
Peter R. Pietzuch
prp@doc.ic.ac.uk

Building Large-scale Distributed
Systems with Network Coordinates

Peter Pietzuch

Distributed Software Engineering (DSE) Group
Department of Computing
 Imperial College London

Joint work with
Jonathan Ledlie1 and Margo Seltzer

Division of Engineering and Applied Science
Harvard University

University College London – EE Department – May 2008

Distributed Software Engineering (DSE) Group
Department of Computing

prp@doc.ic.ac.uk

1Many slides courtesy of Jonathan

New Applications  New Demands

• New Internet-scale distributed applications
–  Internet TV (e.g. BBC iPlayer, Zattoo, Joost, ...)
–  Streaming video (e.g. YouTube, Netflix, iTunes, ...)
–  Distributed multi-player games (e.g. WoW, CS, ...)
–  Peer-assisted file distribution (e.g. BitTorrent, Vudu, ...)

• New demands
–  Peer-to-peer connections; not client/server model
–  Scalability: Millions of concurrent users

–  Intolerant to high latency/jitter: VoIP, FP shooter games
–  Intolerant to poor bandwidth: file downloads, media

 streaming

2

Locality in Overlay Networks

• Insight: Exploit flexibility in choice of overlay neighbours

3

Overlay
Network
(e.g. P2P app)

Physical
Network
(e.g. Internet)

Why does Locality matter?

• Lower latency

• Lower network utilisation
–  Process data close to data sources and discard locally
–  “Don’t send data to Australia and back.”

• Better reliability
–  Data traverses fewer network links and routers

• Higher bandwidth
–  Inverse correlation between latency and available

 bandwidth

• Lower cost
–  Choose peers from same autonomous system

4

Why is Locality-awareness hard?

• Locality metrics
–  Different applications/

nodes require different
metrics

• Measurement overhead
–  Underlying network is opaque
–  Burden of taking measurements

•  Per measurement overhead
•  All pairs measurements in topology O(n2)

–  Dissemination of measurement results

5

Overlay
Network
(e.g. P2P app)

Physical
Network
(e.g. Internet)

Network Coordinates (NCs) to the Rescue

• Embed inter-node latency measurements into metric space
–  Measure only (small) subset of network
–  Establish coordinates for nodes

• Purpose
–  Predict missing measurements

• Works with low dimensional space
–  2-5 dimensions in practice

6

2d Euclidean
embedding

NCs Simplify Distributed Systems Problems

Pick game server with lowest mean latency

Game servers

Players

Use Centroid

Of NCs to pick

Game Server

(-15,20)
 (20,20)

(25,-2)

(20,-15)

(18,-25)

(-25,-17)

(-42,-10)

(-50,4)

(-40,22)

(0,8)

7

Network Coordinates on PlanetLab

• Points represent locations of PlanetLab nodes in 3D
relative coordinate space

8

Overview

• Introduction
–  Network Coordinates
–  Decentralised NC computation: Vivaldi

• Practical NCs: Accuracy and Stability
–  Challenges and Solutions

• Applications of NCs
–  Routing overlays
–  Placement of stream operators
–  Locality-awareness in Bittorrent

• Open Questions and Conclusions

9

10

How are NCs calculated?

• Landmark-based algorithms
(e.g. GNP [CMU], Lighthouses [Cambridge], PIC [MSR], …)
–  Each node measures latency to set of landmark nodes
–  Use landmark nodes to calculate own coordinate

• Simulation-based algorithms
(e.g. Vivaldi [MIT], Big Bang [Tel Aviv], …)
–  Each node measures latency to random other nodes
–  Model embedding as physical system

•  Network of springs, particles in force field, …

Vivaldi Algorithm

• Vivaldi [Cox03, Dabek04]

• O(n2) springs

• Rest length of
spring (a,b) = lat(a,b)

Concept: Springs connect all nodes

Stretched
spring

11

Vivaldi: Adjustment

• Nodes adjust coords
–  Simulate spring

forces

• Move to “low energy”
state

–  Abstract position
mirrors physical
latency

Concept: Springs connect all nodes

12

Vivaldi: Made Feasible

In practice: Use handful of springs

x
x

x

x x

Measurement complexity becomes O[log(n)]

13

Vivaldi in Detail

• Continuous Loop:
–  Measure to a few

nodes
–  Determine

coordinate
•  Low-dim space

• Result:
–  Predict latencies to

rest of network

Incremental refinement: minimise global prediction error

B

A

14

Vivaldi: Measurement

B

A
(100,80)

1. A measures latency
to B.

Coord?

15

Vivaldi: Reply

B

A
(100,80)

Coord?

2. B replies with its coord.
 A deduces RTT.

(70,40)

RTT=60ms

1. A measures latency
to B.

16

Vivaldi: Computation

B

A
(100,80)

2. B replies with its coord.
 A deduces RTT.

(70,40)

RTT=60ms 3. A computes estimate
 and error.

