Object-Oriented Domain Specific Compilers
for Programming FPGAs

Oskar Mencer, Marco Platzner*,

Abstract— Simplifying the programming models is
paramount to the success of reconfigurable computing with
FPGASs. This paper presents a methodology to combine true
object-oriented design of the compiler/CAD tool with an
object-oriented hardware design methodology in C++. The
resulting system provides all the benefits of object-oriented
design to the compiler/CAD tool designer and to the hard-
ware designer/programmer. The two examples for domain-
specific compilers presented are BSAT and StReAm. Each
domain-specific compiler is targeted at a very specific appli-
cation domain, such as applications that require the speedup
of boolean satifiability with BSAT, and applications which
lend themselfes for implementation as a stream architecture
with StReAm.

The key benefit of the presented domain specific compilers
is a reduction of design time by orders of magnitude while
keeping the optimal performance of hand-designed circuits.

Keywords— Adaptive-computing, Computer arithmetic,
Configurable-computing, Gate-array

I. INTRODUCTION

In this paper we present an object-oriented methodol-
ogy for domain specific compilers for reconfigurable com-
puting with Field-Programmable Gate Arrays (FPGAs).
Our methodology combines a true object-oriented design
of the compiler/CAD tool, with an object-oriented hard-
ware design methodology in C++. The resulting sys-
tem provides all the benefits of object-oriented design to
the compiler/CAD tool designer and to the hardware de-
signer /programmer.

An overview of the general structure of the system is cap-
tured in the “city model” shown in Figure I. The infras-
tructure consists of PAM-Blox[9], object-oriented module-
generation environment. On top of the infrastructure,
we build domain-specific compilers. The two examples
for domain-specific compilers presented in this paper are
BSAT and StReAm. Each domain-specific compiler is
targeted at a very specific application domain, such as in
our case applications that require the speedup of boolean
satifiability, and applications which lend themselfes for im-
plementation as a stream architecture described below.

A. Reconfigurable Computing with FPGAs

FPGAs offer reconfigurability on the bit-level at the cost
of larger VLSI area and slower maximal clock frequency
compared to custom VLSI. SRAM-based FPGAs feature
fast reconfiguration of the entire chip. Thus, FPGAs are
programmable devices that could compete with, or com-
plement microprocessors.

Since their introduction, FPGAs have shown the poten-
tial for high performance (or throughput) and low power
computation[25]. High performance and low power are a

Martin Morf, Michael J. Flynn

Q

Domain Specific Compilers

goooooooooooo
goooooooooooo

StReAm
SA

LI
L J//"’“ ,,,,,,,,, /
PAM -Blox \ | !
PaModules !
ModuIeGenera\tors\Q ‘,/,,,‘—‘,,,,/
| PamBIlox -
PamDC
y
Netlist

Fig. 1. The figure shows the “city-model” for programming FP-
GAs. Vertical domain specific compilers such as StReAm and
BSAT sit on top of a horizontal foundation of PAM-Blox layers
for module-generation.

result of exploring high degrees of parallelism and pipelin-
ing:
o Parallelism: FPGAs enable us exploit parallelism on
the bit-level, arithmetic level, instruction level (ILP for mi-
croprocessors), and application level. FPGAs follow a long
tradition of architectures that enable parallelism, such as
massively parallel computing, superscalar and VLIW pro-
cessors. Transforming the sequential description of an al-
gorithm in order to compute more operations in parallel is
usually called “extracting parallelism”—a process that can
be as painful as it sounds if the algorithm is not cooper-
ative. For example, boolean satisfiability architectures for
FPGASs[28][27] use parallelism to achieve orders of magni-
tude speedups on boolean satisfiability problems.
« Pipelining: FPGAs have programmable registers in
every cell making them natural candidates for highly
pipelined architectures. For example, vector processors uti-
lize pipelining of the data stream to achieve high through-
puts. Systolic arrays[2][3] offer a regular structure that
can be pipelined for high throughput applications. As a
current example, Stream architectures[15][?][20][21] use a
pipelined dataflow graph, mapped directly into hardware,
to improve performance and power consumption[25] by an
order of magnitude over conventional microprocessors.
Simplifying the programming models is paramount to
the success of reconfigurable computing. In order to sim-
plify the programming of FPGAs it is necessary to hide a



DFG

(> Operation

H FIFO buffer

Fig. 2. The figure shows an acyclic dataflow graph (DFG) with
operations and distributed FIFO buffers.

