Local Reasoning about Data Update

Cristiano Calcagno, Philippa Gardner and Uri Zarfaty

Department of Computing
Imperial College London
London, UK
{ccris,pg,udz}@doc.ic.ac.uk

Abstract

We present local Hoare reasoning about data update, introducing Context Logic for analysing structured data. We apply our reasoning to tree update, heap update, and term rewriting. Our reasoning about heap update is exactly analogous to the local Hoare reasoning of Separation Logic. Our reasoning about tree update and term rewriting can only be done with Context Logic.

Keywords: context logic, local Hoare reasoning, tree update, heap update

1 Introduction

Structured data update is pervasive in computer systems: examples include heap update on local machines, information storage on hard disks, the update of distributed XML databases, and general term rewriting. Programs for manipulating such dynamically-changing data are notoriously difficult to write correctly. Hoare Logic was developed in the 1960s [10], in order to reason about imperative programs. This was a significant step forward, but had the disadvantage that it described how programs worked by referring to the global state. In 2001, O’Hearn, Reynolds and Yang made another significant step by introducing local Hoare reasoning about heap update which instead focused on the small, local part of the heap touched by a program at any one time [18,20,11]. There is now much activity on using local Hoare reasoning about heap update in real-world applications (see for example [2,1,3]). There is, so far, little activity on applying local Hoare reasoning to other forms of update, such as tree update (XML update), and there has been little attempt at a unified theory.

We present local Hoare reasoning about data update, introducing Context Logic (CL) for reasoning directly about structured data. CL arose from two independent bodies of work: local Hoare reasoning about heap update [18,20,11], using Separation Logic (SL) based on the general theory of Bunched Logic (BL) [14]; and
Ambient Logic (AL) [6,7] for reasoning about static trees. A natural question is whether local Hoare reasoning can be used to analyse tree update, using AL as the underlying logic. We show that this is not possible. It is possible using CL. With CL, we fundamentally change the way we reason about structured data. Data update typically identifies the portion of data to be replaced, removes it, and inserts the new data in the same place. With CL, we reason about both data and this place of insertion (contexts).

Our local Hoare reasoning follows the style of local reasoning first introduced in [15] using SL. The motivating idea is that the atomic commands tend to operate in a local way, by only accessing a small part of the current data, called the footprint of the command. Local Hoare reasoning reflects this local operation of the commands, in both the specifications and the proofs of the commands’ behaviour. It uses small axioms to specify the behaviour of atomic commands on their footprints, and the frame rule to specify that the rest of the data (the context) remains unchanged. Our local Hoare reasoning relies crucially on CL-reasoning, whose structural connectives specifically mirror this separation of the footprint from the surrounding context.

This paper is the full version of our conference paper [4]. The work presented in [4] focussed on reasoning about tree update. Here, we present a more general account of CL, and give a framework for local Hoare reasoning about data update which then uniformly applies to tree update, heap update and term rewriting.

Context Logic

CL extends the standard propositional connectives with additional structural connectives for reasoning directly about subdata. The structural application $K(P)$ specifies that data can be split into subdata satisfying formula P and a context satisfying formula K. There are two corresponding structural right adjoints: the data formula $K \triangleleft P$ denoting that, whenever the given data is placed in a context satisfying K, then the result must satisfy P; and the context formula $P \triangleright Q$ denoting that, whenever data satisfying P is applied to the given context, then the result satisfies formula Q. When applying CL to heaps, the structural application and right adjoints correspond precisely to the structural composition of SL and its right adjoint. There is a collapse of structure due to the heap contexts having essentially the same structure as the heaps. When applying CL to trees, there is no collapse of structure since tree contexts are more complex than trees. We will see that the structural application and the \triangleleft adjoint have analogues in AL, whereas the \triangleright adjoint does not. This additional adjoint is essential for describing weakest preconditions of our Hoare reasoning.

In this paper, we give the basic definition of CL, its proof theory and models. We prove completeness in [5]. We also give an extension of CL, called CL_0, which consists of an additional zero formula 0 and accompanying axioms for specifying empty data. CL_0 has interesting additional logical structure, including a derived composition formula and accompanying right adjoints which generalise the structural connectives of BL and SL. We demonstrate that CL_0-reasoning collapses to a variant of BL-reasoning for certain models. Our variant of BL permits a non-
commutative structural composition on data, so that we can analyse sequences. We show that CL\textsubscript{0}-reasoning is identical to BL-reasoning for multisets and heaps, whose contexts have the same structure as the data, but is more powerful for sequences and trees, whose contexts are more complex than the data. We also study CL-reasoning for terms. Although terms can be seen as special cases of trees, there is a crucial difference: terms over a signature do not have a natural empty term, and do not decompose as a composition of subterms due to the fixed arity of the function symbols. They do however decompose nicely as context/subtree pairs. We can therefore apply CL-reasoning, but not BL-reasoning, to terms. These examples demonstrate the generality of our CL-reasoning.

Local Hoare Reasoning
We present a framework for local Hoare reasoning about commands acting locally on data, by describing a general interpretation of the Hoare triples, a general definition of local command, and general inference rules for Hoare triples based on such local commands. We then apply our general Hoare reasoning to three examples of data update: tree update, heap update which is exactly analogous to the reasoning based on SL, and term rewriting which had previously escaped reasoning using SL. We illustrate our Hoare reasoning using the tree dispose command $[n]_{T} := 0$, which disposes a subtree with top node identified by node variable n. The small axiom for this command is

$$\{n[true]\} [n]_{T} := 0 \{0\}$$

The precondition $n[true]$ is a data formula defined specifically for trees. It specifies a tree with top node given by n, whose subforest is unspecified. This precondition describes properties about the footprint of the command, in this case the subtree identified by n, and is the minimal safety condition necessary for the command to execute. The postcondition only describes the result of the action of the command on the footprint, in this case the empty tree specified by formula 0. To extend the small-axiom reasoning to properties about larger trees, we use a generalised frame rule to derive

$$\{K(n[true])\} [n]_{T} := 0 \{K(0)\}$$

The precondition states that the tree can be split disjointedly into a subtree with top node n, and a context satisfying context formula K. The definition of local commands and the rules ensure that this context is unaffected by the update command. The postcondition thus has the same structure, with K now applied to 0.

The general rules and the small axioms for our examples are complete for straight-line code, which we demonstrate by showing that the weakest precondition axioms are derivable. As well as providing an important sanity check, such axioms play a fundamental role in the design of verification tools. In our example of tree dispose, the derivable weakest precondition axiom is:

$$\{(0 \triangleright P)(n[true])\}[n]_{T} := 0\{P\}$$

This weakest precondition simply specifies that the tree can be split into a subtree with top node n, and a context which satisfies P when the empty tree is put in the
hole. Although it is possible to define small axioms and some frame rules using AL instead of CL, it is not possible to define the weakest preconditions.

Our local Hoare reasoning about heap update is identical to that given in [15] using SL. In fact, our Hoare reasoning about tree update and heap update is also remarkably similar. This similarity does not just occur with the small axioms and weakest precondition axioms, but also at the level of the proofs that the weakest precondition axioms are derivable. The comparison with our Hoare reasoning for term rewriting is less immediate, since the nature of term rewriting is different from our languages for tree and heap update. However, it is clear that the same general principles apply, both at the level of specification and at the level of proof. Our Hoare reasoning seems to be robust with respect to the style of update language chosen. Indeed, our examples suggest that it might be possible to develop a general theory of local Hoare reasoning about data update.

Acknowledgments We would like to thank Peter O'Hearn, Pino Rosolini and Hongseok Yang for their insightful comments. Gardner is supported by a Royal Academy of Engineering/Microsoft Research Cambridge Senior Fellowship. Calcagno is supported by an EPSRC Advanced Fellowship. Zarfaty is supported by an EPSRC DTA award.

2 Context Logic

We give the basic definition of CL, its proof theory and models (section 2.1). We extend this basic CL to include an additional zero formula for specifying empty data (section 2.2), which provides interesting additional logical structure and a comparison with BL (section 2.2.2). Finally, we study the application of CL reasoning to four example models of structured data: sequences, multisets, trees and terms (section 2.3).

2.1 Basic Context Logic

CL consists of data formulae denoted by \(P \) and context formulae denoted by \(K \). These formulae are constructed from standard propositional connectives, and less familiar structural connectives for directly analysing the data and context structure.

Definition 2.1 (CL-Formulae) The set of CL formulae consists of disjoint sets of data formulae \(\mathcal{P} \) and context formulae \(\mathcal{K} \), constructed from the grammars:

data formulae

\[
P ::= K(P) \mid K \triangleleft P
\]

structural formulae

\[
P \lor P \mid \neg P \mid \text{false}
\]

boolean additive formulae
context formulae

\[K ::= I \mid P \triangleright P \]

structural formulae

\[K \lor K \mid \neg K \mid \text{False} \]

boolean additive formulae

We sometimes write \(P_{\mathcal{CL}} \) and \(K_{\mathcal{CL}} \) to emphasise that the formulae sets came from CL.

We work with classical CL, since classical logic is the standard choice when analysing specific models. It would also be interesting to study intuitionistic CL. The key formulae are the structural formulae \(K(P) \), \(K \triangleleft P \), \(P_1 \triangleright P_2 \) and \(I \). The application formula \(K(P) \) specifies that the given data element can be split into a context satisfying \(K \) applied to data satisfying \(P \). For example, if we define the context formula True \(\triangleq \neg \text{False} \), then the formula True\((P) \) states that some subdata satisfies property \(P \). The next two formulae are both (right) adjoints of application. The formula \(K \triangleleft P \) is satisfied by the given data if, whenever we insert the data into a context satisfying \(K \), then the result satisfies \(P \). For example, the formula \((\text{True} \triangleleft P) \) states that, when the data is put in any context, the resulting data satisfies property \(P \). Meanwhile, \(P_1 \triangleright P_2 \) is a statement on contexts. It is satisfied by a given context if, whenever we insert in the context some data satisfying \(P_1 \), then the result satisfies \(P_2 \). Given the derived data formula true \(\triangleq \neg \text{false} \), the context formula \(\text{true} \triangleleft P_2 \) states that, regardless of what data is put in the context hole, the resulting data satisfies property \(P_2 \). This adjoint is essential for expressing weakest preconditions for update commands (section 3). The context formula \(I \) specifies that a context equals the empty context.

We give a simple Hilbert-style proof theory, following the style for BL in [17]. The axioms and rules for the structural operators state that \(K \triangleleft P_2 \) and \(P_1 \triangleright P_2 \) are right adjoints of \(K(P_1) \), and that \(I \) is the identity of application.

Definition 2.2 (CL-Proof Theory) The Hilbert-style CL-proof theory consists of the standard axioms and rules for the boolean additive connectives (including cut), and the following axioms and rules for the structural connectives:

\[
\begin{align*}
P \vdash \vdash_p I(P) & \quad \quad \quad K_1 \vdash_K K_2 \quad \quad P_1 \vdash_p P_2 \\
K(P_1) \vdash_p P_2 & \quad \quad \quad K \vdash_K P_1 \triangleright P_2 \quad \quad P_1 \vdash_p P_1 \\
K \vdash_K P_1 \triangleright P_2 & \quad \quad \quad K(P_1) \vdash_p P_2 \\
P_1 \vdash_p K \triangleleft P_2 & \quad \quad \quad P_1 \vdash_p K \triangleleft P_2 \\
K(P_1) \vdash_p P_2 & \quad \quad \quad K(P_1) \vdash_p P_2 \\
K(P_1) \vdash_p P_2 & \quad \quad \quad K(P_1) \vdash_p P_2
\end{align*}
\]

We sometimes omit the subscripts in \(\vdash_p \) and \(\vdash_K \), and sometimes write \(\vdash_{\mathcal{CL}} \) to refer explicitly to this CL-proof theory.

We use the standard derived classical formulae for both data and context formulae: true, \(P \land P \) and \(P \Rightarrow P \) for data formulae; similarly for context formulae, writing
True for the context formula that is always true. We also use the following derived structural formulae.

Definition 2.3 (CL-Derived Formulae)

- $\Diamond P \triangleq \text{True}(P)$ specifies that somewhere property P holds and $\Box P \triangleq \neg(\Diamond \neg P)$ specifies that everywhere property P holds.

- $P_1 \triangleright P_2 \triangleq \neg(P_1 \triangleright \neg P_2)$ specifies that there exists some data element satisfying property P_1 such that, when it is put in the hole of the given context, the resulting data satisfies P_2.

- $K \triangleright P_2 \triangleq \neg(K \triangleright \neg P_2)$ specifies that there exists a context satisfying property K such that, when the given data element is put in the hole, the resulting data satisfies P_2.

The order of binding precedence is: \neg, \land, \lor, $\{\triangleleft, \triangleright, \triangleright\}$ and \Rightarrow, with no precedence between the elements in $\{\triangleleft, \triangleright, \triangleright\}$.

The simple presentation given here emphasises the right adjoint properties of \triangleleft and \triangleright. In [5], we show that this proof theory is equivalent to the standard classical ML-proof theory plus an additional set of well-behaved axioms specific to CL. This alternative ML-formulation emphasises the derived connectives \triangleright and \triangleleft instead of the adjoints \triangleright and \triangleleft. We have hardly studied the CL-proof theory. It should be possible to prove a cut-elimination result, following the analogous result for BL [17]. Also, Simpson’s proof theory for intuitionistic modal logic [19] must surely yield a proof theory for intuitionistic CL.

We give some basic properties of validity: the \lor–connective distributes over application and the \land–connective partially distributes, results typical for this style of logical reasoning; the interplay between the structural adjoints \triangleright, \triangleleft and application is rather like standard modus ponens for the additive connectives; and our derived somewhere and everywhere modalities for data satisfy the T-axioms of modal logic.