Estimate = |(100,80)-(70,40)|=50ms
Error = (60 - Estimate) = 10ms

1. A measures latency
to B.

17

Vivaldi: Adjustment

4. A moves toward ideal
 coord, relative to B.

B

A

2. B replies with its coord.
 A deduces RTT.

3. A computes estimate
 and error.

(103,84)
A

60ms

Estimate = |(100,80)-(70,40)|=50ms
Error = (60 - Estimate) = 10ms

1. A measures latency
to B.

18

Vivaldi: Repeat

4. A moves toward ideal
 coord, relative to B.

B

2. B replies with its coord.
 A deduces RTT.

3. A computes estimate
 and error.

(103,84)
A

5. Repeat with C, D, E.

C

E

D

1. A measures latency
to B.

19

Vivaldi: Predict

4. A moves toward ideal
 coord, relative to B.

 A has never seen or measured RTT to X

B

X

1. A measures latency
to B.

2. B replies with its coord.
 A deduces RTT.

3. A computes estimate
 and error.

(103,84)
A

5. Repeat with C, D, E.

C

E

D

6. Predict to X

(130,50)

20

Vivaldi: Predict

4. A moves toward ideal
 coord, relative to B.

 A can predict locality of X and Y.

B

X

1. A measures latency
to B.

2. B replies with its coord.
 A deduces RTT.

3. A computes estimate
 and error.

A

5. Repeat with C, D, E.

C

E

D

6. Predict to X

Y

21

Practical Challenges

• Problem 1: Latency measurements vary

• Problem 2: Applications want stable coordinates

• Problem 3: Selecting overlay nodes for measurements

22

Problem 1: Measurement changes I

Three hours of measurements from berkeley to uvic.ca

82% of measurements within 1 ms of median

ms

23

Problem 1: Measurement changes II

3 days of measurements from ntu.edu.tw to 6planetlab.edu.cn

Need to remove noise, but remain adaptive
24

Moving Minimum as Latency Filter

• Remove outliers and respond to latency change

Time

ms

age

60 61 59 62
t0

59 61 60 1000
t1 Receive

1000ms RTT

newest oldest

t2 Receive
200ms RTT

61 60 1000 200

Other simple techniques did not work
25

Problem 2: Stability

• Problem: coordinate change expensive
–  Application must determine if change needs action

• Short-term variations should
not cause coordinate changes

–  But need to track
longer-term changes
(e.g. BGP updates)

–  Possible to tell apps
less frequently and
retain high accuracy?

26

Coordinate Windows as Update Filters

• 1. Keep history of recent coordinates

• 2. Divide history into two windows (sets):
 current (newest) and start (oldest)

• 3. When current and start diverge (by some metric),
 update application with new coordinate

• Two possible metrics:
–  Local Relative Distance
–  Energy

27

Update Filters

1. Remember nearest
known neighbor

Base update on distance moved relative to nearest neighbor

B

A

d

28

Update Filters

1. Remember nearest
known neighbor

Base update on distance moved relative to nearest neighbor

B

A

d

2. Add coordinates
 to start and current
 windows C0

Start Ws

Current Wc

29

Update Filters

1. Remember nearest
known neighbor

Base update on distance moved relative to nearest neighbor

B

A

d

C1

2. Add coordinates
 to start and current
 windows C0

Start Ws

Current Wc

30

Update Filters

1. Remember nearest
known neighbor

Base update on distance moved relative to nearest neighbor

B

A

d

C1 C2

2. Add coordinates
 to start and current
 windows C0

Start Ws

Current Wc

31

Update Filters

1. Remember nearest
known neighbor

Base update on distance moved relative to nearest neighbor

B

A

d

C1 C2 C3

2. Add coordinates
 to start and current
 windows C0

Start Ws

Current Wc

32

Update Filters

1. Remember nearest
known neighbor

Base update on distance moved relative to nearest neighbor

B

A

d

C1 C2 C3 C4

2. Add coordinates
 to start and current
 windows C0

Start Ws Current Wc

33

Update Filters

1. Remember nearest
known neighbor

Base update on distance moved relative to nearest neighbor

B

A

d

C1 C2 C3 C4 C5

2. Add coordinates
 to start and current
 windows C0

Start Ws Current Wc

3. Compare centroids
 of windows If Centroid(Ws)-Centroid(Wc) > d x ε

34

Update Filters

1. Remember nearest
known neighbor

Base update on distance moved relative to nearest neighbor

B

A

d

C1 C2 C3 C87 C88 C89 C90 C4 C86

2. Add coordinates
 to start and current
 windows C0

Start Ws Current Wc

3. Compare centroids
 of windows

4. Update app-level
 coordinate

If Centroid(Ws)-Centroid(Wc) > d x ε

App coord = Centroid(Wc)

…

35

Video: Raw NCs

• 226 PL nodes with “raw” NCs
10 min video after NCs stabilised

36

Video: Latency and Update Filters

• 226 PL nodes with NCs using latency and update filters

37

Problem 3: Choice of Measurement Nodes

• Often NC measurements “piggybacks” on app-level messages
–  Good: Zero additional messages
–  Bad: Limits view of network to routing table

• Measurement set biased to nearby nodes
–  Local bias damages accuracy
–  Creates islands: poor estimation beyond horizon

38

Idea: Expand Horizon over Time

• Make tug proportional to distance
–  Boost impact of (occasional) long range contacts
–  But what’s the right weight?