CAD tool within a compiler. In comparisson with micro-
processors and VLSI, the complexity of programming envi-
ronments for FPGAs lies between CAD tools and compil-
ers. The main questions are: How should the programming
language express the various levels of parallelism available
in the FPGA? How to express the timing of the design?
How to explore area-time tradeoffs? How to debug the
program?

HandelC[5] is a hardware (FPGA) programming lan-
guage based on communicating sequential processes[4]. Ev-
ery expression implies a latency of one clock cycle. The
designer explores area-time tradeoffs by rewriting expres-
sions.

JHDL[10] and Pebble[8] are examples for structural lan-
guages for FPGAs on the PAM-Blox level. Neither JHDL
nor Pebble offer operator overloading. Instead, expressions
are constructed by nesting function calls.

Novel architectures combining a microprocessor with re-
configurable logic are natural targets for hardware compila-
tion using software languages. An example for compiling C
for the Garp processor including a reconfigurable datapath
is [16]. The following sections show how our two examples
of domain-specific compilers deal with the questions above.

II. PAM-BLoX: OBJECT-ORIENTED MODULE
GENERATION

Traditional VLSI design for high-performance ASICs
consists of complete hand-layout of the data-path and high-
level compilation of the control circuit. FPGAs do not of-
fer the high flexibility of silicon area. For data-paths it is
therefore sufficient to specify the logic, map the logic to
lookup-tables and specify their location.

Experience with PamDC[1], a gate-level design environ-
ment from the PAM project, has shown that a low level,
structural representation of FPGA circuits in C++ is very
well suited for high-performance FPGA design. The major
drawback of PamDC is the enormous design effort required
at the gate-level. In order to simplify the design process, we
introduce additional levels of abstraction on top of PamDC.
Figure I shows an overview of the PAM-Blox system.

PamBloz is a template class library for hardware objects

of low complexity, such as adders, counters, etc. PaModules
are complex, fixed circuits implemented as C++ objects.
PaModules consist of multiple PamBlox and are optimized
for a specific data-width. Examples are constant (k) coeffi-
cient multipliers (KCMs), Booth multipliers, dividers, and
special purpose arithmetic units such as a constant multi-
ply modulo (2!¢ + 1) operation for IDEA encryption[25].
With PAM-Blox, hardware designers can benefit from all
the advantages of object-oriented system design such as:
o Inheritance: Code-reuse is implemented by a C++ class
hierarchy. Child objects inherit all public methods (func-
tion) and variables (state). For example, all objects with a
carry-chain, such as adders, counters, and shifters, inherit
the absolute and relative placement functions from their
common parent.
o Virtual Functions: Part of the parent of a hardware ob-
ject can be redefined by overloading of inherited (virtual)
methods. For example, a two’s complement, subtract unit
can be derived from an adder by forcing a carry-in of one,
and inverting one of the inputs.
e Template Class: The template class feature of C++ en-
ables us to efficiently combine C++ objects and module-
generation. In case of an adder, the template parameter is
the bit-width of the adder. The instantiation of a particu-
lar object based on the template class creates an adder of
the appropriate size.
o Operator overloading, function overloading and template
functions are used by StReAm described below.

III. DoMAIN SPECIFIC COMPILER
EXAMPLE 1:StReAm

A. Programming with StReAm

The application domain for StReAm includes all
compute-intensive applications with a performance-critical
part that can be implemented as data streaming through
a reasonably sized dataflow graph.

StReAm uses operator overloading, function overload-
ing and template functions in C++ to create dataflow
graphs which are consecutively scheduled to obtain a
stream architecture. StReAm enables high-level program-
ming of any Xilinx XC4000 FPGA on the expression level.
StReAm includes automatic scheduling of stream archi-
tectures, hierarchical wire naming and block placement.
StReAm simplifies the design of complex stream archi-
tectures to just a few lines of code resulting in a reduction
of design/program time from many weeks to less than a
day.