Lemma 2.4 (Basic properties of validity)

<table>
<thead>
<tr>
<th>Type</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>\lor-distributivity</td>
<td>$(K_1 \lor K_2)(P) \vdash p \ K_1(P) \lor K_2(P)$</td>
</tr>
<tr>
<td></td>
<td>$K(P_1 \lor P_2) \vdash p \ K(P_1) \lor K(P_2)$</td>
</tr>
<tr>
<td>\land-semi-distributivity</td>
<td>$(K_1 \land K_2)(P) \vdash p \ K_1(P) \land K_2(P)$</td>
</tr>
<tr>
<td></td>
<td>$K(P_1 \land P_2) \vdash p \ K(P_1) \land K(P_2)$</td>
</tr>
<tr>
<td>modus-ponens results</td>
<td>$(P_1 \triangleright P_2)(P_1) \vdash p \ P_2 \land \text{True}(P_1)$</td>
</tr>
<tr>
<td></td>
<td>$K(K \triangleleft P) \vdash p \ P \land K(\text{true})$</td>
</tr>
<tr>
<td></td>
<td>$P_2 \land \text{True}(P_1) \vdash p \ (P_1 \triangleright P_2)(P_1)$</td>
</tr>
<tr>
<td></td>
<td>$P \land K(\text{true}) \vdash p \ K(K \triangleright P)$</td>
</tr>
<tr>
<td>T-axioms</td>
<td>$\vdash p \ P \Rightarrow \Diamond P$</td>
</tr>
<tr>
<td></td>
<td>$\vdash p \ \Box P \Rightarrow P$</td>
</tr>
</tbody>
</table>
The connective \wedge only partially distributes, since the left-hand sides specify the splitting of the data into a context and subdata, whereas the right-hand sides specify two splittings that need not coincide. Although the T-axioms of ML are derivable, the 4-axiom stating that $\Diamond \Diamond P \Rightarrow \Diamond P$ is not; see the Step model in Example 2.6 for a counter-model. In Zarafty’s thesis [21], he studies CL extended with a context connective corresponding to context composition, and the two corresponding right adjoints. The 4-axiom does hold in this extension, and the somewhere modality corresponds more closely to our structured-data intuition.

We now define the CL-models and satisfaction relation, which are sound and complete with respect to the CL-proof theory.

Definition 2.5 (CL-Model) A CL-model Mod is a tuple (D, C, ap, I) such that

(i) D and C are sets;

(ii) $\text{ap} \subseteq (C \times D) \times D$ is a relation, called application: we use the notation $\text{ap}(c, d_1) = d_2$ for $((c, d_1), d_2) \in \text{ap}$;

(iii) $I \subseteq C$ acts as a left identity to ap: that is,

- $\forall d \in D, \exists i \in I, d' \in D$. $\text{ap}(i, d) = d'$;
- $\forall d, d' \in D, \forall i \in I$. $\text{ap}(i, d) = d'$ implies $d = d'$.

We often call D the data set and C the context set, because of the form of our motivating examples. Of course, there are models which do not fit this structured data intuition.

Example 2.6 [Example CL-Models]

- $\text{Mon}_D = (D, \cdot, \{e\})$ where D is a set with monoidal operator $\cdot : (D \times D) \rightarrow D$ and unit $e \in D$; also, $\text{Part}_\text{Mon}_D = (D, \cdot, \{e\})$ which is like Mon_D except that \cdot is a partial monoid. These models correspond to the BL-models (definition 2.26), and CL-reasoning collapses to BL-reasoning for these models (theorem 2.29).
- Heap is an example of Part_Mon_D where $\mathcal{H} = N^+ \rightarrow_{\text{fin}} N$ is the set of finite partial functions denoting heaps. The domain $N^+ = N - \{0\}$ does not include 0 as it is reserved for the nil value. Heap composition $h \cdot h'$, for heaps $h, h' \in \mathcal{H}$, is function union and is only defined when $\text{dom}(h) \cap \text{dom}(h') = \emptyset$.
- $\text{Term}_\Sigma = (\mathcal{T}_\Sigma, \mathcal{C}_\Sigma, \text{ap}, \{_\})$ where \mathcal{T}_Σ is the data set of terms constructed from the r-ary function symbols $f : r$ in signature Σ, \mathcal{C}_Σ is the corresponding set of contexts, ap denotes the standard application of contexts to terms, and $_\$ denotes the empty context.
- $\text{Seq}_A = (\mathcal{S}_A, \mathcal{C}_A, \text{ap}, \{_\})$ where \mathcal{S}_A is the set of sequences constructed from the elements in alphabet A, \mathcal{C}_A is the corresponding set of contexts, ap and $_\$ are as for Term_Σ; let Mult_A denote the analogous CL-model constructed from multisets.
- $\text{Tree}_A = (\mathcal{T}_A, \mathcal{C}_A, \text{ap}, \{_\})$ is an example of Term_{Σ_A} with an additional equality relation on terms and contexts. The signature Σ_A is the union of the sets $\Sigma_0 = \{0\}, \Sigma_1 = A$ where A denotes a set of node labels, and $\Sigma_2 = \{\},$ where Σ_i denotes the function symbols of arity i. We use the notation $t \mid t'$ for (t, t'), and $a[t]$ for $a(t)$ with $a \in A$. Terms are considered modulo an equality relation \equiv generated
by the axioms $0 \mid t \equiv t$, $t \mid t' \equiv t' \mid t$, $(t \mid t') \mid t'' \equiv t \mid (t' \mid t'')$, and closed by the obvious structural rules for the function symbols. The set of contexts C_A is constructed similarly, with an analogous equality relation on contexts.

- **Loc**_Tree_N is similar to Tree_N with $\Sigma_0 = \{0\}$, $\Sigma_1 = N$ and $\Sigma_2 = \{|\}$. This time, the set N denotes a set of unique node identifiers, and $|$ is therefore partial as for the partial heap composition. We shall use this model to illustrate our ideas about tree update.

- **Rel**_D = $(\mathcal{D}, \mathcal{P}(\mathcal{D} \times \mathcal{D}), \text{ap}, \{i\})$ where \mathcal{D} is an arbitrary set, $\mathcal{P}(\mathcal{D} \times \mathcal{D})$ denotes the set of binary relations on \mathcal{D}, ap is relational application, and i is the identity relation; also $\text{Fun}_\mathcal{D} = (\mathcal{D}, \mathcal{D} \to \mathcal{D}, \text{ap}, \{i\})$ where $\mathcal{D} \to \mathcal{D}$ is the set of total functions from \mathcal{D} to \mathcal{D}, ap is function application and i is the identity function.

- **Step** = $(\mathbb{N}, \{0, 1\}, +, \{0\})$ where the data set is the natural numbers, the context set is $\{0, 1\}$, application is normal addition, and the unit is zero. This model demonstrates that the 4-axiom of ML is not derivable, since the number 2 satisfies $\diamond \circ 0$ but not $\diamond 0$.

- $\mathcal{M}_1 + \mathcal{M}_2 = (\mathcal{D}_1 \cup \mathcal{D}_2, \mathcal{C}_1 \cup \mathcal{C}_2, \text{ap}, I_1 \cup I_2)$ where $\mathcal{M}_1 = (\mathcal{D}_1, \mathcal{C}_1, \text{ap}_1, I_1)$ and $\mathcal{M}_2 = (\mathcal{D}_2, \mathcal{C}_2, \text{ap}_2, I_2)$ are CL-models and, for arbitrary $c_i \in \mathcal{C}_i, d_j \in \mathcal{D}_j$, $\text{ap}(c_i, d_j) = \text{ap}_i(c_i, d_j)$ if $i = j$ and is undefined otherwise.

Definition 2.7 (CL-Satisfaction Relation) Given a CL-model $\text{Mod} = (\mathcal{D}, \mathcal{C}, \text{ap}, \mathcal{I})$, the CL-satisfaction relation $\mathcal{M} \models_{\text{CL}} \mathcal{P}$ consists of relations $\mathcal{M}, d \models \mathcal{P}$ and $\mathcal{M}, c \models K$ where $d \in \mathcal{D}$, $c \in \mathcal{C}$, $\mathcal{P} \in \mathcal{P}$ and $K \in \mathcal{K}$. The two relations are defined by induction on the structure of the formulae: the cases for the boolean additive connectives are standard; the cases for the structural connectives are

\[
\begin{align*}
\text{Mod}, d \models \mathcal{P} & \quad \exists c \in \mathcal{C}, d' \in \mathcal{D}. \; \text{ap}(c, d') = d \land \text{Mod}, c \models K \land \text{Mod}, d' \models \mathcal{P} \\
\text{Mod}, d \models \mathcal{P} & \quad \forall c \in \mathcal{C}, d' \in \mathcal{D}. \; \text{Mod}, c \models K \land \text{ap}(c, d) = d' \Rightarrow \text{Mod}, d' \models \mathcal{P} \\
\text{Mod}, c \models K & \quad \mathcal{I} \iff c \in \mathcal{I} \\
\text{Mod}, c \models \mathcal{P}_1 \lor \mathcal{P}_2 & \quad \forall d, d' \in \mathcal{D}. \; \text{Mod}, d \models \mathcal{P}_1 \land \text{ap}(c, d) = d' \Rightarrow \text{Mod}, d' \models \mathcal{P}_2
\end{align*}
\]

We sometimes omit the subscripts \mathcal{P} and \mathcal{K}, and sometimes write \models_{CL} to emphasise that it is the CL-satisfaction relation. In section 2.3, we explore the satisfaction relations for Seq_A, Mult_A and Tree_A in depth, giving many examples to illustrate the expressivity of CL-reasoning on these models.

Definition 2.8 A formula \mathcal{P} or K is valid for a given model $\mathcal{M} = (\mathcal{D}, \mathcal{C}, \text{ap}, \mathcal{I})$, written $\mathcal{M} \models \mathcal{P}$ or $\mathcal{M} \models K$, if it is satisfied by all data or contexts in the model:

\[
\begin{align*}
\mathcal{M} \models \mathcal{P} & \quad \forall d \in \mathcal{D}. \; \mathcal{M}, d \models \mathcal{P} \\
\mathcal{M} \models K & \quad \forall c \in \mathcal{C}. \; \mathcal{M}, c \models K
\end{align*}
\]

Theorem 2.9 (CL-soundness and completeness) The CL-proof theory is
sound and complete with respect to the CL-satisfaction relation:

$$\text{true } \vdash_p P \iff \forall M.(M \vDash_p P)$$

$$\text{True } \vdash_K K \iff \forall M.(M \vDash_K K)$$

We prove completeness in [5] using an interpretation of the structural connectives of CL as modalities in modal logic (ML). This interpretation is not straightforward, since it uses the negation duals of the structural adjoints as the fundamental connectives. We present additional ML-axioms for these extra CL-modalities to give a precise correspondence between the original CL-presentation and its ML-interpretation. These axioms are well-behaved, in that they satisfy the conditions necessary for us to apply a general completeness result about ML (Sahlqvist’s theorem). We thus prove that the CL-proof theory is sound and complete with respect to the set of CL-models. We have analogous results for BL. This work follows previous work by Calcagno and Yang, who proved completeness for BL and CL from first principles in unpublished work. They also extend their result to show completeness for CL-models where application is a function; their technique breaks for BL due to associativity. We use the relational definition here, to relate certain CL-models with the BL-models (theorem 2.29).

2.2 Context Logic with Zero

Notice that many of the CL-models given in Example 2.6 describe structured data with a natural element corresponding to empty data. Here we extend CL with a zero formula 0 and additional axioms, to capture some natural properties of empty data. The resulting logic, denoted CL\(_0\), has interesting logical structure and allows for a precise correspondence with BL (section 2.2.2).

Definition 2.10 (CL\(_0\)-Formulæ) The set of CL\(_0\)-formulæ consists of data and context formulæ as in Definition 2.1 plus an additional data formula 0, called the zero formula.

Definition 2.11 (CL\(_0\)-Proof theory) The CL\(_0\)-proof theory extends Definition 2.2 with the zero axioms:

$$\text{True } \vdash_K 0 \triangleright \text{true } \text{true } \vdash_p \text{True}(0) \quad 0 \triangleright P \vdash_K 0 \triangleright P \quad 0 \triangleright 0 \vdash_K I$$

These zero axioms state intuitive properties about data elements regarded as empty data. Their converses are all derivable. The first axiom specifies a totality condition that every context can be applied to empty data. Recall that we have example models where the application is not total, so this property is not derivable. The second axiom is a surjectivity condition specifying that all data can be split into a context and empty data. The third axiom states that all the zero elements behave in a similar fashion when applied to a context. The fourth axiom identifies the context 0 \(\triangleright\) 0, returning empty data when applied to empty data, with the empty context \(I\). Whilst we believe these zero axioms describe important properties of empty
data, we do not know whether we have captured the full essence of empty data. For example, another sensible property would be $0 \vdash P \neg (\text{True}(\neg 0))$ specifying that empty data cannot be split into a context and non-empty data. We know that this property is not derivable, since its converse holds in the CL_0-model Mon_{D_a} given just after Example 2.13. We have chosen to work with just the zero axioms given, as they are already enough to prove some interesting properties.

Definition 2.12 (CL$_0$-Model) A CL_0-model is a tuple $(C, D, ap, I, 0)$ where

1. (C, D, ap, I) is a CL-model;
2. $0 \subseteq D$;
3. the projection $p : C \rightarrow D$ defined by

 \[p(c) = d \Leftrightarrow \exists o \in 0. \text{ap}(c, o) = d \]

 is a total surjective function;
4. $\forall c \in C, \forall o \in 0. p(c) = o \Rightarrow c \in I$.

The projection function p maps every element in C to a unique element in D, by applying it to a zero element. The projection function is surjective, meaning that every data element has a zero element as a sub-element. Condition (iv) places a strong connection between I and 0: from Definition 2.5, we have $p(i) \in 0$ for all $i \in I$; from condition (iv), we also have $p^{-1}(0) \subseteq I$ for all $o \in 0$.

Example 2.13 [Example CL$_0$-models] The following extensions to the CL-models given in Example 2.6 are all CL$_0$-models.

- $\text{Mon}_D = (D, D, \cdot, \{e\}, \{e\})$; similarly for Part_Mon_D.
- Heap with the empty function as the zero element.
- Seq_A, Mult_A, Tree_A and Loc_Tree_N with the empty sequence, empty multiset and empty tree as the appropriate zero elements.
- $\text{Mod}_1 + \text{Mod}_2 = (C_1 \cup C_2, D_1 \cup D_2, \text{ap}, I_1 \cup I_2, 0_1 \cup 0_2)$ where $M_1 = (C_1, D_1, \text{ap}_1, I_1, 0_1)$ and $M_2 = (C_2, D_2, \text{ap}_2, I_2, 0_2)$ are CL$_0$-models and ap is defined in Example 2.6.