• Scale push/pull per neighbor by age
–  Decaying tug of neighbor over time: neighbor decay

• In Effect
–  Limits impact of high frequency (nearby) neighbors
–  Extends impact of low frequency (longer-distance) ones

39

Neighbor Decay Adjustment Step

B

C

E

D

As springs age, they loosen

Older information gets less weight

A
A

 0 min

4 minutes old

2 min

 3 min

Norm 40

Reading the Neighbor Decay Video

Elapsed Time

Accuracy

Pct. improvement in accuracy (30-50%)

Two coords - same node
With ND: Green

No ND: Red
Neighbors: Blue

3d Euclidean
ms x ms x ms

41

Video: Neighbor Decay

First half hour in life of two NCs on Azureus with/without neighbor decay
42

Overview

• Introduction
–  Network Coordinates
–  Decentralised NC computation: Vivaldi

• Practical NCs: Accuracy and Stability
–  Challenges and Solutions

• Applications of NCs
–  Routing overlays
–  Placement of stream operators
–  Locality-awareness in Bittorrent

• Open Questions and Conclusions

43

Application 1: NC Routing Substrate

A

X

•  Route message to overlay node location X
–  Analogous to route(key,msg) in DHTs
–  But routing path has low latency between A and X

44

NC Routing: To Nearest Neighbour

A
X

•  Route message to closest existing overlay node
–  Useful when location is external to overlay network
–  e.g. finding closest web crawler to web server X

45

NC Routing: Local Broadcast

X

•  Finds nodes in neighbourhood
–  e.g. replicate popular content across web caches

46

Scaled Theta Routing [Hassin01]

X
A

Rings

Sectors

Zones
47

Scaled Theta Routing [Hassin01]

X
A

48

Scaled Theta Routing [Hassin01]

X
A

49

Practical Routing on Network Coordinates

• From theory to practice
 Generalized kd zone assignment

•  Use hyperspherical coordinates:
φ0, …, φd-1

•  Each dimension “slices” sectors
of prior dimensions

 Non-omniscient routing table formation
•  New nodes need to build (good) routing tables

•  New nodes route message to own location
•  Collect routing tables along path

•  Gossip mechanism to exchange routing tables

50

Evaluation: Nearest Neighbour

Found node 20ms further
 than true nearest

Nearest coordinate vs. true nearest neighbor
4d+h embed of MIT King data set (1740 DNS Servers)
Designate 10% as targets
Assigned “perfect” routing tables (rings=8; base=4; sectors=6)
Find nearest coordinate (1/10000); thus: embed error dominates 51

Application 2: Operator Placement

• Find good placement for query operators
1.  Load balance between processing nodes
2.  Keep network traffic low and local

Node

Data
Source

User

aggregate

transform

52

Network-Aware Operator Placement

• Treat as decentralised optimisation problem
–  Use approximation algorithm based on energy minimisation

 of springs

53

54

Relaxation Placement

• Use k-nearest neighbor search for mapping of coordinates
–  (see Application 1)

55

Video: Operator Migration

• 7 SBON nodes shown in latency space over several hours
–  Query with one migrating aggregation operator

Application 3: Locality-aware Bittorrent

Unbiased swarms Locally-biased swarms
tracker

ISP #1

ISP #2

tracker ISP #1

ISP #2

•  Reduced inter-ISP traffic
Improved bandwidth for peers

56

Results: Locality-aware BT

•  328 PL nodes downloading 180Mb file using Azureus BT and modified tracker
26% median improvement with lowest latency peers
11% median improvement with nearest NC peers 57

Open Questions

• What else can NCs be used for?
–  Express distributed systems problems in geometric terms?
–  Look at other metrics for measurements?

• What do NCs reveal about network properties?
–  PeerWise [HotNets’07]: use TIVs to identify mutually

 beneficial detours to reduce latency

• Trade-off between reactive and proactive approaches for
 locality?

–  Background NCs maintenance vs. active measurements

58

Conclusions

• Locality-awareness becomes increasingly important for
 overlay applications

–  Performance, network utilisation, ...

• NCs reduce cost of network measurements
–  But need to be practical in terms of accuracy and stability

• NCs can be used to add locality-awareness to existing
 applications

–  Bittorrent, stream-processing systems, …

• NCs can provide geometric solutions to problems in large
-scale distributed systems…

59

Shameless Plug

Interested?

Open PhD/post-doc positions to work on
Large-scale Distributed Systems at Imperial

Please tell your students/post-docs!
http://www.doc.ic.ac.uk/~prp/research

Thank you. Any Questions?

Peter Pietzuch
Department of Computing
Imperial College London

http://www.doc.ic.ac.uk/~prp
prp@doc.ic.ac.uk

60