A hardware integer (HWint) data type supports the com-
mon operators for addition, subtraction, multiplication, di-
vision, modulo, etc. The programmer can define other op-
erators and functions by utilizing operator overloading and
template functions in C++. Extending the set of oper-
ators and functions requires manual design of optimized
PamBlox or PaModules. Thus, the designer can adapt the
arithmetic units to the specific needs of the application.
StReAm currently supports arrays of the hardware inte-
ger type HWint, expressions with HWint’s and C++ integers
resulting in hardware constants, and static ’for’ loops.



In case the resulting circuit does not fit on one FPGA,
the options are either spatial and/or temporal partitioning.
Spatial partitioning results in multiple FPGAs working in
parallel, while temporal partitioning utilizes reconfigura-
tion of FPGAs. Further details on partitioning are beyond
the scope of this paper.

B. Families of Arithmetic Operators

One of the advantages of using FPGAs for computing is
the flexibility on the arithmetic level. We define families of
arithmetic units that are compatible with each other. Cur-
rently, StReAm supports the following arithmetic fami-
lies: bit-serial, 4-bit (nibble) serial, parallel pipelined, par-
allel combinational.

Future work includes extending the hardware types to
other number representations such as logarithmic numbers
(HWlog), fixed point numbers (HWfix), floating point num-
bers (HWfloat), the residue number system (HWresidue),
redundant number representations, and rational number
systems[32]. PaModules also include higher-level arith-
metic modules such as CORDIC[26] (Coordinate Rotation
Digital Integrated Computer) units.

Each arithmetic unit includes a precision value as part
of the state of the hardware object. The precision value
inside the hardware object enables the evaluations of error
propagation through the dataflow graph at compile time.
The stream architecture also includes an overflow bit as
part of the HWint type. The overflow bit of the output of an
arithmetic unit is set if the previous arithmetic operation
overflows, or if any overflow bit of the inputs to the previous
operation is set.

IV. DoMAIN SPECIFIC COMPILER EXAMPLE 2: BSAT
A. Architectures for Boolean Satisfiability

The block diagram of the basic architecture for solving
SAT in hardware is shown in Figure IV. The circuit con-
sists of three parts: i) an array of FSMs, ii) a datapath,
and ii) a global controller.

Each variable of the CNF corresponds to one FSM. The
FSMs are connected in a one-dimensional array; each FSM
can activate its two neighboring FSMs at the top and at
the bottom. The architecture of the FSM is algorithm-
specific; i.e. for a specific SAT algorithm, all the FSMs
are identical. The datapath is a combinational circuit that
takes the variables as input and computes outputs that are
fed back to the FSMs. The global controller starts the
computation and handles I/O communication.

The variables of the CNF are modeled in 3-valued logic.
A variable can take on the values {0,1, X}, where X de-
notes an unassigned variable. The datapath computes the
3-valued result of the CNF expression. Initially, all vari-
ables are unassigned which also leads to CNF value X, and
the global controller activates the top-most FSM. The state
diagram for an FSM is shown in Figure ??. An activated
FSM assigns 0 to its variable and checks the resulting CNF
value. If the CNF value is 1, the partial assignment already
satisfied the CNF and the computation stops. If the CNF

l ‘ host interface

global controller

x
2
~

x
%
N

CNF 2

datapath

.
;
.

Fig. 3. Block diagram for the basic SAT architecture. It consists of an
array of FSMs (#1, ... ,#n), a datapath, and a global controller.
The variables z; and the CNF are modeled in 3-valued logic.

SAT problem

generator

J

FPGA compilation

ogic description

j FPGA configuration

backend

!

result

Fig. 4. Steps for solving SAT problems with instance-specific hard-
ware accelerators.

is 0, the partial assignment made the CNF unsatisfiable. In
this case, the FSM assigns the complementary value to its
variable. If the CNF value is X, the partial assignment did
neither satisfy the CNF nor did it make the CNF unsat-
isfiable. In this case, the FSM activates the next FSM at
the bottom. If both value assignments have been tried, the
FSM relaxes its variable by assigning X to it, and activates
the previous FSM at the top. When the first FSM relaxes
its variable and activates the global controller, the SAT
problem is proven to be unsatisfiable. By this procedure,
the array of interconnected FSMs implements chronological
backtracking.