The CL$_0$-model Mon_{D_a} with monoid $D_a = \{a, e\}$, and $a \cdot a = e$ illustrates that we have not captured all our intuition regarding the behaviour of empty data. For example, it shows that the entailment $0 \vdash_P \neg (\text{True}(\neg 0))$ is not derivable using the CL$_0$-proof theory. Now consider the derived formulae $0^+ \triangleq \text{true}$, $(n + 1)^+ \triangleq (\neg I)(n^+)$ and $n \triangleq n^+ \land \neg (n + 1)^+$ for all $n \in \mathbb{N}$. In some CL$_0$-models, such as the sequence model, these formulae capture the size of data: for example, formula n^+ specifies sequences with at least n elements, and formula n specifies sequences with precisely n elements. However, the Mon_{D_a} model shows that this sort of analysis is not always possible.

The CL-model Step does not have a zero set, since there is no surjective function from contexts to data. Also, the CL-model Term_Σ with signature set $\Sigma = \{f : 1, g_1 : 0, g_2 : 0\}$ does not have a zero set. Assume for contradiction that it has zero set 0: if 0 does not contain g_2 (or g_1), then g_2 cannot be in the image of p contradicting...
surjectivity; however \(g_1 \) and \(g_2 \) cannot both be in \(0 \) since then \(p(\omega) = g_1 \) and \(p(\omega) = g_2 \), contradicting the well-formedness of function \(p \). Notice that Term_{\Sigma'} where \(\Sigma' = \{f : 1, g : 0\} \) is a CL0-model with zero set \(\{g : 0\} \). The CL-model \(Rel_D \) has no zero set since the everywhere undefined relation contradicts totality of the projection function. Also \(Fun_D \) has no zero set: the only possible choice would be a singleton \(\{d\} \) for the projection to be a function, but it contradicts condition (iv) since the identity is not the only function mapping \(d \) to itself.

Definition 2.14 (CL0-Satisfaction Relation) Let \(Mod_0 = (D, C, ap, I, 0) \) be an arbitrary CL0-model. The CL0-satisfaction relation extends the relations \(Mod_0, d \vDash_P P \) and \(Mod_0, c \vDash_K K \) given in Definition 2.7 with

\[
Mod_0, d \vDash_P 0 \iff d \in 0
\]

Theorem 2.15 (CL0-Soundness and Completeness) The CL0-proof theory is sound and complete with respect to the CL0-satisfaction relation.

As for Thm. 2.9, completeness can either by proved from first principles, or by using the ML-interpretation of CL0 and appealing to Salqvist’s theorem.

2.2.1 Derived formulae

We explore some derived CL0-formulae. First, we derive a binary \(\ast \)-connective on data and its accompanying right adjoints, which are generalised versions of \(\ast \) and \(\ast^- \) from BL and SL. We also show that a natural embedding relation to the projection function of CL0-models suggests embedding/projection formulae with interesting logical structure.

Definition 2.16 (Derived \(\ast \)-formulae) We derive the following CL0-formulae:

\[
\begin{align*}
P_1 \ast P_2 & \triangleq (0 \triangleright P_1)(P_2) \\
P_1 \ast^- P_3 & \triangleq (0 \triangleright P_1) \triangleleft P_3 \\
P_2 \ast^- P_3 & \triangleq \neg((P_2 \triangleright P_3)(0))
\end{align*}
\]

The derived formula \(P_1 \ast P_2 \) specifies that the given data can be split into subdata satisfying property \(P_2 \) and a context with the property that, when a zero element is put in the hole, satisfies property \(P_1 \). For example, the formula \(\neg 0 \ast \neg 0 \) specifies that the given data can be split into two disjoint, non-empty parts. The \(\ast \)-connective is neither commutative nor associative in general: for example, it is not associative or commutative in the sequence or tree model; it is in the heap model. We therefore have two right adjoints. The first adjoint \(P_1 \ast^- P_3 \) is straightforward. It states that, whenever a context applied to a zero element satisfies \(P_1 \), then the context applied to the given data element satisfies \(P_3 \). The second right adjoint is more complicated. It states that, whenever data satisfying \(P_2 \) replaces empty subdata of the given data, then the resulting data satisfies \(P_3 \): for trees, this data satisfying \(P_2 \) can be inserted at the leaves or by any node; for sequences, this data can be inserted at any point in the sequence; for heaps, the data just extends the heap provided there is no clash of heap addresses. We assume the binding precedence \(\neg \),
\(\ast, \land, \lor, \{\triangleleft, \triangleright, \triangleleft, \triangleright, \ast \}, \leftarrow\).

Lemma 2.17 (Properties of \(\ast\)-formulae)

(i) \(P \ast _\) and \(P \ast \ldots\) are the right adjoints of \(P \ast \ldots\) and \(\ldots P\) respectively: that is,

\[
\begin{align*}
P_1 \ast P_2 & \vdash P_3 & P_1 \ast P_2 & \vdash P_3 \\
P_1 & \vdash P_2 \ast P_3 & P_2 & \vdash P_1 \ast P_3
\end{align*}
\]

(ii) The zero formula 0 is the right and left unit of \(\ast\): that is, \(P \ast 0 \iff P \iff 0 \ast P\).

We shall see that these \(\ast\)-formulae relate closely to a derivable \(\ast\)-relation in the CL\(_0\)-model.

Definition 2.18 (Derived \(\ast\)-relation) The relation \(\ast \subseteq (D \times D) \times D\) is defined by

\[
\ast = \{(d_1, d_2, d_3) \mid \exists c \in C, o \in 0. d_1 = ap(c, o) \land d_3 = ap(c, d_2)\}
\]

We let \(d_1 \ast d_2\) denote the set \(\{d_3 \mid ((d_1, d_2), d_3) \in \ast\}\).

With the CL\(_0\)-model \(Mon_\mathcal{D}\) (and \(Part_Mon_\mathcal{D}\)), the relation \(\ast\) is a (partial) function and corresponds to \(\cdot\). With the model \(Tree_A\), the relation \(\ast\) is more complicated with \(t_1 \ast t_2\) describing the set of trees obtained by inserting \(t_2\) into an arbitrary location inside \(t_1\): for example, \((a_1[0] | a_2[0]) \ast b[0] = \{a_1[b[0]] | a_2[0], a_1[0] | a_2[b[0]], a_1[0] | a_2[0] | b[0]\}\).

Lemma 2.19 (CL\(_0\)-satisfaction for \(\ast\)-formulae) Given CL\(_0\)-model \(\mathcal{M}, d \vdash P\), there is a direct connection between the \(\ast\)-connective and the \(\ast\)-operator on data given by:

\[
\begin{align*}
\mathcal{M}, d \vdash P_1 \ast P_2 & \iff \exists d_1, d_2 \in D. (d_1 \in d_1 \ast d_2 \land \mathcal{M}, d_1 \vdash P_1 \land \mathcal{M}, d_2 \vdash P_2) \\
\mathcal{M}, d \vdash P_1 \ast P_3 & \iff \forall d_1, d_3 \in D. (d_3 \in d_1 \ast d_3 \land \mathcal{M}, d_1 \vdash P_1 \Rightarrow \mathcal{M}, d_3 \vdash P_3) \\
\mathcal{M}, d \vdash P_2 \ast P_3 & \iff \forall d_2, d_3 \in D. (d_3 \in d_2 \ast d_3 \land \mathcal{M}, d_2 \vdash P_2 \Rightarrow \mathcal{M}, d_3 \vdash P_3)
\end{align*}
\]

We also derive projection and embedding formulae, which again have interesting logical properties. We first show that there is a natural embedding relation in the CL\(_0\)-models.

Definition 2.20 (CL\(_0\)-embedding relation) Given CL\(_0\)-model \(\mathcal{M}, d \vdash P\), the embedding relation \(e : D \times C\) is defined by

\[
e(d, c) \text{ if and only if } p(c) = d.
\]

We write \(e(d)\) for \(\{c \in K : e(d, c)\}\), denoting the set of contexts which give \(d\) when applied to a zero element.

The relation \(e\) is not necessarily a function: for example, in the tree model \(e(b[0]) = \{b[_], b[0] | _\}\). The pair \((e, p)\) is an embedding-projection pair: that is \(\forall d \in D. \{p(c) \mid c \in e(d)\} = \{d\}\). They also give an elegant connection between \(I\)
and 0: \(p(i) \subseteq 0 \) for all \(i \in I \) and \(e(o) \subseteq I \) for all \(o \in 0 \). Since this \((e,p)\)-pair is such a natural structure in the models, we explore the corresponding \(\text{CL}_0 \)-formulae.

Definition 2.21 (Derived \(e,p \)-formulae) We define the following derived \(\text{CL}_0 \)-formulae:

\[
\begin{align*}
\text{projection formulae} & \quad K^p \triangleq K(0) \\
\text{embedding formulae} & \quad P^e \triangleq 0 \triangleright P
\end{align*}
\]

The projection formula \(K^p \) specifies that the given data is a projection of a context satisfying property \(K \) with a zero element put in the hole. The embedding formula \(P^e \) specifies that a given context satisfies property \(P \) whenever a zero element is put in the hole.

Lemma 2.22 (\(\text{CL}_0 \)-satisfaction for \(e,p \)-formulae) Given \(\text{CL}_0 \)-model \(\text{Mod} \), the connection between the \(e,p \)-formulae and the embedding-projection pair \((e,p)\) on data is given by

\[
\begin{align*}
\mathcal{M}, d \models P^p & \iff \exists c \in C. \ p(c) = d \wedge \mathcal{M}, c \models K^p \\
\mathcal{M}, c \models K^p & \iff \forall d \in D. \ c \in e(d) \Rightarrow \mathcal{M}, d \models P^e
\end{align*}
\]

Lemma 2.23 (Properties of \(e,p \)-formulae) The following entailments are derivable:

\[
\begin{align*}
P \vdash_P P^{ep} \\
\neg(P^e) \vdash_{K^p} (\neg P)^e \\
0^e \vdash_{K^p} I
\end{align*}
\]

The first entailment follows from the second and third axioms given in Definition 2.11, and corresponds to \((e,p)\) being an embedding-projection pair. The second entailments specify that negation distributes over \((_)^e\), or equivalently that \((_)^e\) has a right adjoint given by \(\neg((_)^p) \). The third entailment specifies that \((_)^e\) lifts 0 to \(I \), and coincides with the fourth axiom in Definition 2.11.

Lemma 2.24 If we replace the zero axioms given in Definition 2.11 by the entailments in lemma 2.23, then the zero axioms are derivable.

These results suggest that our initial choice of zero axioms was natural. They also indicate that we do not yet understand the full significance of the embedding-projection formulae. In [21], Zarfaty explores this further, by suggesting an alternative presentation of \(\text{CL}_0 \) consisting of context composition, the accompanying adjoints and these embedding/projection formulae.

2.2.2 Comparison with Bunched Logic

We present (a variant of) BL [16], its models and satisfaction relation, and compare it to \(\text{CL}_0 \). We use the notation \(\circ \) and \(\neg \circ \) for the multiplicative conjunction and its adjoint, instead of the standard \(\ast \) and \(\neg \ast \) notation. We reserve \(\ast \) and \(\neg \ast \) for our generalised versions for \(\text{CL}_0 \) given in Definition 2.16. Our variation of standard
BL does not require \circ to be commutative, since one of our key example models is sequences where \circ denotes concatenation.

Definition 2.25 (BL-Formulae) The set of BL-formulae \mathcal{P}_{BL} is defined by:

$$\mathcal{P} ::= 0 \mid P \circ P \mid P \circ \neg P \mid P \neg \circ P \quad \text{structural formulae}$$

$$P \lor P \mid \neg P \mid \text{false} \quad \text{boolean additive formulae}$$

The key formulae are the structural formulae $0, P_1 \circ P_2, P_1 \circ \neg P_2$ and $P_1 \neg \circ P_2$.

The zero formula 0 specifies empty data. The composition formula splits the given data into two parts: the first satisfying P_1 and the second P_2. Unlike the original BL, we have two right adjoints, due to \circ being non-commutative: $P_1 \circ \neg P_2$ specifies that, whenever some data satisfying P_1 is placed to the left of the given data, then the result satisfies P_2; the other adjoint $P_1 \neg \circ P_2$ places data to the right. This distinction has no effect in the heap model, but is important in the sequence model.

As in CL, we define the negation duals of the adjoints as $P_1 \neg \bullet P_2 \equiv \neg(P_1 \neg \circ \neg P_2)$ and $P_1 \bullet \neg P_2 \equiv \neg(P_1 \circ \neg \neg P_2)$.

Definition 2.26 (BL-Model) A BL-model Mod is a tuple (D, \cdot, e) such that

(i) D is a set;

(ii) $\cdot \subseteq (D \times D) \times D$ is an associative relation: we use the notation $\cdot((d_1,d_2),d_3) \in \cdot$;

(iii) $e \subseteq D$ acts as a left and right identity to \cdot: that is,

- $\forall d \in D, \exists e \in e, d' \in D. \cdot(e,d) = d' \quad (e,d) \in D$;
- $\forall d, d' \in D, \forall e \in e. \cdot(e,d) = d' \quad \text{or} \quad (d,e) = d' \implies d = d'$.

Notice that any BL-model $M = (D, \cdot, e)$ can be lifted to a CL$_0$-model $M_{BL} = (D, D, \cdot, e, e)$ with the derived $*$-relation 2.18 coinciding with \cdot. In fact, we shall see that the CL$_0$-satisfaction relation collapses to the BL-satisfaction relation for such models (theorem 2.29). We highlight specific BL-models for heaps, sequences and trees, since we will use them in this paper. Contrast these BL-models with the analogous CL-models given in Example 2.6, which also emphasise the context structure.

Example 2.27 [Some BL-models]

- $Seq_A = (S_A, \cdot, \{0\})$ where D_A is the set of sequences constructed from the elements in set A, \cdot is sequence concatenation, and 0 is the empty sequence; let $Mult_A$ denote the analogous CL$_0$-model constructed from multisets.

- $Tree_A = (T_A, |, \{0\})$ where T_A is the set of trees in Example 2.6, $|$ is horizontal tree composition, and 0 is the empty tree.

- $Heap = (D, \cdot, \{e\})$ where D, \cdot and e are as in Example 2.6.

Notice the difference between the CL$_0$-model of sequences Seq_A and the CL-lifting of the BL-model Seq_A: in the CL$_0$-model, the contexts can be regarded as having
the form $s_1 \cdot _ \cdot s_2$ and application replaces the hole $_$ by a sequence; in the CL$_0$-lifting of BL-model Seq_A, the context set is an isomorphic copy of the sequence set and application corresponds to concatenation of sequences. A similar difference occurs with trees. By contrast, the CL$_0$-model Mult_A corresponds exactly to the CL$_0$-lifting of the BL-model Mult_A due to the commutativity of the multiset union. This similarity also occurs with the heap models.

