Propulsion Laboratory, Xilinx Inc., and the U.K.
Engineering and Physical Sciences Research Council (Grant
number GR/N 66599, GR/R 55931 and GR/R 31409) is
gratefully acknowledged.

REFERENCES

[1] E. O’Grady and C. Wang, “Performance limitations in parallel processor
simulations,”Trans. Society for Computer Simulation, vol. 4, pp. 311–
330, 1987.

[2] J. Muller, Elementary Functions: Algorithms and Implementation.
Birkhauser Verlag AG, 1997.

[3] O. Mencer and W. Luk, “Parameterized high throughput function
evaluation for FPGAs,”J. VLSI Signal Processing, vol. 36, no. 1, pp.
17–25, 2004.

[4] J.E. Stine and M.J. Schulte, “The symmetric table addition method for
accurate function approximation,”J. VLSI Signal Processing, vol. 32,
no. 2, pp. 167–177, 1999.

[5] R. Andraka, “A survey of CORDIC algorithms for FPGA basedcomput-
ers,” inProc. ACM/SIGDA Int’l Symp. Field-Programmable Gate Arrays,
1998, pp. 191–200.

[6] A. Peymandoust and G. De Micheli, “Application of symbolic computer
algebra in high-level data-flow synthesis,”IEEE Trans. Computer-Aided
Design of Integrated Circuits and Systems, vol. 22, no. 9, pp. 1154–1165,
2003.

[7] C. Maxfield, The Design Warrior’s Guide to FPGAs. Newnes, 2004.
[8] Virtex-4 Family Overview, Xilinx Inc., 2004, http://www.xilinx.com.
[9] O. Mencer, D. Pearce, L. Howes, and W. Luk, “Design space exploration

with A Stream Compiler,” inProc. IEEE Int’l Conf. Field-Programmable
Technology, 2003, pp. 270–277.

[10] D. Das Sarma and D. Matula, “Faithful bipartite ROM reciprocal tables,”
in Proc. IEEE Symp. Computer Arithmetic, 1995, pp. 17–28.

[11] M.J. Schulte and E.E. Swartzlander Jr, “Hardware designs for exactly
rounded elementary functions,”IEEE Trans. Computers, vol. 43, no. 8,
pp. 964–973, 1994.

[12] J. Walther, “A unified algorithm for elementary functions,” in Proc.
AFIPS Spring Joint Computer Conf., 1971, pp. 379–385.

[13] D. Lee, A. Abdul Gaffar, O. Mencer, and W. Luk, “Adaptiverange
reduction for hardware function evaluation,” inProc. IEEE Int’l Conf.
Field-Programmable Technology, 2004, pp. 169–176.

[14] I. Koren and O. Zinaty, “Evaluating elementary functions in a numerical
coprocessor based on rational approximations,”IEEE Trans. Computers,
vol. 39, no. 8, pp. 1030–1037, 1990.

[15] G. Constantinides, P. Cheung, and W. Luk, “Wordlength optimization for
linear digital signal processing,”IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, vol. 22, no. 10, pp. 1432–1442, 2003.

[16] K. Kum and W. Sung, “Combined word-length optimizationand high-
level synthesis of digital signal processing systems,”IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, vol. 20,
no. 8, pp. 921–930, 2001.

[17] G. De Micheli, Synthesis and Optimization of Digital Circuits.
McGraw-Hill, 1994.

[18] J. Harrison, T. Kubaska, S. Story, and P. Tang, “The computation of
transcendental functions on the IA-64 architecture,”Intel Technology
Journal, vol. Q4, 1999.

Dong-U Lee(S’01-M’05) received the BEng degree
in information systems engineering and the PhD
degree in computing, both from Imperial College
London in 2001 and 2004, respectively. He is cur-
rently a postdoctoral researcher at the Electrical
Engineering Department, University of California,
Los Angeles (UCLA), where he is working on chan-
nel codes and symbol timing synchronization for
deep-space communications with the Jet Propulsion
Laboratory, NASA. His research interests include
computer arithmetic, communications, design au-

tomation, reconfigurable computing and video image processing. He is a
member of the IEEE.

Altaf Abdul Gaffar received the BEng degree
in information systems engineering from Imperial
College London in 2000 and is completing the PhD
degree in computing at the same university. He is
also currently working as a research assistant at the
Electrical and Electronic Engineering Department
at Imperial College London. His research interests
include bit-width optimization for floating-point and
fixed-point arithmetic, and high-level power estima-
tion and optimization techniques. He is a member
of the IEEE.

Oskar Mencer received his PhD in electrical en-
gineering from Stanford University. He founded
MAXELER Technologies in 2003 after three years
as Member of Technical Staff in the Computing
Sciences Research Center at Bell Labs. He is cur-
rently a member of academic staff in the Depart-
ment of Computing at Imperial College London.
His research interests span computer architecture,
computer arithmetic, VLSI microarchitecture, VLSI
CAD, and reconfigurable (custom) computing. He is
a member of the IEEE.

Wayne Luk (S’85-M’89) received the MA, MSc,
and PhD degrees in engineering and computer sci-
ence from the University of Oxford. He is a member
of academic staff in Department of Computing,
Imperial College London and leads the Custom
Computing Group there. His research interests in-
clude theory and practice of customizing hardware
and software for specific application domains, such
as graphics and image processing, multimedia, and
communications. Much of his current work involves
high-level compilation techniques and tools for par-

allel computers and embedded systems, particularly those containing recon-
figurable devices such as field-programmable gate arrays. Heis a member of
the IEEE.