The BSAT design tool flow for instance-specific com-
putation of SAT problems includes basically three steps,
as shown in Figure 4. The first step is a generator pro-
gram that takes a SAT problem as input and generates
the instance-specific logic description of this problem. The
next step, the FPGA compilation, maps, places, and routes



this description for a specific target FPGA family. The re-
sult of this step is a configuration bitstream. The third
step, the backend, configures the reconfigurable resource,
starts the computation, waits for completion, and extracts
the results.

The two major issues in the design tool flow for recon-
figurable SAT solvers are: fast circuit generation and the
use of predesigned and optimized FSMs. Depending on
the complexity of the SAT problem, circuit generation can
take by order of magnitude longer than the execution of
the hardware algorithm itself. FSM optimization is crucial
because as simulations have shown, for most SAT prob-
lems the FSMs are the limiting factor in terms of hardware
complexity.

Applications such as Boolean satisfiability require opti-
mized state machines. In order to keep a unified speci-
fication of the circuit in C++ and still get maximal op-
timization of the state machine, we integrate the PAM-
Blox design flow with Synopsys FPGA Express II. The tool
flow is shown in Figure ??. The application circuit is de-
scribed in C++4, using the libraries PamBlox, PaModules,
and PamFSM for specifying state machines. Running the
design executable creates behavioral Verilog for the state
machines. Synopsys FPGA Express II is called for synthe-
sis, optimization, and technology mapping. The structural
elements of the FSMs and the PAM-Blox design are merged
on the Xilinx netlist level, possibly augmented with place-
ment directives.

State machines can be instantiated multiple times and
placed anywhere on the FPGA. Hand placement or clever
automatic placement can significantly improve the perfor-
mance of FPGA designs. In addition, placing the state
machines is a simple and convenient way to determine the
FPGA read-back positions of the state variables. Place-
ment of state machines is a key feature in our environment,
as it is not supported by conventional CAD tools such as
Synopsys FPGA Express.

V. BENCHMARKS AND RESULTS
A. StReAm Results

The following three benchmarks demonstrate the advan-
tages of designing stream architectures with StReAm. Re-
sults show the performance of the final circuits for the Xil-
inx XC4000 family after Xilinx place and route tools.

FIR Filter

The following code creates FIR filters with constant coef-
ficients. Operators ’+’ and ’*’ are overloaded to create the
appropriate arithmetic units. Multiplying by a constant in-
teger instantiates efficient constant-coefficient multipliers.
Data width and datapath width are specified separately to
enable digit-serial arithmetic. In the case below we imple-
ment a 16-bit FIR filter with 4-bit digit serial arithmetic
units. The delay operator inserts the FIR filter delays
(deltas) similar to the way delays are specified in the Silage
language[6]. The variables in[], out[] are the inputs and
outputs of the stream architecture.

TABLE 1
FIR FILTER RESULTS

combi- pipelined
national parallel | digit-serial | bit-serial
4 stage FIR
Area|CLB] 246 293 210 184
Cycle Time(CT) 70.1ns 20.8ns 21.2ns 24.2ns
Latency 3 9 17 52
Throughput | 16bits/CT | 16bits/CT | 4bits/CT | 1bit/CT
FIR Stages 6 6 14 17
Area[CLB] 332 432 678 635
Latency 5 11 57 260
Cycle Time(CT) 88.7ns 25.1ns 27.3ns 28.0 ns
Throughput | 16bits/CT | 16bits/CT | 4bits/CT 1bit/CT

const int NUM_BLOCK_INPUTS=1;

const int NUM_BLOCK_OUTPUTS=1;

const int BITS = 16;

const int COMP_MODE = DIGIT_SERIAL;
const int STAGES=4;

const int coef [STAGES]={23,45,67,89};
HWint<BITS> delayQut;

HWint<BITS> adderQut;

void Filter::build(){
delayQut=in[0];
adderQOut=delayOut*coef [0] ;
for (i=1;i<STAGES;i++){
delayOut=delay(delayQut,1);
adderQut=adderOut+delayOut*coef[i];
}
out [0]=adderOut;
T

The results (see Table I) show a 4-stage FIR filter im-
plemented with combinational arithmetic units, and three
pipelined versions. As expected the bit-serial design takes
the smallest area with the longest latency. The parallel,
pipelined version has higher throughput but requires most
area. The lower part of the table shows the maximal num-
ber of stages that StReAm can fit on a Xilinx XC4020
FPGA with 800 CLBs. All designs are created with the
same few lines of code shown above by simply setting the
compiler parameter COMP_MODE.