Definition 2.28 (BL-Satisfaction Relation) Given a BL-model $\text{Mod} = (\mathcal{D}, \cdot, e)$, the BL-satisfaction relation is of the form $\text{Mod}, d \models_{BL} P$ where $d \in \mathcal{D}$ and $P \in \mathcal{P}_{BL}$. As before, it is defined by induction on the structure of formulae, with the cases for the structural connectives given by

$\text{Mod}, d \models_{BL} 0$ iff $d \in e$

$\text{Mod}, d \models_{BL} P_1 \circ P_2$ iff $\exists d_1, d_2 \in \mathcal{D} \cdot (d_1, d_2) = d \land \text{Mod}, d_1 \models_{BL} P_1 \land \text{Mod}, d_2 \models_{BL} P_2$

$\text{Mod}, d \models_{BL} P_1 \leftarrow P_3$ iff $\forall d_1, d_3 \in \mathcal{D} \cdot (d_1, d) = d_3 \land \text{Mod}, d_1 \models_{BL} P_1 \Rightarrow \text{Mod}, d_3 \models_{BL} P_3$

$\text{Mod}, d \models_{BL} P_2 \rightarrow P_3$ iff $\forall d_2, d_3 \in \mathcal{D} \cdot (d, d_2) = d_3 \land \text{Mod}, d_2 \models_{BL} P_2 \Rightarrow \text{Mod}, d_3 \models_{BL} P_3$

We assume that \circ, \leftarrow and \rightarrow have the same binding precedence as \ast, $\ast\ast$ and $\ast\ast$.

The Hilbert-style BL-proof theory consists of analogous rules to those given for the CL-proof theory (Definition 2.2), with an additional axiom for the associativity of \circ. As for CL, we can prove a completeness result for BL, either from first principles, or by interpreting the structural connectives as ML-modalities and appealing to Sahlqvist’s theorem [5]. Unlike the CL-case, we do not know how to extent this result to BL-models restricted to those where \cdot is a function. The difficulty arises with the associativity of \cdot, which is known to be a problem.

Theorem 2.29 (Collapse to BL) Given BL-model $\text{Mod}_{BL} = (\mathcal{D}, \cdot, e)$ and corresponding CL$_0$-model $\text{Mod}_{CL} = (\mathcal{D}, \mathcal{D}, \cdot, e, e)$, we define translations $\models | : \mathcal{P}_{CL} \rightarrow \mathcal{P}_{BL}$ and $\models _K : \mathcal{K}_{CL} \rightarrow \mathcal{P}_{BL}$ from CL$_0$-formulae to BL-formulae, and a translation $\models _{BL} : \mathcal{P}_{BL} \rightarrow \mathcal{P}_{CL}$ from BL-formulae to CL-data formulae, such that

- for $d \in \mathcal{D}$, $P \in \mathcal{P}_{CL}$ and $K \in \mathcal{K}_{CL}$,

 $\text{Mod}_{CL}, d \models_{CL} P \Leftrightarrow \text{Mod}_{BL}, d \models_{BL} |P|_P$

 $\text{Mod}_{CL}, d \models_{CL} K \Leftrightarrow \text{Mod}_{BL}, d \models_{BL} |K|_K$

- for $d \in \mathcal{D}$ and $P \in \mathcal{P}_{BL}$,

 $\text{Mod}_{BL}, d \models_{BL} P \Leftrightarrow \text{Mod}_{CL}, d \models_{CL} |P|_{BL}$
Proof. The translations are defined by induction on the structure of the formulae: the cases for the additive connectives follow the structure of the connectives; we give the cases for the structural connectives. The translations from CL_0-formulae to BL-formulae for the structural cases are:

$$
|0|_P = 0 \quad |I|_K = 0 \\
|K(P)|_P = |K|_K \circ |P|_P \quad |P \triangleright Q|_K = |P|_P \circ |Q|_P \\
|K \triangleleft P|_P = |K|_K \circ - |P|_P
$$

The translation from BL-formulae to CL-data formulae for the structural cases is:

$$
|0|_{BL} = 0 \\
|P \circ Q|_{BL} = |P|_{BL} \ast |Q|_{BL} \\
|P \circ - Q|_{BL} = |P|_{BL} \ast - |Q|_{BL} \\
|P \circ - Q|_{BL} = |P|_{BL} \ast - |Q|_{BL}
$$

The proof follows by a simple induction on the structure of formulae.

Recall that the CL_0-models for multisets and heaps are the same as the CL_0-liftings of their analogous BL-models. This theorem shows that CL_0-reasoning and BL-reasoning coincide for these models.

2.3 Applications of CL

We study four applications of CL-reasoning to sequences, multisets, trees and terms: sequences provide a simple example to illustrate that CL_0-reasoning and BL-reasoning is different; multisets provide an example where CL_0- and BL-reasoning is the same; trees provide a more substantial example where the reasoning is different; and terms provide an example where BL-reasoning is not possible. In each case, the application involves extending the CL-formulae with formulae for analysing the specific structure of the data and contexts arising from the model. Here, we work with specific constants associated with the model; in section 3, we also work with variables and quantification.

2.3.1 Sequences

CL for sequences generated by alphabet A is CL_0 extended by specific connectives for specifically analysing the CL_0–model Seq_A presented in Example 2.6. The additional connectives specify the one-element sequence $a \in A$, and analyse additional structure of the sequence contexts. We write $s_1 \cdot s_2$ to denote the concatenation of two sequences s_1 and s_2, and $s_1 \cdot -$ s_2 to denote a context with the context hole $-$ between the sequences s_1 and s_2.

Definition 2.30 (CL for Seq_A) CL applied to the sequence model Seq_A, denoted CL_{Seq_A}, consists of CL_{Seq_A}-formulae constructed by extending the CL_0-formulae
defined inductively by the grammars in definition 2.14 with the following additional cases:

context formulae

\[K ::= P __ P \] specific context formulae

data formulae

\[P ::= a \] specific data formulae \(a \in A \)

The \(CL_{Seq_A} \)-satisfaction relation extends the \(CL_0 \)-satisfaction relation (definition 2.14) with the additional cases:

\[Seq_A, c \models K P_1 __ P_2 \iff \exists s_1, s_2 \in S. c = s_1 __ s_2 \wedge Seq_A, s_1 \models P_1 \wedge Seq_A, s_2 \models P_2 \]

\[Seq_A, s \models P __ a \iff s = a \]

It is easy to show that logical equivalence for \(CL_{Seq_A} \) corresponds to sequence equality. The strength of this analysis is typical for this style of logical reasoning.

We can derive a formula for sequence composition \(P_1 \circ P_2 \triangleq (P_1 __ 0)(P_2) \) which specifies that a sequence can be split into two sequences, the left one satisfying \(P_1 \) and the right one \(P_2 \). This is logically equivalent to \((0 __ P_2)(P_1) \). Contrast \(P_1 \circ P_2 \) with the derived \(*\)-formula \(P_1 * P_2 \) which holds for a given sequence if it is possible to remove a subsequence satisfying \(P_2 \) to leave the remaining sequence satisfying \(P_1 \). We also derive the two corresponding right adjoints: the formula \(P_1 \circ P_2 \triangleq (P_1 __ 0) \triangleleft P_2 \) specifies that, whenever a sequence satisfying property \(P_1 \) is joined to the left of the given sequence, then the result satisfies \(P_2 \); similarly for \(P_1 __ P_2 \triangleq (0 __ P_1) \triangleleft P_2 \). We give some additional derived formulæ which are specific to this \(CL_{Seq_A} \)-model.

Example 2.31 \([CL_{Seq_A} \text{- derived formulæ}]\)

(i) \(a \circ b \circ a \triangleq a \circ (b \circ a) \), the formula specifying the sequence \(a \cdot b \cdot a \).

(ii) \(a \circ \text{true} \), the formula specifying any sequence beginning with an \(a \).

(iii) \(a \ast \text{true} \), a sequence that either begins or ends with an \(a \).

(iv) \(\Diamond a \) and \(\text{true} \ast a \) and \(\text{true} \circ a \circ \text{true} \), any sequence that contains an \(a \).

(v) \((a \rightarrow P) \circ b \), a sequence ending in \(b \) that satisfies \(P \) if this \(b \) is replaced by an \(a \).

(vi) \((a \rightarrow* P) \ast b \), a sequence containing a \(b \) that satisfies \(P \) if this \(b \) removed and an \(a \) added anywhere in the sequence.

(vii) \((a \triangleright P)(b) \), a sequence containing a \(b \) that satisfies \(P \) if this \(b \) is replaced by a \(a \) added in the same place.

(viii) \(\Box(1 \Rightarrow a) \), any sequence containing just \(a \)’s.

(ix) \((a \circ b)^* \triangleq 0 \vee (a \circ \text{true} \wedge \text{true} \circ b \wedge \Box (2 \Rightarrow a \circ b \vee b \circ a)) \), the formula specifies the Kleene star \((a \cdot b)^* \) denoting either the empty sequence or sequences with alternating \(a \)s and \(b \)s, starting from \(a \) and ending in \(b \).
In contrast to example 2.31(ix), the Kleene star \((a \cdot a)^*\) is not expressible in \(CL_{Seq_A}\). These two examples are key examples for illustrating the difference between regular languages and \(*\)-free regular languages. In unpublished work, we have recently shown that \(CL_{Seq_A}\) does indeed specify the \(*\)-free regular languages.

We now compare \(CL_{Seq_A}\)-reasoning with BL-reasoning about the BL-model \(Seq_A\) (definition 2.27).

Definition 2.32 (BL for \(Seq_A\)) BL applied to the BL-model \(Seq_A\), denoted \(BL_{Seq_A}\), consists of \(BL_{Seq_A}\)-formulae constructed by extending the BL-formulae defined inductively in definition 2.25 with the following additional case:

- data formulae

\[P ::= a \text{ specific data formulae } a \in A \]

The \(BL_{Seq_A}\)-satisfaction relation extends the BL-satisfaction relation (definition 2.28) with the additional case:

\[Seq_A, s \models_{BL} a \text{ iff } s = a \]

\(BL_{Seq_A}\) is clearly a sublogic of \(CL_{Seq_A}\), since we have shown that \(\circ, \circ\) and \(-\circ\) are derivable in \(CL_{Seq_A}\). Recall that the \(CL_0\)-model \(Seq_A\) is not the same as the \(CL_0\)-lifting of the BL-model. This suggests that the reasoning will be different. However, the question of whether \(CL_{Seq_A}\) is more expressive than \(BL_{Seq_A}\) is subtle. Consider the \(CL_{Seq_A}\)-formula \((0 \triangleright b \circ c)(a)\). It is logically equivalent to \(a \circ b \circ c \lor b \circ a \circ c \lor b \circ c \circ a\). Now consider the \(CL_{Seq_A}\)-formula \((0 \triangleright \text{True}(b))(a)\). It is equivalent to \(\text{true} \circ \text{true} \circ a \circ \text{true} \lor \text{true} \circ a \circ \text{true} \circ b \circ \text{true}\), which has very different structure to the previous example. In fact, we have shown that \(CL_{Seq_A}\) and \(BL_{Seq_A}\) are equality expressive, following analogous results by Lozes for Ambient Logic and Separation Logic [13]. However, they are not parametrically as expressive, as these examples suggest. This parametric nature of CL is important for our local Hoare reasoning, as we discuss in Section 3.2.4.

2.3.2 Multisets

The \(CL_0\)-model of multisets provides the simplest model in which the CL-reasoning collapses to BL-reasoning. This collapse is due to the commutativity of multiset union. CL for multisets generated by alphabet \(A\), denoted \(CL_{Mult_A}\), is \(CL_0\) extended by formulae for determining the one-element multisets \(\{a\}\) for \(a \in A\). In this case, we do not require additional formulae for analysing the structure of the multiset contexts.

Definition 2.33 (CL for \(Mult_A\)) CL applied to the sequence model \(Mult_A\), denoted \(CL_{Mult_A}\), consists of \(CL_{Mult_A}\)-formulae constructed by extending the \(CL_0\)-formulae defined inductively by the grammars in definition 2.14 with the following additional data formula:

\[P ::= a \text{ specific data formulae } a \in A \]
The CL_{Mult_A}-satisfaction relation extends the CL_0-satisfaction relation (definition 2.14) with the additional a case given as for sequences (definition 2.32).

We again have a derived composition connective on data, this time given by $P_1 \circ P_2 \triangleq (0 \triangleright P_1)(P_2)$ which specifies that a multiset can be split into two parts, one satisfying P_1 and the other P_2. This is logically equivalent to $(0 \triangleright P_2)(P_1)$. We also derive the corresponding right adjoint. The formula $P_1 \rightarrow P_2 \triangleq (0 \triangleright P_1) \mathcal{C} P_2$ specifies that, whenever a multiset satisfying property P_1 is joined to the given multiset, then the result satisfies P_2. It is logically equivalent to $(P_1 \triangleright P_2)(0)$. We only have one right adjoint due to the commutativity of multiset union. We give some additional derived formulæ which are specific to this CL_{Mult_A}-model.

Example 2.34 [CL_{Mult_A}- derived formulæ]

(i) $a \ast b \ast a$, the multiset \{a, a, b\}.

(ii) $\Diamond a$ and true $\ast a$ and $a \ast$ true, any multiset that contains an a.

(iii) $(a \rightarrow P) \ast b$ and $(a \triangleright P)(b)$, a multiset containing a b that satisfies P if a is removed and an a added.

Definition 2.35 (BL for $Mult_A$) BL applied to the BL-multiset model $Mult_A$, denoted BL_{Mult_A}, consists of BL_{Mult_A}-formulae extended with specific data formulæ $a \in A$ and the BL_{Mult_A}-satisfaction relation extended in the obvious way (as in definition 2.32 for BL for Seq_A).

This time the CL_{Mult_A}-reasoning collapses to BL_{Mult_A}-reasoning, since the CL_0-model $Mult_A$ is the same as the CL_0-lifting of the BL-model $Mult_A$ and we can use the translations in definition 2.29 extended with the trivial case for $a \in A$.

2.3.3 Trees

CL for trees is CL_0 extended by specific formulæ which can be interpreted in the CL_0-model $Tree_A$ presented in Example 2.6. The additional formulæ specify ways of analysing tree contexts.