IDEA Encryption

IDEA[17] is a strong encryption algorithm encrypting
64-bit data blocks, using symmetric 128-bit keys. The 128-
bit keys are expanded further to 52 sub-keys, 16 bits each.
The kernel loop (or round) is generally executed 8 times for
either encryption or decryption. Hand crafted results for a
stream architecture implementation of IDEA are presented
in [25]. StReAm produces the same, optimal, IDEA im-
plementation as the hand design at a fraction of the pro-
gramming effort. In order to fit two loops onto one Xilinx
XC4020E FPGA we use digit serial arithmetic with a dat-
apath width of 4 bits. The following code shows one round
of IDEA encryption:
const int NUM_BLOCK_INPUTS=4;
const int NUM_BLOCK_OQOUTPUTS=4;
const int BITS = 16;
const int COMP_MODE=DIGIT_SERIAL;
const int key[10]={9277,98,237,4,978,122,723,3654,24,1536};

HWint<BITS> t[9];
HWint<BITS> temp;



void IDEA::build(){

t[1] = ideaKCM16(in[0] , key[0]);
t[2] = (in[1] + key[1]);

t[3] = (in[2] + key[2]);

t[4] = ideaKCM16(in[3] , key[31);
tmp t[1] ~ t[3];

tmp = ideaKCM16(tmp , key[4]);
t[7] = (tmp + (£[2] ~ t[41));
t[8] ideaKCM16(t[7] , key[5]);
tmp = (t[8] + tmp);

out[0] = t[1] ~ t[8];

out[3] = t[4] ~ tmp;

tmp = tmp ~ t[2];

out[1] = t[3] ~ t[8];

out[2] tmp;

The resulting (see Table IT) stream architecture with 14
arithmetic units and 8 automatically generated and sched-
uled FIFO buffers is shown in figure 2. In addition to
operator overloading, IDEA requires a special mod 26 41
constant multiplier implemented as a PaModule with fixed
bitwidth.

Inverse Discrete Cosine Transform (IDCT)

The IDCT is used in signal and image processing (e.g.
MPEG, H.263 standards). We implement an 8x8 1-
dimensional IDCT. The actual code for this example is
beyond the space constraints of this paper. The resulting
(see Table II) stream architecture consists of 98 arithmetic
units and 4 FIFO buffers.

3D Motion: Real-time Translation and Rotation

In 3D graphics, a common problem is the translation and
rotation of a large set of points in 3D. This stream of points
is transformed by a translation vector and two 2D rotation
angles obtained from one 3D rotation. The following imple-
mentation uses 2D CORDIC modules (ROTATE() )[26]. The
rotate function demonstrates a multi-input, multi-output
module instantiation by overloading the “” operator in

(x[0],y[0D).

const int NUM_BLOCK_INPUTS=3;

const int NUM_BLOCK_OUTPUTS=3;

const int BITS = 12;

const int COMP_MODE=PARALLEL;

HWint<BITS> x_in,y_in,z_in; //inputs
HWint<BITS> x0,y0,z0,phil,phi2;//rotation
HWint<BITS> dx,dy,dz; //translation
HWint<BITS> x[2],y[2],z[2]; //temp coords

MOTION3D: :build(){

x_in in[0];

y_in = in[1];

z_in = in[2];

x0 = configReg[0];
yO = configRegl1];
20 = configReg[2];
phil = configReg[3];
phi2 = configReg[4];

dx = configRegl[5];
dy = configRegl[6];
dz = configReg[7];

(x[0],y[0])=ROTATE((x_in-x0), (y_in-y0),phil);
(y[11,z[1]1)=ROTATE(y[0], (z_in-z0),phi2);

out [0]=x[0] + x0 + dx;

out[1]=y[1] + y0 + dy;

out[2]=z[1] + z0 + dz;

TABLE 1T
BENCHMARK RESULTS

IDEA IDCT 3D MOTION
Area[CLB] 460 463 320
Cycle Time(CT) 24.1ns 27.9ns 33.9ns
Throughput(bits/CT) | 4-(16/4) =16 12.4 36
Total Latency 17 15 27
Arithmetic digit-serial parallel* parallel
16-bit data 14-bit 12-bit data

*sequential multiply

}

The StreaModule above takes 3 input coordinates (x_in,
y-in, z_in) representing a point in space. The result is a
rotated and translated point (out[0...2]). The center of
rotation (x0, yO, z0), angles (phil, phi2) and transla-
tion vector (dx, dy, dz) are stored in configuration regis-
ters (configReg). The value of the configuration registers
can be changed without reconfiguration of the FPGAs to
perform a particular 3D motion.

The code above results (see Table II) in 9 add/sub units,
2 CORDIC units and 1 FIFO buffer.

B. BSAT Results

We compare the performance of the software implemen-
tation with the performance on our reconfigurable comput-
ing system. Our hardware prototype is implemented on the
PC platform, this time running Windows NT 4.0. As re-
configurable resource we use a Digital PCI Pamette board,
equipped with 4 FPGAs of the type Xilinx XC4020.

We define the raw speed-up 5.4 of the reconfigurable
SAT solver as tsy/thy, the run-time ratio of software and
hardware SAT solvers. The overall run-time for comput-
ing a SAT problem in reconfigurable hardware consists of
the hardware compilation time, tc,mp, the time for con-
figuring the FPGA, t.op 14, the actual hardware execution
time, tpq, and the time for reading back and extracting the
result, treqq-

toverall = tcomp + tconfig + th'w + tread (]-)

The overall speed-up Soyerqny is then given by
tsw /toverall .

Table 7?7 presents the experimental results for the hole
benchmarks. With our design tool flow, the time for FPGA
configuration and read-back can be neglected compared
to the hardware compilation time, which itself is strongly
dominated by the Xilinx design implementation tools.

The examples hole6 to hole9 were mapped onto
one Xilinx XC4020. For holel0, an FPGA of type
X(C4025/XC4028 is necessary. As we know the number of
clock cycles for hole 10 from a simulation of the SAT solver
and the maximum clock frequency from running the FPGA
compilation tools, we were able to determine exactly the
speed-ups for this benchmark. The hardware cost in Table
?7? suggests that holel0 can be mapped in one XC4020.
However, our placement strategy tries to minimize the dis-
tances between the FSMs and the datapath logic blocks.

This prevents us from placing too many FSMs in an FPGA.



benchmark tsw | hardware cost | Tmin thw | tcomp | toverall Sraw | Soverail
[s] [CLBs| [ns] [s] | I[s] [s]

hole6 0.31 230 15.4 0.005 | 103 103.01 | 62.000 | 0.003

hole7 4.56 314 16.2 0.062 | 134 134.06 | 73.548 | 0.034

hole8 54.98 412 19.0 0.911 249 249.91 | 60.351 0.220

hole9 627.52 522 23.4 | 16.910 | 439 455.91 | 37.109 | 1.376

holel0 7616.40 658 37.5 | 431.110 | 597 | 1028.11 | 17.667 | 7.408

With this strategy, we never ran into routing problems for
the datapath logic and we were able to achieve a rather
high performance for these irregular designs.

The hardware and software execution times are shown in
Figure ??. The raw execution times of hardware and soft-
ware SAT solvers increase more rapidly with the problem
size than the hardware compilation time. This leads to a
cross-over point in the overall speed-up around hole9. For
this benchmark, SAT solvers in instance-specific hardware
and software have similar overall run-times. For hole10 we
achieve a speed-up of 7.408, which reduces the run-time
from more than 2 hours in software to about 17 minutes in
hardware.

Table ?7? shows that the raw speed-up S;q. is decreasing
with the problem size. This is for two reasons. First, as
simulations [31] have shown, a slightly decreasing speed-
up seems to be an artifact from applying the presented
deduction strategy to this particular SAT problem class.
Second, larger problems result in more complex circuits
which lead to longer clock cycles times.