Definition 2.36 (CL for $Tree_A$) CL applied to the tree model $Tree_A$, denoted CL_{Tree_A}, consists of CL_{Tree_A}-formulae constructed by extending the CL_0-formulae defined inductively by the grammars in definition 2.10 with the following additional context formulæ:

$$K ::= a[K] \mid K \circ P \text{ specific context formulæ, } a \in A$$

The CL_{Tree_A}-satisfaction relation is defined by extending the CL_0-satisfaction relation (definition 2.14) with the additional cases:

$Tree_A, c \models_K a[K]$ iff $\exists c' \in C$. $c = a[c'] \land Tree_A, c' \models_K K$

$Tree_A, c \models_K K \circ P$ iff $\exists c' \in C, d \in D$. $c = c' \mid d \land Tree_A, c' \models_K K \land Tree_A, d \models_P P$
These additional specific formulae describe two ways of analysing tree contexts: either tree contexts consist of a top node labelled a with a subcontext underneath the node, or they can be split into a context and data. We have the derived formulae

\[a[P] \triangleq (a[P \circ I])(0), \]

\[P_1 \circ P_2 \triangleq (P_1 \circ I)(P_2), \]

with their adjoints \(\hat{a}[P] \triangleq a[I] \circ P \) and \(P_1 \circ P_2 \triangleq (P_1 \circ I) \circ P_2 \) respectively. Here are some other derived formulae.

Example 2.37 \([CL_{Tree_A}-derived formulæ}]

(i) \(a[0] \), the tree \(a[0] \).

(ii) \(a[true] \), a tree with root node labelled a.

(iii) \(3 \times a[true] \) and \(true * a[true] \), a tree containing node a.

(iv) \(a[0] * true \) and \((0 \circ a[0])(true) \) and \(a[true] \lor (a[0] \circ true) \), a tree with root node a and either a subforest and no siblings, or siblings and an empty subforest.

(v) \((0 \circ P)(a[true]) \) and \(P * a[true] \), a tree that satisfies P if a subtree with root node a is replaced by a 0.

(vi) \((b[true] \circ P)(a[true]) \), a tree that satisfies P if a subtree with root node a is replaced by a subtree with root node b.

We define BL for trees, corresponding to the static Ambient Logic without quantifiers.

Definition 2.38 (BL for \(Tree_A \)) BL applied to the BL-model \(Tree_A \), denoted \(BL_{Tree_A} \), consists of \(BL_{Tree_A} \)-formulae constructed by extending the BL-formulae defined inductively in definition 2.25 with the following additional data formulae:

\[P ::= a[P] \mid \hat{a}[P] \mid \diamond P \]

specific data formulae \(a \in A \)

The \(BL_{Tree_A} \)-satisfaction relation is defined by extending the BL-satisfaction relation (definition 2.28) with the additional cases:

\[Tree_A, d \models_{BL} a[P] \iff \exists d' \in D. \ d = a[d'] \land Tree_A, d' \models_{BL} P \]

\[Tree_A, d \models_{BL} \hat{a}[P] \iff Tree_A, a[d] \models_{BL} P \]

\[Tree_A, d \models_{BL} \diamond P \iff (\exists d', d'' \in D. \ d = d' \land Tree_A, d' \models_{BL} P) \lor (\exists a \in A, d', d'' \in D. \ d = a[d'] \land d'' \land Tree_A, d' \models_{BL} P) \]

\(BL_{Tree_A} \) is a sublogic of \(CL_{Tree_A} \). The comparison between \(CL_{Tree_A} \) and \(BL_{Tree_A} \) is subtle. Consider the CL-formula \((0 \triangleright b_1[b_2[0]])(a[true]) \), which specifies that we can remove a subtree with root label a to obtain a tree \(b_1[b_2[0]] \). It corresponds to the BL-formula \(b_1[b_2[true]][\triangleright a[true]] \lor b_1[b_2[0][a[true]]][\triangleright (b_1[b_2[0]][a[true]])] \). Now consider the CL-formula \((0 \triangleright \diamond b_2[true])(a[true]) \). It corresponds to the BL-formula \(\diamond b_2[true] \land \diamond a[\neg \diamond b_2[true]] \). The structure of the CL-formulae is very similar, and the implication

\[(0 \triangleright b_1[b_2[0]])(a[true]) \Rightarrow (0 \triangleright \diamond b_2[true])(a[true]) \]
is immediate. By contrast, the structure of the BL-formulae is very different, and the corresponding implication is much less obvious. This parametric nature of our CL-reasoning is essential for our local Hoare reasoning about tree update, as we discuss in Section 3.2.4.

2.3.4 Terms

Terms over a signature do not decompose as a parallel composition of subterms, due to the fixed arity of function symbols. They do however decompose nicely as context/subtree pairs. The term model is therefore an interesting model for us to explore. We apply CL-reasoning to the term model Term_Σ (Example 2.6), extending CL with specific formulae which can be interpreted in the model. The additional formulae specify the function symbols of arity 0, and ways of analysing term contexts.

Definition 2.39 (CL for Term_Σ) CL applied to the term model Term_Σ, denoted CL_{Term_Σ}, consists of CL_{Term_Σ}-formulae constructed by extending the CL-formulae defined inductively by the grammars in definition 2.10 with the following additional cases:

data formulae:

$$P ::= f \text{ specific data formulae, } f : 0 \in \Sigma$$

context formulae

$$K ::= f(P_1, \ldots, K, \ldots, P_r) \text{ specific context formulae, } f : r \in \Sigma$$

The CL_{Term_Σ}-satisfaction relation is defined by extending the CL-satisfaction relation (definition 2.14) with the additional cases:

$$\text{Term}_\Sigma, t \models_P f \iff t = f, \quad f : 0 \in \Sigma$$

$$\text{Term}_\Sigma, c \models_K f(P_1, \ldots, K, \ldots, P_r) \iff c = f(t_1, \ldots, \ldots, t_r) \wedge$$

$$\text{Term}_\Sigma, t_i \models_P P_{i}, \quad f : r \in \Sigma$$

From these additional formulae, we can derive formulae for specifying specific terms. For example, consider the signature $\Sigma = \{f : 1, g_1 : 0, g_2 : 0\}$. The term $f(f(g_1))$ can be specified by the derived formulae $(f(f(_)))(g_1)$ and $(f(_))(f(g_1))$ for example.

Example 2.40 [CLTerm_Σ-derived formulae] We give some additional derived formulae for CLTerm_Σ when $\Sigma = \{f : 1, g_1 : 0, g_2 : 0\}$.

(i) $f[\text{true}]$, a term starting with function symbol f.

(ii) $\Diamond f[\text{true}]$, a term containing function symbol f.

(iii) $(g_1 \triangleright f[g_1])(\text{true})$, a term starting with function symbol f.

(iv) $(f[\text{true}] \triangleright P)(g_1)$, a term into which it is possible to replace g_1 by a term starting with function symbol f to obtain a term satisfying P.
(v) \((g_1 \triangleright P)(f[\text{true}])\), a term containing a subterm starting with \(f\) that satisfies \(P\) if this subterm is replaced by \(g_1\).

For the choice of \(\Sigma\) above, recall that \(\text{Term}_\Sigma\) cannot have a zero element (discussion after Example 2.13). We therefore cannot derive the \(*\)-composition. We also cannot derive the \(\circ\)-composition, since terms cannot be split into two disjoint parts at the top level. We therefore cannot apply BL-reasoning for this model.

3 Local Hoare Reasoning

We present a framework for local Hoare reasoning about commands acting locally on the data set of a CL-model. We give a general interpretation of the Hoare triples for such commands based on the CL-satisfaction relation. We define local commands based on application in the CL-model, and present the inference rules for the Hoare triples based on local commands. We then apply our local Hoare reasoning to three examples of data update: tree update, heap update, and term rewriting.

3.1 Local Hoare Reasoning

3.1.1 Hoare Triples

Consider the Hoare triple \(\{P\} \mathbb{C} \{Q\}\), where \(\mathbb{C}\) is a program command, and \(P\) and \(Q\) are two CL-data formulae extended with variables and quantification. The triple has a non-standard fault-avoiding partial interpretation: it is partial in that the triple only holds if the data model satisfies \(P\); it is fault-avoiding in that \(P\) specifies the presence of the resources necessary for the command to succeed. In our examples, the resources correspond to subdata identified by unique locations given by the commands. Any attempt to access a location which is not currently available causes the program to fault. An immediate consequence of this interpretation is that, when \(\mathbb{C}\) is run in a state satisfying \(P\), it will only refer to the locations guaranteed to exist by \(P\).

The behaviour of the commands \(\mathbb{C}\) on a data set \(D\) is given by an operational semantics describing a relation \(\leadsto\):

- \(\mathbb{C}, s, d \leadsto s', d'\) specifies that the execution of command \(\mathbb{C}\) starting with variable store \(s\) and data \(d \in D\) will terminate successfully producing updated store \(s'\) and data \(d' \in D\);
- \(\mathbb{C}, s, d \not\leadsto\text{fault}\) specifies that \(\mathbb{C}\) has attempted to access a resource not present in \(s, d\) and hence yields a fault.

Definition 3.1 (Interpretation of Hoare Triples) Given a command \(\mathbb{C}\), CL-model \(\text{Mod}\) with data set \(D\), and two CL-data formulae \(P\) and \(Q\), a Hoare triple \(\{P\} \mathbb{C} \{Q\}\) is said to hold iff whenever \(s, d \models_P P\) for \(d \in D\) then:

(i) \(\mathbb{C}, s, d \leadsto s', d' \Rightarrow s', d' \models_P Q\) (partial interpretation)

(ii) \(\mathbb{C}, s, d \not\leadsto\text{fault}\) (fault-avoiding interpretation)
Consequence

\[
P' \Rightarrow P \quad \{P\} \subset\{Q\} \quad Q \Rightarrow Q'
\]

\[
\{P'\} \subset\{Q'\}
\]

Auxiliary Variable Elimination

\[
\{P\} \subset\{Q\} \quad \{\exists x.P\} \subset\{\exists x.Q\} \quad x \notin \text{free}(C)
\]

Frame

\[
\{P\} \subset\{Q\} \quad \{K(P)\} \subset\{K(Q)\} \quad \text{mod}(C) \cap \text{free}(K) = \emptyset
\]

Sequencing

\[
\{P\} \subset\{Q\} \quad \{Q\} \subset\{R\}
\]

\[
\{P\} \subset\{Q\} ; \subset\{R\}
\]

Fig. 1. General Inference Rules for Hoare Triples

3.1.2 Inference Rules

Our general inference rules for Hoare triples are given in Figure 1. In our examples, we will extend these general rules with axioms for specifying specific atomic commands. We assume standard sequential composition of commands. We do not consider any other general command constructs; for example, extending our reasoning to the while command just follows standard techniques.

We assume sets of free variables \(\text{free}(C)\) and modified variables \(\text{mod}(C)\) of a command. Intuitively, the set \(\text{free}(C)\) is the set of variables that may affect the execution of \(C\), and \(\text{mod}(C)\) the set of variables that \(C\) may modify. Typically, these sets are defined using a simple syntactic check, as we shall see in our examples. We require the following natural properties on \(\text{free}(C)\) and \(\text{mod}(C)\) for our rules to be sound; we use the notation \([s \mid x \leftarrow v]\) to denote stores updated with variable \(x\) assigned value \(v\):

- if \(x \notin \text{free}(C)\) then
 - \(C, s, d \rightsquigarrow \text{fault}\) implies \(C, [s\mid x \leftarrow v], d \rightsquigarrow \text{fault}\)
 - \(C, s, d \rightsquigarrow s', d'\) implies \(C, [s\mid x \leftarrow v], d \rightsquigarrow [s'\mid x \leftarrow v], d'\)
- if \(x \notin \text{mod}(C)\) then
 - \(C, s, d \rightsquigarrow s', d'\) implies \(s(x) = s'(x)\)

The rules of consequence, auxiliary variable elimination and sequencing are standard Hoare logic rules. The Frame rule is non-standard, and generalises the Frame rule introduced in [11]. It relies on our assumption that commands behave locally (definition 3.2). If this is the case then, due to our interpretation of the Hoare triples, the premise implies that \(C\) only requires the resources specified by \(P\), and
therefore any additional data specified by \(K \) will be unaltered by that command. In addition, the side-condition guarantees that, although the store might be modified by the command, it will not affect any of the variables in \(K \).

The soundness of the Frame Rule relies on the commands behaving locally. A command is local if it satisfies two properties, which were initially introduced in [11]. These properties are: the safety-monotonicity property which specifies that, if a command is safe in a given state (that is, it does not fault in that state), then it is safe in a larger state; and the frame property which specifies that, if a command is safe in a given state, then any execution of the command on a larger state implies that it can be tracked to an execution on the smaller state. We now give a formal definition of local commands.

Definition 3.2 (Local Commands) A command \(C \) is local for CL-model \(\text{Mod} = (\mathcal{D}, \mathcal{C}, \text{ap}, I) \) if and only if it satisfies the following two properties:

(i) safety-monotonicity property: \(\forall d \in \mathcal{D}, c \in \mathcal{C}, s, d \not\Rightarrow \text{fault} \land \text{ap}(c, d) \downarrow \Rightarrow C, s, ap(c, d) \not\Rightarrow \text{fault} \);

(ii) frame property: \(\forall d, d' \in \mathcal{D}, c \in \mathcal{C}, s, d \not\Rightarrow \text{fault} \land \text{ap}(c, d) \downarrow \land C, s, ap(c, d) \not\Rightarrow s', d' \Rightarrow \exists d'' \in \mathcal{D}. C, s, d \rightsquigarrow s', d'' \land d' = \text{ap}(c, d''). \)

Theorem 3.3 (Soundness) The rules in Figure 1 are sound.

Proof. The proof of soundness for the rules is routine, except in the Frame Rule case which requires the commands to be local. Assume that \(\{P\} \mathcal{C}(Q) \), \(s, c \models_K K, s, d \models_P P \) and \(\text{ap}(c, d) \downarrow \). We know that \(C, s, d \not\Rightarrow \text{fault} \) by the premise and our interpretation of the Hoare triples. We have \(C, s, \text{ap}(c, d) \not\Rightarrow \text{fault} \) by safety monotonicity of \(C \). If \(C, s, \text{ap}(c, d) \not\Rightarrow \text{fault} \) by safety monotonicity of \(C \). If \(C, s, d \not\Rightarrow s', d' \) by the frame property \(\exists d'' \in \mathcal{D}. C, s, d \rightsquigarrow s', d'' \) and \(d' = \text{ap}(c, d'') \). By the premise, we have \(s', d'' \models_P Q \). Since \(\text{mod}(C) \cap \text{free}(K) = \emptyset \), we also have \(s', c \models_K K \). We may therefore conclude that \(s', d' \models_P K(Q) \) as required. \(\square \)

3.1.3 Weakest Preconditions and Small Axioms

The weakest precondition axioms provide a standard ingredient of Hoare reasoning. They imply completeness of the Hoare triple inference system for straight-line code, and are often used in verification tools based on Hoare reasoning.