VI. CONCLUSIONS AND FUTURE WORK

Domain specific compilers enable the compiler designer
to focus all optimizations and options on a particular appli-
cation domain and architecture. The programmer matches
an application domain with the particular application and
gets access to a specialized tool that focuses on the prob-
lem at hand. Thus, domain-specific compilers simplify the
effort to develop the compiler and at the same time reduce
design time significantly.

The key to efficient and scaleable design of a com-
piler framework and the hardware description methodology
is object-oriented programming. Object-oriented module
generators in C++, PAM-Blox, form a very flexible and
convenient substrate for domain specific compilers based
on C++. An important next step is to adapt the state-
of-the-art in hardware/software co-design of parallel and
pipelined systems[22] into a compiler for FPGAs or recon-
figurable resources closely coupled with a microprocessor or
memory. Ideally, such a compiler would be able to explore
parallelism and pipelining on the algorithm level, instruc-
tion level, arithmetic level and bit level.

The advantages of object-oriented design with C++
which have been recognized in the software industry find
their way into VLSI CADI[23][24] and into programming
of FPGAs shown in this paper. Our first example,
StReAm, applies the object-oriented design methodology
to high-level programming of FPGAs. While conventional

CAD/compiler systems for FPGAs make it very difficult to
explore arithmetic optimizations, StReAm offers the flex-
ibility to adapt the number representation, precision, and
arithmetic algorithm to the particular needs of the appli-
cation.

Our second example, BSAT, enables us to quickly ex-
plore architectures and algorithms for solving boolean sat-
isfiability problems on FPGAs. By combining industry
strength state-machine optimization with object-oriented
module generation, BSAT offers fast design time, high flex-
ibility and high performance of the final designs.

VII. ACKNOWLEDGMENTS

We would like to thank Compaq Systems Research Cen-
ter for support of this work, and M. Shand for maintaining
PamDC. Thanks to H. Huebert for implementing operator
overloading and scheduling for StReAm, and L. Séméria
for discussions on the draft of this paper.

REFERENCES

[1]  P.Bertin, D. Roncin, J. Vuillemin, Programmable Active Mem-
ories: A Performance Assessment, ACM FPGA, February
1992.

[2] H.T.Kung, Why Systolic Arrays, IEEE Computer, Jan. '82.

[3] H. M. Ahmed, J.-M. Delosme, M. Morf, Highly Concurrent

Computing Structures for Matriz Arithmetic and Signal Pro-

cessing, IEEE Computer, vol. 15, no. 1, Jan. 1982.

[4] C.A.R. Hoare Communicating Sequential Processes, Prentice
Hall International, London, 1985.

[5] Embedded Solutions
http://www.embeddedsol.com/

[6] G. DeMicheli Synthesis and Optimization of Digital Circuits,
McGraw-Hill, 1994.

[7] W.H. Mangione-Smith, et.al. Seeking Solutions in Configurable
Computing, IEEE Computer Magazine, December 1997.

[8] W. Luk, S. McKeever, Pebble: A Language for Parametrised
and Reconfigurable Hardware Design, Field-programmable
Logic and Applications (FPL), Tallinn, Estonia, Aug. 1998.

[9] O. Mencer, M. Morf, M. J. Flynn, PAM-Bloz: High Per-

formance FPGA Design for Adaptive Computing, Field-

programmable Custom Computing Machines, Napa Valley, CA,

1998.

P. Bellows, B. Hutchings, P. Bellows, J. Hawkins, S. Hemmert,

B. Nelson, M. Rytting, A CAD Suite for High-Performance

FPGA Design, Field-programmable Custom Computing Ma-

chines, Napa Valley, CA, 1999.

M. Chu, N. Weaver, K. Sulimma, A. DeHon, J. Wawrzynek,

Object Oriented Circuit-Generators in Java, Field-

programmable Custom Computing Machines, Napa Valley, CA,

1998.

M.B. Gokhale, J.M. Stone, NAPA C: Compiling for a Hybrid

RISC/FPGA Architecture, Field-programmable Custom

Computing Machines, Napa Valley, CA, 1999.

Handel C,

(10]

(11]

(12]

A. Koch, Enabling Automatic Module Generation for FCCM
Compilers, Poster Session 1, Field-programmable Custom
Computing Machines, Napa Valley, CA, 1999.



(14]

(15]

[16]

(17]

(19]

[20]

(21]

(22]

S.A. Guccione, D. Levi, P. Sundararajan, JBits: A Java-
based Interface for Reconfigurable Computing, 2nd Annual Mil-
itary and Aerospace Applications of Programmable Devices and
Technologies Conference (MAPLD).

R. Laufer, R. Reed Taylor, H. Schmit PCI-PipeRench and
SWORDAPI: A System for Stream-based Reconfigurable Comput-
ing, IEEE Symposium on FPGAs for Custom Computing Ma-
chines, Napa Valley, CA, 1999.

T.J. Callahan, J. Wawrzynek, Instruction-Level Parallelism
for Reconfigurable Computing, Field-Programmable Logic and
Applications (FPL), Tallinn, Estonia, Aug-Sep 1998

X. Lai, J.L. Massey, S. Murphy, Markov Ciphers and Dif-
ferential Cryptanalysis, EUROCRYPT 91, Lecture Notes in
Computer Science 547, Springer-Verlag, 1991.

E. Linzer, E. Feig, New Scaled DCT Algorithms for Fused Mul-
tiply/Add Architectures, International Conference on Acous-
tics, Speech, and Signal Processing, Proceedings ICASSP .91,
Vols.1-5, pp.2201-2204, 1991.

T.J. Callahan, P. Chong, A. DeHon, J. Wawrzynek, Fast Mod-
ule Mapping and Placement for Datapaths in FPGAs, Proceed-
ings of the 1998 ACM/SIGDA Sixth International Symposium
on Field Programmable Gate Arrays, Feb. 1998.

S. Rixner, et. al. A Bandwidth-Efficient Architecture for Media
Processing, Symposium on Microarchitecture, Dallas, Texas,
Nov. 1998.

C. Ebeling, D.C. Cronquist, P. Franklin, J. Secosky, S.G. Berg,
Mapping Applications to the RaPiD Configurable Architecture,
Field-programmable Custom Computing Machines, Napa Val-
ley, CA, 1997.

S. Bakshi, D.D. Gajski, Partitioning and Pipelining for
Performance-Constrained Hardware/Software Systems, IEEE
Transaction on VLSI Systems, Dec. 1999.

The SystemC Community, http://www.systemc.org/

S. Vernalde, P. Schaumont, I. Bolsens, An Object Oriented
Programming Approach for Hardware Design, IEEE Workshop
on VLSI’99, Orlando, April 1999.

O. Mencer, M. Morf, M. Flynn, Hardware Software Tri-Design
of Encryption for Mobile Communication Units, Proceedings
ICASSP, Seattle, May 1998.

0. Mencer, L. Séméria, M. Morf, J.M. Delosme, Application of
Reconfigurable CORDIC Architectures, The Journal of VLSI
Signal Processing, Special Issue: VLSI on Custom Computing
Technology, Kluwer, March 2000.

P. Zhong, M. Martonosi, S. Malik, P. Ashar, Implementing
Boolean Satisfiability in Configurable Hardware, Logic Synthe-
sis Workshop, May, 1997.

T. Suyama, M. Yokoo, H. Sawada, Solving Satisfiability
Problems on FPGAs, International Workshop on Field-
Programmable Logic and Applications (FPL), 1996.

DIMACS satsifiability benchmark suite,
ftp://dimacs.rutgers.edu/

in directory: pub/challenge/sat/benchmarks/cnf/

J. Silva, K. Sakallah, GRASP — A New Search Algorithm for
Satisfiability, TEEE ACM International Conference on CAD,
Nov. 1996.

M. Platzner, G. De Micheli, Acceleration of Satisfiability Al-
gorithms by Reconfigurable Hardware, International Workshop
on Field-Programmable Logic and Applications (FPL), 1998.
O. Mencer, Rational Arithmetic Units in Computer Systems,
PhD Thesis (with M.J. Flynn), E.E. Dept., Stanford, Jan. 2000.