Definition 3.4 (Weakest Preconditions) The weakest precondition of a command \(C \) with respect to a postcondition \(P \) is a set of states \(\text{wp}(C, P) \) where \((s, d) \in \text{wp}(C, P) \) iff \(C, s, d \not\Rightarrow \text{fault} \) and \(C, s, d \rightsquigarrow s', d' \Rightarrow s', d' \models_P P \).

If the weakest precondition of a command \(C \) with respect to \(P \) is expressible as a formula \(P_{\text{wp}} \) then the weakest precondition triple \(\{P_{\text{wp}}\} \mathcal{C}\{P\} \) holds and, whenever \(\{P'\} \mathcal{C}\{P\} \) for some data formulae \(P' \), then \(P' \Rightarrow P_{\text{wp}} \). The weakest precondition for the sequencing command \(C_1 ; C_2 \) is the standard formula \(\text{wp}(C_1, \text{wp}(C_2, P)) \). The weakest preconditions of the atomic commands in our update examples are given in the following sections.

In [15] an alternative style of axioms was introduced, called the small axioms. These are triples of the form \(\{P_{fp}\} \mathcal{C}\{Q\} \), where \(P_{fp} \) just describes the footprint of
command C and Q describes the result of C on that footprint. From our intuition regarding local commands, it should be possible to derive the weakest precondition axioms, and hence all Hoare triples, from the small axioms. In the following sections, we will see that this is indeed the case for our examples.

3.2 Local Hoare Reasoning about Tree Update

We describe a core language for manipulating trees, give the small axioms and weakest precondition axioms for the atomic commands, and show that the weakest precondition axioms are derivable from the small axioms using the general inference rules given in Figure 1. We use $LocTree_N$ from example 2.6 as our tree model. Recall that local Hoare reasoning only works for local commands (definition 3.2). In the tree case, this means we must use a model in which the nodes are precisely identified. For example, we shall use the local dispose command $[n]_t := 0$, which disposes the subtree with top node given by variable n. For this command to be local, the node value of n must be precisely identified. If the value of n did not describe a unique node, then the frame property would fail. The tree model $LocTree_N$ therefore provides the simplest tree model for illustrating our ideas, since its only node structure is the unique identifiers. In [4,9], we explore a trees-with-pointers model and associated update language which correspond much more closely to XML and XML update. This model has a much more complicated node structure, consisting of labels (XML tags), unique node identifiers (XML identifiers) and cross-pointers (XML idrefs). It is easy to adapt the results presented here to this more complicated setting.

3.2.1 Tree Update Language

Our data storage model resembles that of traditional imperative languages, except that trees are first-class objects. It consists of two components: a working tree t (analogous to a heap) and a store s. The store is a function defined on both node variables and tree variables which are mapped to values:

- **node variables** $Var_N = \{n, m, \ldots\}$
- **tree variables** $Var_{TN} = \{x, y, \ldots\}$
- **stores** $s \in (Var_N \to N) \times (Var_{TN} \to TN)$

This approach of storing trees allows us to break down complex operations, such as moving trees, into smaller ones that deal with only one area of the working tree at a time and can hence be analysed locally.

We present a core update language for directly manipulating trees. Our language is simple, yet expressive enough to illustrate the subtleties of tree update. The commands consist of variable assignment, updates and sequencing. The update commands are analogous to standard commands used for updating heaps: dispose, append, lookup and new. There are however subtle differences. First, our update commands manipulate whole tree values, not just integers as for heaps. Second,
there are two location choices for where to update, either next to the distinguished node or just below the node. We use the notation \([n]_T\) to denote a subtree with top node given by \(n\), and \([n]_{SF}\) to denote the subforest underneath \(n\). Finally, the new command creates a new node which, unlike the heap case, needs to be specifically located at a particular node \(n\).

Definition 3.5 (Commands for Tree Update) The commands of our tree update language are given by the grammar:

\[
C ::= n := n' \mid x := x' \text{ variable assignment}
\]

\[
C_{up}(n) \quad \text{update at location } n
\]

\[
C ; C \quad \text{sequencing}
\]

The tree updates \(C_{up}(n)\) acting at location \(n\) are defined as follows, with each update command having two variants corresponding to updating at the identified node or at its subforest:

\[
C_{up}(n) ::= [n]_T := 0 \quad [n]_{SF} := 0 \quad \text{dispose}
\]

\[
[n]_T *= x \quad [n]_{SF} *= x \quad \text{append}
\]

\[
x := [n]_T \quad x := [n]_{SF} \quad \text{lookup}
\]

\[
n' := \text{new} [n]_T \quad n' := \text{new} [n]_{SF} \quad \text{new}
\]

The set \(\text{free}(C)\) is the set of variables occurring in \(C\). The set \(\text{mod}(C)\) is \([n]\) for node variable assignment, \([x]\) for tree variable assignment and lookup, \([n']\) for new, \(\emptyset\) for the other atomic commands, and \(\text{mod}(C_1) \cup \text{mod}(C_2)\) for \(C_1 ; C_2\).

The left-hand dispose command replaces the subtree with top node \(n\) by the empty tree \(0\); the right-hand dispose command replaces the subforest underneath node \(n\) by the empty tree. The append commands are analogous: the left-hand command adds the tree value given by \(x\) next to node \(n\); the right-hand command adds it underneath node \(n\). The lookup command assigns either the subtree with top node \(n\) or the subforest underneath \(n\) to the variable \(x\). The new commands create a new tree node with a fresh identifier and an empty subforest, either adds this fresh node next to the node \(n\) or underneath it, and stores the new node identifier in variable \(n'\).

These update commands all rely on the node identified by variable \(n\) to be in the working tree. If it is not, they will fault. A different error occurs when an append command tries to insert a tree with a node identifier that clashes with the working tree. In this case, the rule diverges, returning no result. This choice to diverge rather than fault is necessary in order to keep the command local (definition 3.2). In fact, our current choice of update is somewhat unnatural, precisely because of its dependence on the global state of the tree. A more realistic append operation is to rename the node identifiers of the tree being inserted with fresh identifiers [9,21].
The operational semantics of the tree update language is given in Figure 2, using an evaluation relation \leadsto defined on configuration triples \mathbb{C}, s, t, terminal states s, t and faults fault.

Definition 3.6 (Operational Semantics for Tree Update) The operational semantics of the tree update language is given in Figure 2, using an evaluation relation \leadsto defined on configuration triples \mathbb{C}, s, t, terminal states s, t and faults fault.

\[
\begin{align*}
&n := n', s, t \leadsto [s|n \leftarrow n'], t & s(n') = n' \\
&x := x', s, t \leadsto [s|x \leftarrow t'], t & s(x') = t' \\
&s(n) = n \quad t \equiv \text{ap}(c, n[t']) & s(n) = n \quad t \equiv \text{ap}(c, n[t']) \\
&\mathbb{C}_1, s, t \leadsto \mathbb{C}', s', t' & \mathbb{C}_1, s, t \leadsto \mathbb{C}_2, s', t' \\
&(s(n) = n \quad t \not\equiv \text{ap}(c, n[t'])) \quad \mathbb{C}_{\text{up}}(n), s, t \leadsto \text{fault} & (s(n) = n \quad t \not\equiv \text{ap}(c, n[t'])) \quad \mathbb{C}_{\text{up}}(n), s, t \leadsto \text{fault} \end{align*}
\]
Example 3.7 [Move] We present a simple program $\text{move}(n, n')$ which takes a subtree with top node n and moves it underneath the node n'. The program consists of three commands: the assignment of the subtree to variable x, the disposal of the subtree, and the append of the value of x (the subtree) underneath node n':

$$
\text{move}(n, n') \triangleq x := [n]_T ;
[n]_T := 0 ;
[n']_{\text{sf}} *:= x
$$

We will use this example to illustrate our program logic reasoning.

3.2.2 CL for Tree Update

Our CL-reasoning for LocTree_N is essentially the same as the CL_{TreeA}-reasoning given in definition 3.13. The differences are that we use node variables, rather than node constants, and tree variables in our formulae, and allow quantification over these variables. These differences are necessary for our Hoare reasoning about our tree-update commands, which are based on node and tree variables whose values are determined by a store.

Definition 3.8 (CL for Tree Update) CL applied to the tree model LocTree_N, denoted $\text{CL}_{\text{LocTree}_N}$, consists of $\text{CL}_{\text{LocTree}_N}$-formulae constructed by extending the CL_0-formulae defined inductively by the grammars in definition 2.10 with the following additional cases:

data formulae

$$
P ::= x \quad \text{specific data formulae, } x \in \text{Var}_{T_N}
$$

$$
\exists n. P \mid \exists x. P \quad \text{quantification, } n \in \text{Var}_N, x \in \text{Var}_{T_N}
$$

context formulae

$$
K ::= n[K] \mid K \circ P \quad \text{specific context formulae, } n \in \text{Var}_N
$$

$$
\exists n. K \mid \exists x. K \quad \text{quantification, } n \in \text{Var}_N, x \in \text{Var}_{T_N}
$$

The $\text{CL}_{\text{LocTree}_N}$-satisfaction relation consists of two relations of the form

$$
\text{LocTree}_N, s, t \models P \text{ and } \text{LocTree}_N, s, c \models K
$$

where $t \in T_N$ and $c \in C_N$, with the extra store component used to determine the values of the variables. These relations are defined analogously to the CL_{TreeA}-satisfaction relation (definition 3.13) with a standard treatment of the variables and
quantification given by:

\[\text{LocTree}_N(s, t) \models x \iff s(x) = t \]

\[\text{LocTree}_N(s, t) \models \exists x. P \iff \exists t' \in T_N. \text{LocTree}_N(s \mid x \leftarrow t'), t \models P \]

\[\text{LocTree}_N(s, t) \models \exists n. P \iff \exists n \in N. \text{LocTree}_N(s \mid n \leftarrow n), t \models P \]

\[\text{LocTree}_N(s, t) \models K n \iff \exists c' \in C_N. c \equiv s(n)[c'] \land \text{LocTree}_N(s, t) \models K \]

\[\text{LocTree}_N(s, t) \models K \circ P \iff \exists t' \in T_N. \text{LocTree}_N(s \mid x \leftarrow t'), c \models P \]

\[\text{LocTree}_N(s, t) \models \exists x. K \iff \exists t \in T_N. \text{LocTree}_N(s \mid x \leftarrow t'), c \models K \]

\[\text{LocTree}_N(s, t) \models \exists n. K \iff \exists n \in N. \text{LocTree}_N(s \mid n \leftarrow n), c \models P K \]

3.2.3 Local Hoare Reasoning about Tree Update

We show that our local Hoare reasoning described in Section 3.1 can be applied to our tree update language.

Lemma 3.9 (Locality for Tree Update) All the commands in our tree update language are local.

Proof. Variable assignment is trivially local as it is independent of the tree. If \(C_1, C_2 \) are local then \(C_1 ; C_2 \) is local by definition. Now consider the update commands at specific location \(n \). These only fault if \(n \) is not in the tree. Hence, the safety monotonicity condition holds for these commands, since the successful application of a context to the given tree still has \(n \) in the large tree. Notice that all the operational rules in Figure 2 for the update commands describe the transformation of a well-defined tree \(t \equiv \text{ap}(c, n[t']) \) to a tree \(t_1 \equiv \text{ap}(c, t'') \) for varying values of \(t'' \). The frame property holds, since an update on a larger well-defined tree \(\text{ap}(c', t) \equiv \text{ap}(c; c', n[t']) \), where \(; \) denotes standard context composition, yields a transformation to the tree \(\text{ap}(c; c', t'') \equiv \text{ap}(c', t_1) \).

Definition 3.10 (Small Axioms for Tree Update) The small axioms for the atomic tree update commands are given in Figure 3.

It is straightforward to see that these axioms are indeed small: the preconditions precisely describe the footprint of the command, and the postconditions just describe the immediate effect of the command on the footprint. The weakest precondition axioms in Figure 4 are also easy to read. For example, the formula describing the weakest precondition of the dispose command \([n]_T := 0 \) just states that the tree contains a subtree identified by variable \(n \), which when replaced by the empty tree gives property \(P \).

Theorem 3.11 (Weakest Precondition Axioms for Tree Update) The axioms for the atomic tree update commands given in Figure 4 are weakest precondition axioms.
\{(n' = n_1) \land 0\} \quad n := n' \quad \{(n = n_1) \land 0\}

\{(x' = x_1) \land 0\} \quad x := x' \quad \{(x = x_1) \land 0\}

\{n[\text{true}]\} \quad [n]_T := 0 \quad \{0\}

\{n[\text{true}]\} \quad [n]_{SF} := 0 \quad \{n[0]\}

\{n[y]\} \quad [n]_T ::= x \quad \{n[y] \mid x\}

\{n[y]\} \quad [n]_{SF} ::= x \quad \{n[y] \mid x\}

\{y \land n[\text{true}]\} \quad x := [n]_T \quad \{y \land (x = y)\}

\{n[y]\} \quad x := [n]_{SF} \quad \{n[y] \land (x = y)\}

\{n[y]\} \quad n' := \text{new} [n]_T \quad \{n[y] \mid n'[0]\}

\{n[y]\} \quad n' := \text{new} [n]_{SF} \quad \{n[y] \mid n'[0]\}

\text{where } n_1, x_1, y \notin \text{mod}(C)

\textbf{Fig. 3. Small Axioms for Tree Update}

\textbf{Proof.} The proof for each atomic command is a simple application of the definitions. For example, consider the update command \([n]_T := 0\). We have \(wp([n]_T := 0, P) = \{(s, t') \mid \exists c, t, n. s(n) = n \land t' \equiv \text{ap}(c, n[t]) \land s, \text{ap}(c, n[0]) \vdash P\}\) by definition. We must prove that \(s, t' \vdash (0 \triangleright P)(n[\text{true}]) \iff (s, t') \in wp([n]_T := 0, P)\). This follows directly from the definition of the CL-satisfaction relation. The proofs for the other atomic commands are similar. \(\square\)

\textbf{Lemma 3.12 (Derivability of Weakest Precondition Axioms)} The weakest precondition axioms in Figure 5 are derivable from the small axioms in Figure 3 and the proof rules in Figure 1.

\textbf{Proof.} See Figure 5. \(\square\)

Using the move program \(move(n, n')\) from Example 3.7, we demonstrate our local Hoare reasoning. By calculating the weakest precondition of the program with respect to the postcondition true, we can derive the necessary condition for non-faulting execution. The following derivation applies the weakest precondition axioms backwards, and simplifies the formulae at each step.
\[P[n'/n] \quad n := n' \{ P \} \]
\[P[x'/x] \quad x := x' \{ P \} \]
\[\{(0 \triangleright P)(n[true])\} \quad [n]_T := 0 \{ P \} \]
\[\{(n[0] \triangleright P)(n[true])\} \quad [n]_SF := 0 \{ P \} \]
\[\{\exists y. ((n[y] \mid x) \triangleright P)(n[y])\} \quad [n]_T **= x \{ P \} \]
\[\{\exists y. (n[y] \mid x) \triangleright P)(n[y])\} \quad [n]_SF **= x \{ P \} \]
\[\{\exists y. \Diamond(y \land n[true]) \land P[y/x]\} \quad x := [n]_T \{ P \} \]
\[\{\exists y. \Diamond n[y] \land P[y/x]\} \quad x := [n]_SF \{ P \} \]
\[\{\exists y. \forall n'. ((n[y] \mid n'[0]) \triangleright P)(n[y])\} \quad n' := \text{new} [n]_T \{ P \} \]
\[\{\exists y. \forall n'. (n[y] \mid n'[0]) \triangleright P)(n[y])\} \quad n' := \text{new} [n]_SF \{ P \} \]
where \(y \notin \text{free}(C) \cup \text{free}(P) \)

Fig. 4. Weakest Preconditions for Tree Update

\[\{(0 \triangleright \text{True}(n'[true]))(n[true])\} \]
\[x := [n]_T \]
\[\{(0 \triangleright \text{True}(n'[true]))(n[true])\} \]
\[[n]_T := 0 \]
\[\{\text{True}(n'[true])\} \]
\[[n']_SF **= x \]
\[\{\text{true}\} \]

Hence, the safety preconditions of a non-faulting execution of \textit{move}(n, n') is \((0 \triangleright \text{True}(n'[true]))(n[true]) \). This assertion expresses exactly what we would expect: the current tree must contain nodes \(n' \) and \(n \), but \(n' \) cannot be underneath \(n \) since the subtree with root \(n \) can be inserted in a context containing \(n' \). Furthermore, we can now easily derive a general specification for the command, using tree variables \(u, v \) as place-holders:

\[\{(0 \triangleright \text{True}(n'[u]))(n[v])\} \]
\[\text{move}(n, n') \]
\[\{\text{True}(n'[u \mid n[v]])\} \]
Fig. 5. Derivations of the Weakest Precondition Axioms for Tree Update
3.2.4 Comparison with BL-reasoning
We claim that CL is essential for local Hoare reasoning about tree update. In particular, we believe that it is not possible to do this style of Hoare reasoning based on BL. The small axioms for tree update in Figure 3 are expressible in BL for \(\text{LocTree}_N \). However, the weakest preconditions are not.

Definition 3.13 (BL for Tree Update) \(BL \) applied to the tree model \(\text{LocTree}_N \), denoted \(BL\text{LocTree}_N \), consists of \(BL\text{LocTree}_N \)-formulae constructed by extending the \(BL \)-formulae in definition 2.25 with the following additional data formulae:

\[
P := n[P] \mid \bar{n}[P] \mid x \mid \Diamond P \quad \text{specific data formulae, } n \in \text{Var}_N, x \in \text{Var}_{T_N}
\]

\[
\exists n. P \mid \exists x. P \quad \text{quantification, } n \in \text{Var}_N, x \in \text{Var}_{T_N}
\]

The \(BL\text{LocTree}_N \)-satisfaction relation \(\text{LocTree}_N, s, t \models_{BL} P \) is the obvious adaptation of the \(BL\text{Tree}_A \)-satisfaction relation given in definition 2.38.

\(BL\text{LocTree}_N \) can express updates at the top level of trees by using the composition and branch adjoints to build contexts around the tree. What it cannot do is reason directly about update in an arbitrary context. Consider the weakest precondition of \([n]_t := 0 \) given by CL-formula \((0 \triangleright P)(n[\text{true}])\). Even simple postconditions require a case-by-case analysis using \(BL\text{LocTree}_N \). For example, recall from section 2.3.3 that CL-formula \((0 \triangleright m_1[m_2[0]])(n[\text{true}])\) corresponds to BL-formulae \(m_1[m_2[n[\text{true}]]] \lor m_1[m_2[0] \mid n[\text{true}]] \lor (m_1[m_2[0] \mid n[\text{true}]) \lor (m_1[m_2[0] \mid n[\text{true}]), \) whereas CL-formula \((0 \triangleright \Diamond m_2[\text{true}])\)(n[true])\) corresponds to BL-formula \(\Diamond m_2[\text{true}] \land \Diamond \neg \Diamond m_2[\text{true}]. \) These BL-preconditions are clearly not parametric in the postcondition. In [5], we show that it is not possible to give the weakest precondition for \([n]_T := 0 \) using BL-reasoning. This involves extending the logics with propositional variables, and proving that the CL-formula \((0 \triangleright p)(n[\text{true}])\) for propositional variable \(p \) cannot be expressed in \(BL\text{LocTree}_N \).

3.3 Hoare Reasoning about Heap Update

We now describe local Hoare reasoning about heap update. We have already shown that CL-reasoning for heaps is the same as BL-reasoning for heaps (Theorem 2.29). The connection is much deeper, in that our Hoare reasoning is exactly analogous to local Hoare reasoning based on SL [15]. In addition, we shall see that the small axioms, weakest preconditions and the derivations of the weakest preconditions from the small axioms are analogous to the tree case.

3.3.1 Heap Update Language

The data storage model is the RAM model used in SL [15]. It consists of a working heap \(h \in H \) where \(H \) is the data set of the CL\(_0\)-model \(\text{Heap} \) given in Example 2.6, and a store \(s \). We use the notation \(h \cdot h' \) for the composition of heaps, and \(n \leftrightarrow n' \) for unary cell with address \(n \) and value \(n' \). The store maps node variables to natural
node variables \(\text{Var}_\mathbb{N} = \{n, m, \ldots \} \)

expressions \(E, F ::= n \mid \text{nil} \)

stores \(s \in (\text{Var}_\mathbb{N} \rightarrow \mathbb{N}) \)

We write \([s \mid n \leftarrow n] \) to denote the store \(s \) updated with \(s(n) = n \). In this paper, the expressions \(E \) are just variables and \(\text{nil} \). This is enough to illustrate our reasoning about the update commands. Extending the expression language to include arithmetic, for example, does not affect our reasoning. The semantics of expressions is given by:

\[
[n]_s = s(n) \quad [\text{nil}]_s = 0
\]

Definition 3.14 (Commands for Heap Update) The commands of our heap update language are given by the grammar:

\[
\begin{align*}
\mathbb{C} ::= & \quad n := E \quad \text{variable assignment} \\
\mathbb{C}_{up}(E) ::= & \quad \text{update at location } E \\
\mathbb{C} ::= & \quad n := \text{new}() \quad \text{new} \\
\mathbb{C} : \mathbb{C} ::= & \quad \text{sequencing}
\end{align*}
\]

The heap update commands \(\mathbb{C}_{up}(E) \) acting at location \(E \) are defined as follows:

\[
\begin{align*}
\mathbb{C}_{up}(E) ::= & \quad \text{dispose}(E) \quad \text{dispose} \\
[\text{E}] ::= & \quad F \quad \text{mutation} \\
n ::= [\text{E}] \quad \text{lookup}
\end{align*}
\]

The set \(\text{free}(\mathbb{C}) \) is the set of variables occurring in \(\mathbb{C} \). The set \(\text{mod}(\mathbb{C}) \) is \(\{n\} \) for variable assignment and lookup and \(\text{new} \), \(\emptyset \) for the other atomic commands, and \(\text{mod}(\mathbb{C}_1) \cup \text{mod}(\mathbb{C}_2) \) for \(\mathbb{C}_1 ; \mathbb{C}_2 \).

The heap update commands are similar to the tree update commands. The main difference is that heap locations contain unstructured values whilst tree locations contain trees. The heap dispose command corresponds to the tree dispose command operating at the tree level, since in both cases the node itself is deleted. The other heap update commands correspond to tree update commands operating at the subforest level, since subforests play the role of the contents of a node. Heap cell mutation \([\text{E}] ::= F \) corresponds to dispose of the subforest \([n]_{sf} := 0 \) followed by append \([n]_{sf} \leftarrow x \). Heap lookup \(n' ::= [\text{E}] \) corresponds to tree lookup \(x ::= [n]_{sf} \). The new command for trees differs from the one for heaps in that it specifies the location where the new tree is added. Keeping these differences in mind, we shall see that there are remarkable similarities in the small axioms, weakest preconditions, and derivations for the heap commands and the corresponding tree commands.
\[
[E]s = n
\]
\[
n := E, s, h \leadsto [s|n \leftarrow n], h
\]
\[
[E]s = n \quad h = h' \cdot n \mapsto n'
\]
\[
\text{dispose}(E), s, h \leadsto s, h'
\]
\[
[E]s = n \quad h = h' \cdot n \mapsto n'
\]
\[
[F]s = n''
\]
\[
\text{dispose}(E), s, h \leadsto s, h'; n \mapsto \rightarrow n''
\]
\[
n \notin \text{dom}(h)
\]
\[
[C_1, s, h \leadsto C', s', h']
\]
\[
(C_1 ; C_2), s, h \leadsto (C' ; C_2), s', h'
\]
\[
[E]s = n \quad h \neq h' \cdot n \mapsto n'
\]
\[
[C_{\text{up}}(E), s, h \leadsto \text{fault}]
\]
\[
(C_1 ; C_2), s, h \leadsto \text{fault}
\]
\[
[s \mid n \leftarrow n] \text{ denotes the store } s \text{ updated with } s(n) = n.
\]
\[
h \cdot h' \text{ denotes the composition of heaps and } n \mapsto \rightarrow n' \text{ denotes a unary heap.}
\]

Fig. 6. Operational Semantics for Heap Update

Definition 3.15 (Operational Semantics for Heap Update) The operational semantics of the heap update language is given in Figure 6.

3.3.2 CL for Heap Update

CL-reasoning for heap update is similar to CL-reasoning for multisets given in section 2.3.2, except that we now incorporate unary heaps, expressions, expression equality and quantification since they are necessary for our Hoare reasoning.

Definition 3.16 (CL for Heap Update) CL for heap update, denoted \(CL_{\text{Heap}} \), consists of \(CL_{\text{Heap}} \)-formulae constructed by extending the \(CL_0 \)-formulae defined inductively by the grammars in definition 2.10 with the following additional cases:

data formulae

\[
P ::= E \mapsto F \mid E = F\]

specific data formulae

\[
\exists n. P\]

quantification, \(n \in Var_N \)

context formulae

\[
K ::= \exists n. K\]

quantification, \(n \in Var_N \)
The extension of the CL₀-satisfaction relation is given by:

\[
\text{Heap}, s, h \models P \iff h = [E]s \rightarrow [F]s
\]

\[
\text{Heap}, s, h \models E \rightarrow F \iff [E]s = [F]s
\]

We define derived formulae used in the Hoare reasoning. We write \(E \rightarrow _ \) for \(\exists n. E \rightarrow n \), and \(E \leftarrow F \) for \((E \rightarrow F) \ast \text{true} \), where the CL₀-derived formula \(P \ast Q \) is given in Definition 2.16 and corresponds to \(\ast \) in SL for the heap model.

3.3.3 Local Hoare Reasoning about Heap Update

We give the small axioms, weakest precondition axioms, and derivations of the weakest preconditions axioms from the small axioms for the heap commands.

Lemma 3.17 (Locality for Heap Update) All the commands in our heap update language are local.

Definition 3.18 (Small Axioms for Heap Update) The Small Axioms for the atomic heap update commands are given in Figure 7.

Notice the similarity between the small axioms for the heap update commands and the small axioms for tree update commands given in Figure 3, bar the obvious variations due to the variation in the commands. We shall see that this similarity also occurs in the weakest preconditions and derivations. We illustrate this similarity for the dispose heap command \(\text{dispose}(E) \) which is analogous to the dispose tree command \([n]_{T} := 0\). The small axioms for tree and heap dispose are:

\[
\{E \rightarrow _\} \text{dispose}(E) \{0\} \quad \{n[\text{true}]\} [n]_{T} := 0 \{0\}
\]

With the heap command \(\text{dispose}(E) \), the precondition states that the heap is unary with expression \(E \) denoting the node address and \(_ \) denoting the value of the address.
which is not important. With the tree command \([n]_T := 0 \), the precondition states that the tree has top node \(n \) and the subforest underneath is not important.

Theorem 3.19 (Weakest Precondition Axioms for Heap Update) The weakest precondition axioms for the atomic heap update commands are given in Figure 8.

The weakest precondition axioms for the heap and tree dispose commands are:

\[
\{ P \ast (E \mapsto \bot) \} \text{ dispose}(E) \{ P \} \quad \{ (0 \triangleright P)(n[\text{true}]) \} \ [n]_T := 0 \ \{ P \}
\]

The connection is immediate, since \(P \ast Q \) in \(\text{CL}_0 \) is a shorthand for \((0 \triangleright P)(Q) \) and \(E \mapsto \bot \) is analogous to \(n[\text{true}] \). Not only that, but the derivations of these weakest precondition axioms are exactly analogous.

Lemma 3.20 (Derivability of Weakest Precondition Axioms) The weakest preconditions in Thm. 3.19 are derivable from the small axioms in Figure 7 and the proof rules in Figure 1.

Proof. See Figure 9.

3.4 Local Hoare Reasoning about Term Rewriting

We now apply our local Hoare reasoning to term rewriting systems. We consider rewrite rules as atomic commands. Rewrite rules are not typically regarded as local commands since they may apply to a number of redexes. They are however local in the sense that once the redex has been identified, then only the redex is affected by the rewrite. We formalize this local behaviour by considering located terms, where each occurrence of a function symbol \(f \) is annotated with a unique location \(n \in N \) for \(N \) defined as for \(\text{LocTree}_N \).

Definition 3.21 (Located Terms) The \(\text{CL-model} \) \(\text{LocTerm}_{\Sigma_N} \) of located terms generated from signature \(\Sigma \) and node identifiers \(N \) is the tuple \((T_{\Sigma_N}, C_{\Sigma_N}, \text{ap}, \{ \bot \}) \) where \(T_{\Sigma_N} \) denotes the data set of located terms constructed from indexed function symbols \(f_n : r \) where \(f : r \in \Sigma \) and \(n \in N \) is unique in the terms, \(C_{\Sigma_N} \) is the corresponding set of contexts, \(\text{ap} \) denotes the partial application of contexts to terms, and \(\bot \) denotes the empty context.

3.4.1 Term Rewriting Update Language

Our data storage model consists of a working term \(t \) and a store \(s \). The store is again a total function from node variables and term variables to values:

\[
\begin{align*}
\text{node variables} & \quad \text{Var}_N = \{n, m, \ldots\} \\
\text{term variables} & \quad \text{Var}_{\Sigma_N} = \{x, y, \ldots\} \\
\text{stores} & \quad s \in (\text{Var}_N \to N) \times (\text{Var}_{\Sigma_N} \to T_{\Sigma_N})
\end{align*}
\]
\[\{ P[E/n] \} \ n := E \ \{ P \} \]

\[\{ P \ast (E \mapsto \bot) \} \ \text{dispose}(E) \ \{ P \} \]

\[\{(E \mapsto F) \ast P \ast (E \mapsto \bot)\} \ [E] := F \ \{ P \} \]

\[\exists n_2. ((E \mapsto n_2) \land P[n_2/n]) \ n := [E] \ \{ P \} \]

\[\{ \forall n. (n \mapsto \text{nil}) \ast P \} \ n := \text{new}() \ \{ P \} \]

where \(n_2 \notin \text{free}(\mathbb{C}) \cup \text{free}(P) \)

Fig. 8. Weakest Preconditions for Heap Update

Variable Assignment

\[
\begin{align*}
\{ (E = n_1) \land 0 \} \ n := E \ & \ (n = n_1) \land 0 \ \\
\{ P[n_1/n] \ast ((E = n_1) \land 0) \} \ n := E \ & \ P[n_1/n] \ast ((n = n_1) \land 0) \\
\{ P[E/n] \ast E = n_1 \} \ n := E \ & \ P \\
\{ P[E/n] \} \ n := E \ & \ P
\end{align*}
\]

Frame

Cons

Cons/Vars

Dispose

\[
\begin{align*}
\{ E \mapsto \bot \} \ \text{dispose}(E) \ & \ \{ 0 \} \\
\{ P \ast (E \mapsto \bot) \} \ \text{dispose}(E) \ & \ \{ P \ast 0 \} \\
\{ P \ast (E \mapsto \bot) \} \ \text{dispose}(E) \ & \ \{ P \}
\end{align*}
\]

Frame

Cons

Mutation

\[
\begin{align*}
\{(E \mapsto F) \ast P \ast (E \mapsto \bot)\} \ [E] := F \ & \ (\{(E \mapsto F) \ast P \ast (E \mapsto F)\}) \\
\{(E \mapsto F) \ast P \ast (E \mapsto \bot)\} \ [E] := F \ & \ \{ P \}
\end{align*}
\]

Frame

Cons

Lookup

\[
\begin{align*}
\{(E = n_1) \land (n_1 \mapsto n_2)\} \ n := [E] \ & \ (n = n_2) \land (n_1 \mapsto n_2) \\
\{(n_1 \mapsto n_2) \land P[n_2/n] \} \ n := [E] \ & \ \{(n_1 \mapsto n_2) \land (n_1 \mapsto n_2)\} \\
\{(E \mapsto n_2) \land P[n_2/n] \land (E = n_1)\} \ n := [E] \ & \ P[n_2/n] \land (n = n_2) \\
\{(E \mapsto n_2) \land P[n_2/n] \land (E = n_1)\} \ n := [E] \ & \ P \\
\exists n_2. ((E \mapsto n_2) \land P[n_2/n]) \ n := [E] \ & \ P
\end{align*}
\]

Frame

Cons

Cons/Vars

New

\[
\begin{align*}
\{ \forall n. (n \mapsto \text{nil}) \ast P \ast 0 \} \ n := \text{new}() \ & \ \{ \forall n. (n \mapsto \text{nil}) \ast P \ast (n \mapsto \text{nil})\} \\
\{ \forall n. (n \mapsto \text{nil}) \ast P\} \ n := \text{new}() \ & \ \{ P \}
\end{align*}
\]

Frame

Cons

Fig. 9. Derivations of the Weakest Preconditions for Heap Update
We use the notation \([s \mid n \leftarrow n]\) and \([s \mid x \leftarrow t]\) as before. We also give expressions which will be used to define the rewrite commands:

\[
\text{pre-expressions } E, F ::= x \mid f_n(E, \ldots, E)
\]

The sets \(\text{free}_N(E)\) and \(\text{free}_T(E)\) denote the free node variables and term variables in \(E\), and are standard. The set of expressions are those pre-expressions with linear occurrences of the node variables. The semantics of expressions is a partial function due to uniqueness of node identifiers:

\[
[x]s = s(x) \\
[f_n(E_1, \ldots, E_r)]s = \begin{cases}
 f_s(n)([[E_1]s, \ldots, [E_r]s) & \text{if a well-defined located term} \\
 \text{undefined} & \text{otherwise}
\end{cases}
\]

Definition 3.22 (Commands for Term Rewriting) The commands for our term rewriting language are given by the grammar:

\[
C ::= E \rightarrow F \text{ rewriting rule} \\
C ; C \text{ sequencing}
\]

with the following restrictions:

(i) rewrite rule restrictions: \(E\) is not a variable and \(\text{free}_T(F) \subseteq \text{free}_T(E)\);

(ii) linearity restriction on term variables due to uniqueness of location names:

each \(x \in \text{free}_T(E)\) occurs once in \(E\) and each \(x \in \text{free}_T(F)\) occurs once in \(F\).

The set \(\text{free}(E \rightarrow F)\) is \(\text{free}_N(E) \cup \text{free}_N(F)\) and \(\text{mod}(C)\) is \(\text{free}_N(F) - \text{free}_N(E)\). Since term variables are only used internally for pattern matching with the rewrite command, they are neither modified nor free.

The command \(E \rightarrow F\) acts on the working term \(t\) and the store \(s\) by finding values for the term variables in \(E\), such that \(E\) with those values evaluates to a subterm of \(t\), and then replacing that subterm with the one generated by substituting the values into \(F\), with fresh values assigned to \(F\)'s fresh location variables. For example, the execution of the rewrite command \(f_n(x, y) \rightarrow g_n(x, h_m(y))\) on the working term \(h_{n_1}(f_{n_2}(c_{n_3}, c_{n_4}))\) in a store where \(n = n_2\) results in the term \(h_{n_1}(g_{n_2}(c_{n_3}, h_{n_5}(c_{n_4})))\) where \(n_5\) is a fresh node value assigned to \(m\) in the store. Notice that \(n_5\) must be fresh for the resulting term to be well-formed.

Definition 3.23 (Operational Semantics for Term Rewriting) The operational semantics of the term rewriting commands is given in Figure 10.

Going back to our specific rewriting example, notice that the operational semantics only temporarily assigns term variable \(x\) to \(c_{n_3}\) and \(y\) to \(c_{n_4}\). This is because the term variables in a rewriting command are bound in that command, in the sense that they are only used to describe the matching of that command to a subterm of the working term.
\[t = \text{ap}(c, t_1) \quad t_1 = [E][s \mid \hat{x} \leftarrow \hat{t}] \quad t_2 = [F][s \mid \hat{x} \leftarrow \hat{t}, \hat{m} \leftarrow \hat{m}] \quad t' = \text{ap}(c, t_2) \]

\[E \rightarrow F, s, t \sim [s | \hat{m} \leftarrow \hat{m}], t' \]

\[C_1, s, t \not\sim C', s', t' \quad (C_1 ; C_2), s, t \not\sim (C' ; C_2), s', t' \]

\[t \neq \text{ap}(c, [E][s \mid \hat{x} \leftarrow \hat{t}]) \quad (C_1 ; C_2), s, t \sim \text{fault} \]

where \(\{\hat{x}\} = \text{free}_T(E) \) and \(\hat{m} = \text{free}_N(F) - \text{free}_N(E) \).

Fig. 10. Operational Semantics for Term Rewriting

3.4.2 CL for Term Rewriting

CL for term rewriting is similar to CL for terms (section 2.3.4), except that it is extended by expressions and quantification.

Definition 3.24 (CL for Term Rewriting) CL applied to the term model \(\text{LocTerm}_{\Sigma_N} \), denoted \(\text{CL}_{\text{LocTerm}_{\Sigma_N}} \), consists of \(\text{CL}_{\text{LocTerm}_{\Sigma_N}} \)-formulae constructed by extending the CL-formulae defined inductively by the grammars in definition 2.1 with the following additional cases:

data formulae

\[P ::= E \quad \text{specific data formulae} \]

\[\exists n. P \mid \exists x. P \quad \text{quantification, } n \in \text{Var}_N, x \in \text{Var}_{T_N} \]

context formulae

\[K ::= f_n(P_1, \ldots, K, \ldots, P_r) \quad \text{specific context formulae, } f : r \in \Sigma, n \in \text{Var}_N \]

\[\exists n. K \mid \exists x. K \quad \text{quantification, } n \in \text{Var}_N, x \in \text{Var}_{T_N} \]

The extension of the satisfaction relation is given by:

\[\text{LocTerm}_{\Sigma_N}, s, t \models P \quad \text{iff } [E]s = t \]

\[\text{LocTerm}_{\Sigma_N}, s, t \models K f_n(P_1, \ldots, K, \ldots, P_r) \quad \text{iff } t = f_{[n]}(s(t_1, \ldots, \ldots, t_r) \text{ and } \text{LocTerm}_{\Sigma_N}, s, t_i \models P_i, i \in \{1, \ldots, r\} \]
3.4.3 Local Hoare Reasoning about Term Rewriting

We give the small axiom and weakest precondition axiom for the atomic term rewriting command, and derive the latter from the former as with our previous update examples.

Lemma 3.25 (Locality for Term Rewriting) The commands in our term rewriting language are local.

Definition 3.26 (Small Axiom for Term Rewriting) The small axiom for command $E \rightarrow F$ is simply

$$\{E\} \ E \rightarrow F \ {F}$$

Theorem 3.27 (Weakest Precondition Axiom for Term Rewriting) The weakest precondition axiom for command $E \rightarrow F$ is

$$\{\exists \tilde{x}'.(\forall \tilde{m}.(F[\tilde{x}'/\tilde{x}] \triangleright P))(E[\tilde{x}'/\tilde{x}]])\} \ E \rightarrow F \ {P}$$

where $\{\tilde{x}\} = \text{free}_T(E)$, $\{\tilde{m}\} = \text{free}_N(F) - \text{free}_N(E)$, and $\{\tilde{x}'\} \cap \text{free}_T(P) = \emptyset$.

The substitution \tilde{x}'/\tilde{x} reflects the fact that the term variables \tilde{x} in E are bound in the rewrite command, and can hence be renamed in the logic. The universal quantification for the \tilde{m} is necessary, because the \tilde{m} can be assigned any fresh value with freshness being guaranteed by the well-formedness of terms.

Lemma 3.28 (Derivability of Weakest Precondition Axiom) The weakest precondition in Thm. 3.27 is derivable from the small axiom in Defn. 3.26 and the proof rules in Figure 1.

Proof. See Figure 11. \qed

4 Conclusions

We have given a detailed account of CL for reasoning about structured data, and have compared CL$_0$-reasoning with BL-reasoning. We have analysed several examples of structured data: sequences and trees where CL$_0$-reasoning is stronger than
BL-reasoning, multisets and heaps where CL_0- and BL-reasoning is the same, and terms where only CL-reasoning is feasible. We believe our examples show that CL is a natural logic for reasoning about structured data. We have chosen to present the simplest version of CL necessary in order to present our local Hoare reasoning. Of course, there are several natural extensions of CL, such as context composition [21], multi-holed contexts, and binding contexts, which we will study as the application demands.

We have presented a framework for local Hoare reasoning about data update using CL, which we have applied to tree update, heap update and term rewriting. This work is a straightforward adaptation of the local reasoning agenda first established by O’Hearn, Reynolds and Yang in [15], giving us confidence that our CL-reasoning is the right approach. For tree update, it is possible to describe the small axioms and some frame rules using BL for trees (static AL). It is however not possible to define the weakest preconditions. In this paper, we illustrate this by example. We show that the weakest precondition for tree dispose cannot be expressed using BL-reasoning, since even simple postconditions require a case-by-case analysis requiring a very different structure for each case. In [5], we prove the formal inexpressivity result. Reasoning about contexts is therefore essential for local Hoare reasoning about tree update.

Our original motivation for reasoning about tree update was to reason about XML update. In this paper, we focus on a simple imperative language for manipulating a simple tree model, which is expressive enough to illustrate the subtleties of reasoning about tree update. In [9], Gardner and Zarfaty study local Hoare reasoning for a more substantial tree-update language which combines update commands with queries. They describe local Hoare reasoning for these more complex commands, but only at the expense of losing the small axioms. Small-axiom reasoning should still be possible, since these complex commands have well-defined footprints. It may be possible to regain the small-axiom approach, by using more complex contexts involving a mixture of multi-holed contexts and wiring. Indeed, Sassone et al. have highlighted Milner’s bigraphs [12] as a good model for XML precisely because of the additional context structure. They study BiLog [8], a logic for static bigraphs influenced in part by CL, but do not extend their reasoning to tree update.

In our examples of data update, the CL-reasoning and local Hoare reasoning are intriguingly similar. This suggests the possibility of unified reasoning about data update. For data defined inductively by a grammar, we intuitively know how to give the corresponding CL-theory. We should be able to formalise this intuition, by providing a uniform way of generating data, contexts and CL-formulae from the same underlying signature. It remains to be seen whether this idea can be expanded to generate a unified theory of local Hoare reasoning.

References

